1
|
Xavier P, Bhat SA, Yelamaggad CV, Viswanath P. Phase behaviour and adsorption of deoxyribonucleic acid onto an azobenzene liquid crystalline ligand at the interfaces. Biophys Chem 2023; 296:106980. [PMID: 36889134 DOI: 10.1016/j.bpc.2023.106980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023]
Abstract
Azobenzene liquid crystalline (ALC) ligand contains a cholesteryl group linked to an azobenzene moiety through a carbonyl dioxy spacer (C7) and terminated with an amine group as a polar head. The phase behaviour of the C7 ALC ligand at the air-water (A-W) interface is investigated employing surface manometry. The surface pressure-area per molecule isotherm shows that C7 ALC ligand exhibit two different phases following the phase sequence viz., liquid expanded (LE1 and LE2) and then collapse to three-dimensional crystallites. Further, our investigations under different pH conditions and in the presence of DNA reveal the following. Compared to the bulk, the acid dissociation constant (pKa) of an individual amine reduces to 5 at the interfaces. For pH (3.5) < pKa, the protonation of amine groups of C7 ALC ligand facilitates the condensation of the film and enhances the stability. For pH values > pKa, the phase behaviour of the ligand remains the same due to the partial dissociation of the amine groups. The presence of DNA in the sub-phase result in the expansion of isotherm to the higher area per molecule and the compressional modulus extracted reveals the phase sequence; liquid expanded, liquid condensed, followed by a collapse. Further, the kinetics of adsorption of DNA to the amine groups of the ligand is investigated, suggesting the interactions are influenced by surface pressure corresponding to different phases and pH of the sub-phase. Brewster angle microscope studies are carried out at different surface densities of the ligand as well as in the presence of DNA also supports this inference. Atomic force microscope is employed to acquire the surface topography and height profile of C7 ALC ligand (1 layer) after transferring on onto a silicon substrate using Langmuir Blodgett deposition. The difference in the surface topography and thickness of the film indicates the adsorption of DNA onto the amine groups of the ligand. The characteristic UV-visible absorption bands of the ligand films (10 layers) at the air-solid interface are tracked and the hypsochromic shift of these bands is also attributed to these DNA interactions.
Collapse
Affiliation(s)
- Pinchu Xavier
- Centre for Nano and Soft Matter Sciences, Bengaluru 562 162, India; Manipal Academy of Higher Education, Manipal 576 104, India
| | - Sachin A Bhat
- Centre for Nano and Soft Matter Sciences, Bengaluru 562 162, India
| | | | | |
Collapse
|
2
|
Schoop V, Martello A, Eden ER, Höglinger D. Cellular cholesterol and how to find it. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158989. [PMID: 34118431 DOI: 10.1016/j.bbalip.2021.158989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 01/06/2023]
Abstract
Cholesterol is an essential component of eukaryotic cellular membranes. Information about its subcellular localization and transport pathways inside cells are key for the understanding and treatment of cholesterol-related diseases. In this review we give an overview over the most commonly used methods that contributed to our current understanding of subcellular cholesterol localization and transport routes. First, we discuss methods that provide insights into cholesterol metabolism based on readouts of downstream effects such as esterification. Subsequently, we focus on the use of cholesterol-binding molecules as probes that facilitate visualization and quantification of sterols inside of cells. Finally, we explore different analogues of cholesterol which, when taken up by living cells, are integrated and transported in a similar fashion as endogenous sterols. Taken together, we highlight the challenges and advantages of each method such that researchers studying aspects of cholesterol transport may choose the most pertinent approach for their problem.
Collapse
Affiliation(s)
- Valentin Schoop
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Andrea Martello
- University College London (UCL), Institute of Ophthalmology, EC1V 9EL London, United Kingdom
| | - Emily R Eden
- University College London (UCL), Institute of Ophthalmology, EC1V 9EL London, United Kingdom
| | - Doris Höglinger
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany.
| |
Collapse
|
3
|
Abstract
Spirocyclic scaffolds are incorporated in various approved drugs and drug candidates. The increasing interest in less planar bioactive compounds has given rise to the development of synthetic methodologies for the preparation of spirocyclic scaffolds. In this Perspective, we summarize the diverse synthetic routes to obtain spirocyclic systems. The impact of spirocycles on potency and selectivity, including the aspect of stereochemistry, is discussed. Furthermore, we examine the changes in physicochemical properties as well as in in vitro and in vivo ADME using selected studies that compare spirocyclic compounds to their nonspirocyclic counterparts. In conclusion, the value of spirocyclic scaffolds in medicinal chemistry is discussed.
