1
|
Hülsmeier AJ. Glycosphingolipids in neurodegeneration - Molecular mechanisms, cellular roles, and therapeutic perspectives. Neurobiol Dis 2025; 207:106851. [PMID: 39978484 DOI: 10.1016/j.nbd.2025.106851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
Neurodegenerative diseases, including Alzheimer's (AD), Parkinson's (PD), Huntington's (HD), and amyotrophic lateral sclerosis (ALS), are characterized by progressive neuronal loss and pose significant global health challenges. Glycosphingolipids (GSLs), critical components of neuronal membranes, regulate signal transduction, membrane organization, neuroinflammation, and lipid raft functionality. This review explores GSL roles in neural development, differentiation, and neurogenesis, along with their dysregulation in neurodegenerative diseases. Aberrations in GSL metabolism drive key pathological features such as protein aggregation, neuroinflammation, and impaired signaling. Specific GSLs, such as GM1, GD3, and GM3, influence amyloid-beta aggregation in AD, α-synuclein stability in PD, and mutant huntingtin toxicity in HD. Therapeutic strategies targeting GSL metabolism, such as GM1 supplementation and enzyme modulation, have demonstrated potential to mitigate disease progression. Further studies using advanced lipidomics and glycomics may support biomarker identification and therapeutic advancements. This work aims to highlight the translational potential of GSL research for diagnosing and managing devastating neurodegenerative conditions.
Collapse
Affiliation(s)
- Andreas J Hülsmeier
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Zhong X, D’Antona AM, Rouse JC. Mechanistic and Therapeutic Implications of Protein and Lipid Sialylation in Human Diseases. Int J Mol Sci 2024; 25:11962. [PMID: 39596031 PMCID: PMC11594235 DOI: 10.3390/ijms252211962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Glycan structures of glycoproteins and glycolipids on the surface glycocalyx and luminal sugar layers of intracellular membrane compartments in human cells constitute a key interface between intracellular biological processes and external environments. Sialic acids, a class of alpha-keto acid sugars with a nine-carbon backbone, are frequently found as the terminal residues of these glycoconjugates, forming the critical components of these sugar layers. Changes in the status and content of cellular sialic acids are closely linked to many human diseases such as cancer, cardiovascular, neurological, inflammatory, infectious, and lysosomal storage diseases. The molecular machineries responsible for the biosynthesis of the sialylated glycans, along with their biological interacting partners, are important therapeutic strategies and targets for drug development. The purpose of this article is to comprehensively review the recent literature and provide new scientific insights into the mechanisms and therapeutic implications of sialylation in glycoproteins and glycolipids across various human diseases. Recent advances in the clinical developments of sialic acid-related therapies are also summarized and discussed.
Collapse
Affiliation(s)
- Xiaotian Zhong
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA;
| | - Aaron M. D’Antona
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA;
| | - Jason C. Rouse
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA 01810, USA;
| |
Collapse
|
3
|
Inamori KI, Nitta T, Shishido F, Watanabe S, Ohno I, Inokuchi JI. Sialyltransferase Activity Assay for Ganglioside GM3 Synthase. Methods Mol Biol 2023; 2613:101-110. [PMID: 36587074 DOI: 10.1007/978-1-0716-2910-9_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
GM3 synthase (GM3S) is a sialyltransferase that transfers sialic acid from CMP-sialic acid to lactosylceramide. This reaction results in formation of ganglioside GM3 and is essential for biosynthesis of its downstream derivatives, which include a- and b-series gangliosides. Here, we describe a method for GM3S enzymatic assay using fluorescence-labeled alkyl lactoside as acceptor substrate, followed by HPLC for separation of enzymatic product. The method allows quantitative assay of GM3S sialyltransferase activity in cultured cells and mouse brain tissues.