Collapse
Affiliation(s)
- Kerstin Hiesinger
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue Straße 9, D-60348 Frankfurt am Main, Germany
| | - Dmitry Dar'in
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue Straße 9, D-60348 Frankfurt am Main, Germany
| | - Mikhail Krasavin
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| |
Collapse
|
4
|
Martyloga OV, Myronenko A, Tkachenko AM, Matvienko VO, Kuchkovska YO, Grygorenko OO. Multigram Synthesis of Functionalized Spirocyclic Diazirines. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | - Artamon Myronenko
- Enamine Ltd. (www.enamine.net); Chervonotkatska Street 78 02094 Kyiv Ukraine
| | - Anton M. Tkachenko
- Enamine Ltd. (www.enamine.net); Chervonotkatska Street 78 02094 Kyiv Ukraine
| | | | - Yuliya O. Kuchkovska
- Enamine Ltd. (www.enamine.net); Chervonotkatska Street 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd. (www.enamine.net); Chervonotkatska Street 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| |
Collapse
|
5
|
Ge SS, Chen B, Wu YY, Long QS, Zhao YL, Wang PY, Yang S. Current advances of carbene-mediated photoaffinity labeling in medicinal chemistry. RSC Adv 2018; 8:29428-29454. [PMID: 35547988 PMCID: PMC9084484 DOI: 10.1039/c8ra03538e] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/07/2018] [Indexed: 12/21/2022] Open
Abstract
Photoaffinity labeling (PAL) in combination with a chemical probe to covalently bind its target upon UV irradiation has demonstrated considerable promise in drug discovery for identifying new drug targets and binding sites. In particular, carbene-mediated photoaffinity labeling (cmPAL) has been widely used in drug target identification owing to its excellent photolabeling efficiency, minimal steric interference and longer excitation wavelength. Specifically, diazirines, which are among the precursors of carbenes and have higher carbene yields and greater chemical stability than diazo compounds, have proved to be valuable photolabile reagents in a diverse range of biological systems. This review highlights current advances of cmPAL in medicinal chemistry, with a focus on structures and applications for identifying small molecule-protein and macromolecule-protein interactions and ligand-gated ion channels, coupled with advances in the discovery of targets and inhibitors using carbene precursor-based biological probes developed in recent decades.
Collapse
Affiliation(s)
- Sha-Sha Ge
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Biao Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Yuan-Yuan Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Qing-Su Long
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Yong-Liang Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
- College of Pharmacy, East China University of Science & Technology Shanghai 200237 China
| |
Collapse
|
6
|
Maiwald A, Bauer O, Gimpl G. Synthesis and characterization of a novel rhodamine labeled cholesterol reporter. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1099-1113. [PMID: 28257814 DOI: 10.1016/j.bbamem.2017.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 11/18/2022]
Abstract
We introduce the novel fluorescent cholesterol probe RChol in which a sulforhodamine group is linked to the sixth carbon atom of the steroid backbone of cholesterol. The same position has recently been selected to generate the fluorescent reporter 6-dansyl-cholestanol (DChol) and the photoreactive 6-azi-cholestanol. In comparison with DChol, RChol is brighter, much more photostable, and requires less energy for excitation, i.e. favorable conditions for microscopical imaging. RChol easily incorporates into methyl-β-cyclodextrin forming a water-soluble inclusion complex that acts as an efficient sterol donor for cells and membranes. Like cholesterol, RChol possesses a free 3'OH group, a prerequisite to undergo intracellular esterification. RChol was also able to support the growth of cholesterol auxotrophic cells and can therefore substitute for cholesterol as a major component of the plasma membrane. According to subcellular fractionation, slight amounts of RChol (~12%) were determined in low-density Triton-insoluble fractions whereas the majority of RChol was localized in non-rafts fractions. In phase-separated giant unilamellar vesicles, RChol preferentially partitions in liquid-disordered membrane domains. Intracellular RChol was transferred to extracellular sterol acceptors such as high density lipoproteins in a dose-dependent manner. Unlike DChol, RChol was not delivered to the cholesterol storage pathway. Instead, it translocated to endosomes/lysosomes with some transient contacts to peroxisomes. Thus, RChol is considered as a useful probe to study the endosomal/lysosomal pathway of cholesterol.
Collapse
Affiliation(s)
- Alexander Maiwald
- Institute of Pharmacy and Biochemistry, Gutenberg-University Mainz, Johann-Joachim Becherweg 30, D-55128 Mainz, Germany
| | - Olivia Bauer
- Institute of Pharmacy and Biochemistry, Gutenberg-University Mainz, Johann-Joachim Becherweg 30, D-55128 Mainz, Germany
| | - Gerald Gimpl
- Institute of Pharmacy and Biochemistry, Gutenberg-University Mainz, Johann-Joachim Becherweg 30, D-55128 Mainz, Germany.
| |
Collapse
|
7
|
Byrd KM, Arieno MD, Kennelly ME, Estiu G, Wiest O, Helquist P. Design and synthesis of a crosslinker for studying intracellular steroid trafficking pathways. Bioorg Med Chem 2015; 23:3843-51. [PMID: 25890696 DOI: 10.1016/j.bmc.2015.03.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/11/2015] [Accepted: 03/20/2015] [Indexed: 11/30/2022]
Abstract
A crosslinker was designed and synthesized as a molecular tool for potential use in probing the intracellular trafficking pathways of steroids. The design was guided by computational modeling based upon a model for the transfer of cholesterol between two proteins, NPC1 and NPC2. These proteins play critical roles in the transport of low-density lipoprotein-derived cholesterol from the lumen of lysosomes to other subcellular compartments. Two modified cholesterol residues were covalently joined by a tether based on molecular modeling of the transient interaction of NPC1 and NPC2 during the transfer of cholesterol from the binding site of one of these proteins to the other. With two cholesterol molecules appropriately connected, we hypothesize that the cholesterol binding sites of both proteins will be simultaneously occupied in a manner that will stabilize the protein-protein interaction to permit detailed structural analysis of the resulting complex. A photoaffinity label has also been introduced into one of the cholesterol cores to permit covalent attachment of one of the units into its respective protein-binding pocket. The basic design of these crosslinkers should render them useful for examining interactions of the NPC1/NPC2 pair as well as other sterol transport proteins.
Collapse
Affiliation(s)
- Katherine M Byrd
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Marcus D Arieno
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Megan E Kennelly
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Guillermina Estiu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Olaf Wiest
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States; Lab of Computational Chemistry and Drug Design, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Paul Helquist
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States.
| |
Collapse
|
8
|
Peng T, Yuan X, Hang HC. Turning the spotlight on protein-lipid interactions in cells. Curr Opin Chem Biol 2014; 21:144-53. [PMID: 25129056 PMCID: PMC4206213 DOI: 10.1016/j.cbpa.2014.07.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 12/27/2022]
Abstract
Protein function is largely dependent on coordinated and dynamic interactions of the protein with biomolecules including other proteins, nucleic acids and lipids. Although powerful methods for global profiling of protein-protein and protein-nucleic acid interactions are available, proteome-wide mapping of protein-lipid interactions is still challenging and rarely performed. The emergence of bifunctional lipid probes with photoactivatable and clickable groups offers new chemical tools for globally profiling protein-lipid interactions under cellular contexts. In this review, we summarize recent advances in the development of bifunctional lipid probes for studying protein-lipid interactions. We also highlight how in vivo photocrosslinking reactions contribute to the characterization of lipid-binding proteins and lipidation-mediated protein-protein interactions.