Collapse
Affiliation(s)
- Kei-Ichiro Inamori
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| | - Takahiro Nitta
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Fumi Shishido
- Center for Medical Education, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Soichiro Watanabe
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, Japan
| | - Isao Ohno
- Center for Medical Education, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
- Forefront Research Center, Graduate School of Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
4
|
Itokazu Y, Fuchigami T, Yu RK. Functional Impairment of the Nervous System with Glycolipid Deficiencies. ADVANCES IN NEUROBIOLOGY 2023; 29:419-448. [PMID: 36255683 PMCID: PMC9793801 DOI: 10.1007/978-3-031-12390-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Patients with nervous system disorders suffer from impaired cognitive, sensory and motor functions that greatly inconvenience their daily life and usually burdens their family and society. It is difficult to achieve functional recovery for the damaged central nervous system (CNS) because of its limited ability to regenerate. Glycosphingolipids (GSLs) are abundant in the CNS and are known to play essential roles in cell-cell recognition, adhesion, signal transduction, and cellular migration, that are crucial in all phases of neurogenesis. Despite intense investigation of CNS regeneration, the roles of GSLs in neural regeneration remain unclear. Here we focus on the respective potentials of glycolipids to promote regeneration and repair of the CNS. Mice lacking glucosylceramide, lactosylceramide or gangliosides show lethal phenotypes. More importantly, patients with ganglioside deficiencies exhibit severe clinical phenotypes. Further, neurodegenerative diseases and mental health disorders are associated with altered GSL expression. Accumulating studies demonstrate that GSLs not only delimit physical regions but also play central roles in the maintenance of the biological functions of neurons and glia. We anticipate that the ability of GSLs to modulate behavior of a variety of molecules will enable them to ameliorate biochemical and neurobiological defects in patients. The use of GSLs to treat such defects in the human CNS will be a paradigm-shift in approach since GSL-replacement therapy has not yet been achieved in this manner clinically.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Takahiro Fuchigami
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
5
|
Bharathi SS, Zhang BB, Paul E, Zhang Y, Schmidt AV, Fowler B, Wu Y, Tiemeyer M, Inamori KI, Inokuchi JI, Goetzman ES. GM3 synthase deficiency increases brain glucose metabolism in mice. Mol Genet Metab 2022; 137:342-348. [PMID: 36335793 PMCID: PMC11061803 DOI: 10.1016/j.ymgme.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
GM3 synthase (GM3S) deficiency is a rare neurodevelopmental disorder caused by an inability to synthesize gangliosides, for which there is currently no treatment. Gangliosides are brain-enriched, plasma membrane glycosphingolipids with poorly understood biological functions related to cell adhesion, growth, and receptor-mediated signal transduction. Here, we investigated the effects of GM3S deficiency on metabolism and mitochondrial function in a mouse model. By indirect calorimetry, GM3S knockout mice exhibited increased whole-body respiration and an increased reliance upon carbohydrate as an energy source. 18F-FDG PET confirmed higher brain glucose uptake in knockout mice, and GM3S deficient N41 neuronal cells showed higher glucose utilization in vitro. Brain mitochondria from knockout mice respired at a higher rate on Complex I substrates including pyruvate. This appeared to be due to higher expression of pyruvate dehydrogenase (PDH) and lower phosphorylation of PDH, which would favor pyruvate entry into the mitochondrial TCA cycle. Finally, it was observed that blocking glucose metabolism with the glycolysis inhibitor 2-deoxyglucose reduced seizure intensity in GM3S knockout mice following administration of kainate. In conclusion, GM3S deficiency may be associated with a hypermetabolic phenotype that could promote seizure activity.
Collapse
Affiliation(s)
- Sivakama S Bharathi
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Bob B Zhang
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Eli Paul
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Yuxun Zhang
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Alexandra V Schmidt
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Benjamin Fowler
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Yijen Wu
- Department of Developmental Biology, University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States of America
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States of America
| | - Kei-Ichiro Inamori
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Eric S Goetzman
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America..
| |
Collapse
|
6
|
Inamori KI, Inokuchi JI. Ganglioside GM3 Synthase Deficiency in Mouse Models and Human Patients. Int J Mol Sci 2022; 23:ijms23105368. [PMID: 35628171 PMCID: PMC9141422 DOI: 10.3390/ijms23105368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 12/22/2022] Open
Abstract
Gangliosides (glycosphingolipids containing one or more sialic acids) are highly expressed in neural tissues in vertebrates, and four species (GM1a, GD1a, GD1b, GT1b) are predominant in mammalian brains. GM3 is the precursor of each of these four species and is the major ganglioside in many nonneural tissues. GM3 synthase (GM3S), encoded by ST3GAL5 gene in humans, is a sialyltransferase responsible for synthesis of GM3 from its precursor, lactosylceramide. ST3GAL5 mutations cause an autosomal recessive form of severe infantile-onset neurological disease characterized by progressive microcephaly, intellectual disability, dyskinetic movements, blindness, deafness, intractable seizures, and pigment changes. Some of these clinical features are consistently present in patients with ST3GAL5 mutations, whereas others have variable expression. GM3S knockout (KO) mice have deafness and enhanced insulin sensitivity, but otherwise do not display the above-described neurological defects reported in ST3GAL5 patients. The authors present an overview of physiological functions and pathological aspects of gangliosides based on findings from studies of GM3S KO mice and discuss differential phenotypes of GM3S KO mice versus human GM3S-deficiency patients.
Collapse
Affiliation(s)
- Kei-ichiro Inamori
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Miyagi, Japan
- Correspondence: (K.-i.I.); (J.-i.I.)
| | - Jin-ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Miyagi, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, Toyonaka 560-0043, Osaka, Japan
- Correspondence: (K.-i.I.); (J.-i.I.)
| |
Collapse
|
7
|
Inamori KI. Regulation of Leptin Receptor Signaling by Gangliosides. TRENDS GLYCOSCI GLYC 2022. [DOI: 10.4052/tigg.2106.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Kei-ichiro Inamori
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University
| |
Collapse
|
8
|
Inamori KI. Regulation of Leptin Receptor Signaling by Gangliosides. TRENDS GLYCOSCI GLYC 2022. [DOI: 10.4052/tigg.2106.1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Kei-ichiro Inamori
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University
| |
Collapse
|
9
|
Kanoh H. [Homeostatic and Pathophysiological Regulation of Toll-like Receptor 4 Signaling by GM3 Ganglioside Molecular Species]. YAKUGAKU ZASSHI 2022; 142:195-203. [PMID: 35228371 DOI: 10.1248/yakushi.21-00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic inflammation plays an important role in the pathogenesis of obesity and metabolic disorders. In obesity, pattern-recognition receptors in innate immune system, such as Toll-like receptor 4 (TLR4), cause chronic inflammation through prolonged activation by various endogenous ligands, including fatty acids and its metabolites. Gangliosides and other glycosphingolipids are important metabolites of fatty acids and saccharides. GM3, the simplest ganglioside comprising α2,3-sialyllactose, is expressed in insulin-sensitive peripheral tissues such as liver and adipose tissue, and furthermore secreted abundantly into serum. It has been shown that GM3 regulates the signal transduction of insulin receptor in adipose tissue as a component of membrane microdomains, and elevation in GM3 level causes insulin resistance. However, the homeostatic and pathophysiological functions of extracellularly secreted GM3 are poorly understood. We recently reported that GM3 species with differing fatty acid structures act as pro- and anti-inflammatory endogenous TLR4 ligands. GM3 with very long-chain fatty acid (VLCFA) and α-hydroxyl VLCFA strongly enhanced TLR4 activation. Conversely, GM3 with long-chain fatty acid (LCFA) and ω-9 unsaturated VLCFA inhibited TLR4 activation, counteracting the VLCFA species. GM3 interacted with the extracellular complex of TLR4 and promoted dimerization/oligomerization. In obesity and metabolic disorders, VLCFA species were increased in serum and adipose tissue, whereas LCFA species was relatively decreased; their imbalances were correlated to disease progression. Our findings suggest that GM3 species are disease-related endogenous TLR4 ligands, and "glycosphingolipid sensing" by TLR4 controls the homeostatic and pathological roles of innate immune signaling.