Collapse
Affiliation(s)
- Tao Peng
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, United States
| | - Xiaoqiu Yuan
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, United States
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, United States.
| |
Collapse
|
9
|
Haberkant P, Holthuis JCM. Fat & fabulous: bifunctional lipids in the spotlight. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1022-30. [PMID: 24440797 DOI: 10.1016/j.bbalip.2014.01.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/02/2014] [Accepted: 01/05/2014] [Indexed: 01/25/2023]
Abstract
Understanding biological processes at the mechanistic level requires a systematic charting of the physical and functional links between all cellular components. While protein-protein and protein-nucleic acid networks have been subject to many global surveys, other critical cellular components such as membrane lipids have rarely been studied in large-scale interaction screens. Here, we review the development of photoactivatable and clickable lipid analogues-so-called bifunctional lipids-as novel chemical tools that enable a global profiling of lipid-protein interactions in biological membranes. Recent studies indicate that bifunctional lipids hold great promise in systematic efforts to dissect the elaborate crosstalk between proteins and lipids in live cells and organisms. This article is part of a Special Issue entitled Tools to study lipid functions.
Collapse
Affiliation(s)
- Per Haberkant
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | - Joost C M Holthuis
- Molecular Cell Biology, University of Osnabrück, Barbarastrasse 13, 49076 Osnabrück, Germany.
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Selective lipid uptake (SLU) is known to be a major pathway of lipoprotein cholesterol metabolism in experimental animals and humans, but remains poorly understood. This review provides a brief overview of SLU mediated by the HDL receptor scavenger receptor B-type I (SR-BI), and highlights several surprising new findings related to the impact of SLU pathways in cholesterol homeostasis. RECENT FINDINGS Under certain conditions, SR-BI-mediated SLU contributes to reverse cholesterol transport (RCT) independently of ABCG5/G8-mediated biliary cholesterol secretion, implying a novel trafficking mechanism. Hepatic SR-BI expression and RCT are decreased in diabetic mice. Farnesoid X receptor (FXR) and the microRNAs miR-185, miR-96 and miR-223 are emerging therapeutic targets for increasing SR-BI expression. SR-BI-independent selective cholesteryl ester uptake is a newly characterized pathway in macrophage foam cells. SUMMARY New findings underscore the importance of SR-BI-mediated SLU in hepatic SLU and RCT, while indicating that further investigation is needed to define SLU pathways, including SR-BI-independent macrophage selective cholesteryl ester uptake. The intracellular trafficking of cholesterol in these pathways appears to be critical to their normal function and is a major subject of ongoing studies.
Collapse
Affiliation(s)
- Jason M. Meyer
- Departments of Internal Medicine and Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Gregory A. Graf
- Department Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, USA
- Barnstable Brown Kentucky Diabetes and Obesity Center, University of Kentucky, Lexington, Kentucky, USA
| | - Deneys R. van der Westhuyzen
- Department of Veterans Affairs Medical Center, University of Kentucky, Lexington, Kentucky, USA
- Departments of Internal Medicine and Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, USA
- Barnstable Brown Kentucky Diabetes and Obesity Center, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
11
|
Xia Y, Peng L. Photoactivatable Lipid Probes for Studying Biomembranes by Photoaffinity Labeling. Chem Rev 2013; 113:7880-929. [DOI: 10.1021/cr300419p] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yi Xia
- Aix-Marseille Université, Centre Interdisciplinaire de Nanoscience de Marseille, CNRS UMR 7325, Campus de Luminy, 13288 Marseille, France
| | - Ling Peng
- Aix-Marseille Université, Centre Interdisciplinaire de Nanoscience de Marseille, CNRS UMR 7325, Campus de Luminy, 13288 Marseille, France
| |
Collapse
|
12
|
Almassy J, Yule DI. Photolysis of caged compounds: studying Ca(2+) signaling and activation of Ca(2+)-dependent ion channels. Cold Spring Harb Protoc 2013; 2013:2013/1/pdb.top066076. [PMID: 23282631 DOI: 10.1101/pdb.top066076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A wide variety of signaling molecules have been chemically modified by conjugation to a photolabile chromophore to render the substance temporarily biologically inert. Subsequent exposure to ultraviolet (UV) light can release the active moiety from the "caged" precursor in an experimentally controlled manner. This allows the concentration of active molecule to be precisely manipulated in both time and space. These techniques are particularly useful in experimental protocols designed to investigate the mechanisms underlying Ca(2+) signaling and the activation of Ca(2+)-dependent effectors.