Collapse
Affiliation(s)
- Hirotaka Kanoh
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Department of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| |
Collapse
|
10
|
Inokuchi JI, Kanoh H, Inamori KI, Nagafuku M, Nitta T, Fukase K. Homeostatic and pathogenic roles of the GM3 ganglioside. FEBS J 2021; 289:5152-5165. [PMID: 34125497 DOI: 10.1111/febs.16076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/10/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022]
Abstract
Two decades ago, we achieved molecular cloning of ganglioside GM3 synthase (GM3S; ST3GAL5), the enzyme responsible for initiating biosynthesis of complex gangliosides. The efforts of our research group since then have been focused on clarifying the physiological and pathological roles of gangliosides, particularly GM3. This review summarizes our long-term studies on the roles of GM3 in insulin resistance and adipogenesis in adipose tissues, cholesterol uptake in intestine, and leptin resistance in hypothalamus. We hypothesized that GM3 plays a role in innate immune function of macrophages and demonstrated that molecular species of GM3 with differing acyl-chain structures and modifications functioned as pro- and anti-inflammatory endogenous Toll-like receptor 4 (TLR4) modulators in macrophages. Very-long-chain and α-hydroxy GM3 species enhanced TLR4 activation, whereas long-chain and unsaturated GM3 species counteracted this effect. Lipidomic analyses of serum and adipose tissues revealed that imbalances between such pro- and anti-inflammatory GM3 species promoted progression of metabolic disorders. GM3 thus functions as a physiological regulatory factor controlling the balance between homeostatic and pathological states. Ongoing studies based on these findings will clarify the mechanisms underlying ganglioside-dependent control of energy homeostasis and innate immune responses.
Collapse
Affiliation(s)
- Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan.,Core for Medicine and Science Collaborative Research and Education (MS-CORE), Project Research Center for Fundamental Sciences, Osaka University, Japan
| | - Hirotaka Kanoh
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kei-Ichiro Inamori
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Masakazu Nagafuku
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Takahiro Nitta
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Koichi Fukase
- Core for Medicine and Science Collaborative Research and Education (MS-CORE), Project Research Center for Fundamental Sciences, Osaka University, Japan.,Department of Chemistry, Graduate School of Science, Osaka University, Japan
| |
Collapse
|
11
|
Kshirsagar V, Thingore C, Juvekar A. Insulin resistance: a connecting link between Alzheimer's disease and metabolic disorder. Metab Brain Dis 2021; 36:67-83. [PMID: 32986168 DOI: 10.1007/s11011-020-00622-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022]
Abstract
Recent evidence suggests that Alzheimer's disease (AD) is closely linked with insulin resistance, as seen in type 2 diabetes mellitus (T2DM). Insulin signaling is impaired in AD brains due to insulin resistance, ultimately resulting in the formation of neurofibrillary tangles (NFTs). AD and T2DM are connected at molecular, clinical, and epidemiological levels making it imperative to understand the contribution of T2DM, and other metabolic disorders, to AD pathogenesis. In this review, we have discussed various modalities involved in the pathogenesis of these two diseases and explained the contributing parameters. Insulin is vital for maintaining glucose homeostasis and it plays an important role in regulating inflammation. Here, we have discussed the roles of various contributing factors like miRNA, leptin hormone, neuroinflammation, metabolic dysfunction, and gangliosides in insulin impairment both in AD and T2DM. Understanding these mechanisms will be a big step forward for making molecular therapies that may help maintain or prevent both AD and T2DM, thus reducing the burden of both these diseases.
Collapse
Affiliation(s)
- Viplav Kshirsagar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Near Khalsa college, Matunga, Mumbai, Maharashtra, 400019, India
| | - Chetan Thingore
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Near Khalsa college, Matunga, Mumbai, Maharashtra, 400019, India
| | - Archana Juvekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Near Khalsa college, Matunga, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
12
|
Roles of Gangliosides in Hypothalamic Control of Energy Balance: New Insights. Int J Mol Sci 2020; 21:ijms21155349. [PMID: 32731387 PMCID: PMC7432706 DOI: 10.3390/ijms21155349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 12/19/2022] Open
Abstract
Gangliosides are essential components of cell membranes and are involved in a variety of physiological processes, including cell growth, differentiation, and receptor-mediated signal transduction. They regulate functions of proteins in membrane microdomains, notably receptor tyrosine kinases such as insulin receptor (InsR) and epidermal growth factor receptor (EGFR), through lateral association. Studies during the past two decades using knockout (KO) or pharmacologically inhibited cells, or KO mouse models for glucosylceramide synthase (GCS; Ugcg), GM3 synthase (GM3S; St3gal5), and GD3 synthase (GD3S; St8sia1) have revealed essential roles of gangliosides in hypothalamic control of energy balance. The a-series gangliosides GM1 and GD1a interact with leptin receptor (LepR) and promote LepR signaling through activation of the JAK2/STAT3 pathway. Studies of GM3S KO cells have shown that the extracellular signal-regulated kinase (ERK) pathway, downstream of the LepR signaling pathway, is also modulated by gangliosides. Recent studies have revealed crosstalk between the LepR signaling pathway and other receptor signaling pathways (e.g., InsR and EGFR pathways). Gangliosides thus have the ability to modulate the effects of leptin by regulating functions of such receptors, and by direct interaction with LepR to control signaling.