Collapse
Affiliation(s)
- Janos Almassy
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | | |
Collapse
|
13
|
Das J. Aliphatic diazirines as photoaffinity probes for proteins: recent developments. Chem Rev 2011; 111:4405-17. [PMID: 21466226 DOI: 10.1021/cr1002722] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, USA.
| |
Collapse
|
14
|
Gimpl G, Gehrig-Burger K. Probes for studying cholesterol binding and cell biology. Steroids 2011; 76:216-31. [PMID: 21074546 DOI: 10.1016/j.steroids.2010.11.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 11/03/2010] [Accepted: 11/05/2010] [Indexed: 11/20/2022]
Abstract
Cholesterol is a multifunctional lipid in eukaryotic cells. It regulates the physical state of the phospholipid bilayer, is crucially involved in the formation of membrane microdomains, affects the activity of many membrane proteins, and is the precursor for steroid hormones and bile acids. Thus, cholesterol plays a profound role in the physiology and pathophysiology of eukaryotic cells. The cholesterol molecule has achieved evolutionary perfection to fulfill its different functions in membrane organization. Here, we review basic approaches to explore the interaction of cholesterol with proteins, with a particular focus on the high diversity of fluorescent and photoreactive cholesterol probes available today.
Collapse
Affiliation(s)
- Gerald Gimpl
- Institute of Pharmacy and Biochemistry, Department of Biochemistry, Johannes Gutenberg-University of Mainz, Mainz, Germany.
| | | |
Collapse
|
15
|
Shamay Y, Adar L, Ashkenasy G, David A. Light induced drug delivery into cancer cells. Biomaterials 2010; 32:1377-86. [PMID: 21074848 DOI: 10.1016/j.biomaterials.2010.10.029] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 10/15/2010] [Indexed: 01/18/2023]
Abstract
Cell-penetrating peptides (CPPs) can be used for intracellular delivery of a broad variety of cargoes, including various nanoparticulate pharmaceutical carriers. However, the cationic nature of all CPP sequences, and thus lack of cell specificity, limits their in vivo use for drug delivery applications. Here, we have devised and tested a strategy for site-specific delivery of dyes and drugs into cancer cells by using polymers bearing a light activated caged CPP (cCPP). The positive charge of Lys residues on the minimum sequence of the CPP penetratin ((52)RRMKWKK(58)) was masked with photo-cleavable groups to minimize non-specific adsorption and cellular uptake. Once illuminated by UV light, these protecting groups were cleaved, the positively charged CPP regained its activity and facilitated rapid intracellular delivery of the polymer-dye or polymer-drug conjugates into cancer cells. We have found that a 10-min light illumination time was sufficient to enhance the penetration of the polymer-CPP conjugates bearing the proapoptotic peptide, (D)(KLAKLAK)(2), into 80% of the target cells, and to promote a 'switch' like cytotoxic activity resulting a shift from 100% to 10% in cell viability after 2 h. This report provides an example for tumor targeting by means of light activation of cell-penetrating peptides for intracellular drug delivery.
Collapse
Affiliation(s)
- Yosi Shamay
- Department of Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | |
Collapse
|
16
|
Abstract
Cholesterol is a major constituent of the plasma membrane in eukaryotic cells. It regulates the physical state of the phospholipid bilayer and is crucially involved in the formation of membrane microdomains. Cholesterol also affects the activity of several membrane proteins, and is the precursor for steroid hormones and bile acids. Here, methods are described that are used to explore the binding and/or interaction of proteins to cholesterol. For this purpose, a variety of cholesterol probes bearing radio-, spin-, photoaffinity- or fluorescent labels are currently available. Examples of proven cholesterol binding molecules are polyene compounds, cholesterol-dependent cytolysins, enzymes accepting cholesterol as substrate, and proteins with cholesterol binding motifs. Main topics of this report are the localization of candidate membrane proteins in cholesterol-rich microdomains, the issue of specificity of cholesterol- protein interactions, and applications of the various cholesterol probes for these studies.
Collapse
Affiliation(s)
- Gerald Gimpl
- Institut für Biochemie, Johannes Gutenberg-Universität, Johann-Joachim-Becherweg 30, Mainz, Germany.
| |
Collapse
|
17
|
Liu JP, Tang Y, Zhou S, Toh BH, McLean C, Li H. Cholesterol involvement in the pathogenesis of neurodegenerative diseases. Mol Cell Neurosci 2010; 43:33-42. [DOI: 10.1016/j.mcn.2009.07.013] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 07/29/2009] [Accepted: 07/29/2009] [Indexed: 11/27/2022] Open
|
18
|
Hölttä-Vuori M, Uronen RL, Repakova J, Salonen E, Vattulainen I, Panula P, Li Z, Bittman R, Ikonen E. BODIPY-cholesterol: a new tool to visualize sterol trafficking in living cells and organisms. Traffic 2008; 9:1839-49. [PMID: 18647169 DOI: 10.1111/j.1600-0854.2008.00801.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Analysis of sterol distribution and transport in living cells has been hampered by the lack of bright, photostable fluorescent sterol derivatives that closely resemble cholesterol. In this study, we employed atomistic simulations and experiments to characterize a cholesterol compound with fluorescent boron dipyrromethene difluoride linked to sterol carbon-24 (BODIPY-cholesterol). This probe packed in the membrane and behaved similarly to cholesterol both in normal and in cholesterol-storage disease cells and with trace amounts allowed the visualization of sterol movement in living systems. Upon injection into the yolk sac, BODIPY-cholesterol did not disturb zebrafish development and was targeted to sterol-enriched brain regions in live fish. We conclude that this new probe closely mimics the membrane partitioning and trafficking of cholesterol and, because of its excellent fluorescent properties, enables the direct monitoring of sterol movement by time-lapse imaging using trace amounts of the probe. This is, to our knowledge, the first cholesterol probe that fulfills these prerequisites.
Collapse
Affiliation(s)
- Maarit Hölttä-Vuori
- Institute of Biomedicine/Anatomy, Haartmaninkatu 8, University of Helsinki, Helsinki 00014, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Cholesterol is a major constituent of the membranes in most eukaryotic cells where it fulfills multiple functions. Cholesterol regulates the physical state of the phospholipid bilayer, affects the activity of several membrane proteins, and is the precursor for steroid hormones and bile acids. Cholesterol plays a crucial role in the formation of membrane microdomains such as "lipid rafts" and caveolae. However, our current understanding on the membrane organization, intracellular distribution and trafficking of cholesterol is rather poor. This is mainly due to inherent difficulties to label and track this small lipid. In this review, we describe different approaches to detect cholesterol in vitro and in vivo. Cholesterol reporter molecules can be classified in two groups: cholesterol binding molecules and cholesterol analogues. The enzyme cholesterol oxidase is used for the determination of cholesterol in serum and food. Susceptibility to cholesterol oxidase can provide information about localization, transfer kinetics, or transbilayer distribution of cholesterol in membranes and cells. The polyene filipin forms a fluorescent complex with cholesterol and is commonly used to visualize the cellular distribution of free cholesterol. Perfringolysin O, a cholesterol binding cytolysin, selectively recognizes cholesterol-rich structures. Photoreactive cholesterol probes are appropriate tools to analyze or to identify cholesterol binding proteins. Among the fluorescent cholesterol analogues one can distinguish probes with intrinsic fluorescence (e.g., dehydroergosterol) from those possessing an attached fluorophore group. We summarize and critically discuss the features of the different cholesterol reporter molecules with a special focus on recent imaging approaches.