Collapse
|
13
|
Oishi K, Miyazaki M, Takase R, Chigwechokha PK, Komatsu M, Shiozaki K. Regulation of triglyceride metabolism in medaka (Oryzias latipes) hepatocytes by Neu3a sialidase. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:563-574. [PMID: 31792756 DOI: 10.1007/s10695-019-00730-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
Fish store triglycerides (TGs) in the liver, muscle, and adipose tissue and TGs constitute an energy source upon metabolic demand. The liver generally plays important roles in lipid metabolism. Recent studies have suggested the possibility of hepatic lipid metabolic regulation by ganglioside in mammals; however, ganglioside-mediated regulation of lipid metabolism is unclear in fish. This study aimed to clarify the role of ganglioside in fish TG metabolism, with particular reference to Neu3a, a ganglioside-specific sialidase expressed in the fish liver. Under fasting conditions, there was a decrease in hepatic TG contents, and neu3a mRNA level was significantly up-regulated in the medaka liver. To determine the role of Neu3a in hepatic lipid metabolism, Neu3a stable transfectants were generated using fish liver Hepa-T1 cells. After treating Neu3a cells with oleic acid, reduction of TG was detected in comparison with the mock cells. Furthermore, lipase activity was greater in Neu3a cells than in mock cells. To examine which ganglioside regulates these events, alterations of ganglioside composition in Neu3a cells were analyzed. Neu3a cells exhibited increased level of lactosylceramide (LacCer), a Neu3 enzymatic product originating from GM3. In addition, exposure of LacCer toward Hepa-T1 cells resulted in an increase of neutral lipase activity. The present results suggest that Neu3a up-regulation in medaka under fasting condition accelerates hepatic TG degradation for energy production via GM3 desialylation.
Collapse
Affiliation(s)
- Kazuki Oishi
- Faculty of Fisheries, Kagoshima University, Kagoshima, 890-0056, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, 4-50-20 Shimoarata, Kagoshima, 890-0056, Japan
| | - Mina Miyazaki
- Faculty of Fisheries, Kagoshima University, Kagoshima, 890-0056, Japan
| | - Ryo Takase
- Faculty of Fisheries, Kagoshima University, Kagoshima, 890-0056, Japan
| | | | - Masaharu Komatsu
- Faculty of Fisheries, Kagoshima University, Kagoshima, 890-0056, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, 4-50-20 Shimoarata, Kagoshima, 890-0056, Japan
| | - Kazuhiro Shiozaki
- Faculty of Fisheries, Kagoshima University, Kagoshima, 890-0056, Japan.
- The United Graduate School of Agricultural Sciences, Kagoshima University, 4-50-20 Shimoarata, Kagoshima, 890-0056, Japan.
| |
Collapse
|
14
|
Broussard A, Florwick A, Desbiens C, Nischan N, Robertson C, Guan Z, Kohler JJ, Wells L, Boyce M. Human UDP-galactose 4′-epimerase (GALE) is required for cell-surface glycome structure and function. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49882-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
15
|
Broussard A, Florwick A, Desbiens C, Nischan N, Robertson C, Guan Z, Kohler JJ, Wells L, Boyce M. Human UDP-galactose 4'-epimerase (GALE) is required for cell-surface glycome structure and function. J Biol Chem 2019; 295:1225-1239. [PMID: 31819007 DOI: 10.1074/jbc.ra119.009271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/23/2019] [Indexed: 12/27/2022] Open
Abstract
Glycan biosynthesis relies on nucleotide sugars (NSs), abundant metabolites that serve as monosaccharide donors for glycosyltransferases. In vivo, signal-dependent fluctuations in NS levels are required to maintain normal cell physiology and are dysregulated in disease. However, how mammalian cells regulate NS levels and pathway flux remains largely uncharacterized. To address this knowledge gap, here we examined UDP-galactose 4'-epimerase (GALE), which interconverts two pairs of essential NSs. Using immunoblotting, flow cytometry, and LC-MS-based glycolipid and glycan profiling, we found that CRISPR/Cas9-mediated GALE deletion in human cells triggers major imbalances in NSs and dramatic changes in glycolipids and glycoproteins, including a subset of integrins and the cell-surface death receptor FS-7-associated surface antigen. In particular, we observed substantial decreases in total sialic acid, galactose, and GalNAc levels in glycans. These changes also directly impacted cell signaling, as GALE -/- cells exhibited FS-7-associated surface antigen ligand-induced apoptosis. Our results reveal a role of GALE-mediated NS regulation in death receptor signaling and may have implications for the molecular etiology of illnesses characterized by NS imbalances, including galactosemia and metabolic syndrome.
Collapse
Affiliation(s)
- Alex Broussard
- Department of Biochemistry, Duke University, Durham, North Carolina 27710
| | - Alyssa Florwick
- Department of Biochemistry, Duke University, Durham, North Carolina 27710
| | - Chelsea Desbiens
- Department of Chemistry, University of Georgia, Athens, Georgia 30602
| | - Nicole Nischan
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Corrina Robertson
- Department of Biochemistry, Duke University, Durham, North Carolina 27710
| | - Ziqiang Guan
- Department of Biochemistry, Duke University, Durham, North Carolina 27710
| | - Jennifer J Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Lance Wells
- Department of Chemistry, University of Georgia, Athens, Georgia 30602.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Michael Boyce
- Department of Biochemistry, Duke University, Durham, North Carolina 27710
| |
Collapse
|
16
|
Nihei W, Nagafuku M, Hayamizu H, Odagiri Y, Tamura Y, Kikuchi Y, Veillon L, Kanoh H, Inamori KI, Arai K, Kabayama K, Fukase K, Inokuchi JI. NPC1L1-dependent intestinal cholesterol absorption requires ganglioside GM3 in membrane microdomains. J Lipid Res 2018; 59:2181-2187. [PMID: 30242108 DOI: 10.1194/jlr.m089201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/14/2018] [Indexed: 12/13/2022] Open
Abstract
Intestinal cholesterol absorption is a key regulator of systemic cholesterol homeostasis. Excessive dietary cholesterol and its intestinal uptake lead to hypercholesterolemia, a major risk factor for cardiovascular disease. Intestinal cholesterol uptake is mediated by Niemann-Pick C1-like 1 (NPC1L1), a transmembrane protein localized in membrane microdomains (lipid rafts) enriched in gangliosides and cholesterol. The roles of gangliosides, such as monosialodihexosylganglioside (GM3) and its synthesizing enzyme GM3 synthase (GM3S), in NPC1L1-dependent cholesterol uptake have not been examined previously. Here, we examined NPC1L1-dependent cholesterol uptake in a cell model as well as in wild-type and apoE-deficient mice fed normal or high-cholesterol diets. We showed that NPC1L1-dependent cholesterol uptake was impaired in GM3S-deficient cells and that GM3S deficiency promoted resistance to hypercholesterolemia in both wild-type and apoE-deficient mice fed the high-cholesterol but not the normal diet. Our findings suggest that GM3 and related gangliosides are essential for NPC1L1-mediated intestinal cholesterol absorption and are potential targets for hypercholesterolemia therapy.
Collapse
Affiliation(s)
- Wataru Nihei
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Masakazu Nagafuku
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Hirotaka Hayamizu
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yuta Odagiri
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yumi Tamura
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yui Kikuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Lucas Veillon
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan.,Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hirotaka Kanoh
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kei-Ichiro Inamori
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kenta Arai
- Laboratory of Natural Product Chemistry, Department of Chemistry, Osaka University, Toyonaka, Japan
| | - Kazuya Kabayama
- Laboratory of Natural Product Chemistry, Department of Chemistry, Osaka University, Toyonaka, Japan
| | - Koichi Fukase
- Laboratory of Natural Product Chemistry, Department of Chemistry, Osaka University, Toyonaka, Japan
| | - Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|