Collapse
Affiliation(s)
- Gerald Gimpl
- Institut für Biochemie, Johannes Gutenberg-University of Mainz, Becherweg 30, 55099, Mainz, Germany.
| | | |
Collapse
|
20
|
Abstract
Biologically active compounds which are light-responsive offer experimental possibilities which are otherwise very difficult to achieve. Since light can be manipulated very precisely, for example, with lasers and microscopes rapid jumps in concentration of the active form of molecules are possible with exact control of the area, time, and dosage. The development of such strategies started in the 1970s. This review summarizes new developments of the last five years and deals with "small molecules", proteins, and nucleic acids which can either be irreversibly activated with light (these compounds are referred to as "caged compounds") or reversibly switched between an active and an inactive state.
Collapse
Affiliation(s)
- Günter Mayer
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | | |
Collapse
|
21
|
|
22
|
Graziani A, Rosker C, Kohlwein S, Zhu M, Romanin C, Sattler W, Groschner K, Poteser M. Cellular cholesterol controls TRPC3 function: evidence from a novel dominant-negative knockdown strategy. Biochem J 2006; 396:147-55. [PMID: 16448384 PMCID: PMC1449990 DOI: 10.1042/bj20051246] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TRPC3 (canonical transient receptor potential protein 3) has been suggested to be a component of cation channel complexes that are targeted to cholesterol-rich lipid membrane microdomains. In the present study, we investigated the potential role of membrane cholesterol as a regulator of cellular TRPC3 conductances. Functional experiments demonstrated that cholesterol loading activates a non-selective cation conductance and a Ca2+ entry pathway in TRPC3-overexpressing cells but not in wild-type HEK-293 (human embryonic kidney 293) cells. The cholesterol-induced membrane conductance exhibited a current-to-voltage relationship similar to that observed upon PLC (phospholipase C)-dependent activation of TRPC3 channels. Nonetheless, the cholesterol-activated conductance lacked negative modulation by extracellular Ca2+, a typical feature of agonist-activated TRPC3 currents. Involvement of TRPC3 in the cholesterol-dependent membrane conductance was further corroborated by a novel dominant-negative strategy for selective blockade of TRPC3 channel activity. Expression of a TRPC3 mutant, which contained a haemagglutinin epitope tag in the second extracellular loop, conferred antibody sensitivity to both the classical PLC-activated as well as the cholesterol-activated conductance in TRPC3-expressing cells. Moreover, cholesterol loading as well as PLC stimulation was found to increase surface expression of TRPC3. Promotion of TRPC3 membrane expression by cholesterol was persistent over 30 min, while PLC-mediated enhancement of plasma membrane expression of TRPC3 was transient in nature. We suggest the cholesterol content of the plasma membrane as a determinant of cellular TRPC3 activity and provide evidence for cholesterol dependence of TRPC3 surface expression.
Collapse
Affiliation(s)
- Annarita Graziani
- *Institute of Pharmaceutical Sciences, Pharmacology and Toxicology, Karl-Franzens-University of Graz, Universitaetsplatz 2, A-8010 Graz, Austria
| | - Christian Rosker
- *Institute of Pharmaceutical Sciences, Pharmacology and Toxicology, Karl-Franzens-University of Graz, Universitaetsplatz 2, A-8010 Graz, Austria
| | - Sepp D. Kohlwein
- †Institute of Molecular Biosciences, Karl-Franzens-University of Graz, A-8010 Graz, Austria
| | - Michael X. Zhu
- ‡Department of Neuroscience and Center for Molecular Neurobiology, The Ohio State University, Columbus, OH 43210, U.S.A
| | | | - Wolfgang Sattler
- ∥Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz, A-8010 Graz, Austria
| | - Klaus Groschner
- *Institute of Pharmaceutical Sciences, Pharmacology and Toxicology, Karl-Franzens-University of Graz, Universitaetsplatz 2, A-8010 Graz, Austria
- To whom correspondence should be addressed (email )
| | - Michael Poteser
- *Institute of Pharmaceutical Sciences, Pharmacology and Toxicology, Karl-Franzens-University of Graz, Universitaetsplatz 2, A-8010 Graz, Austria
| |
Collapse
|
23
|
Blencowe A, Hayes W. Development and application of diazirines in biological and synthetic macromolecular systems. SOFT MATTER 2005; 1:178-205. [PMID: 32646075 DOI: 10.1039/b501989c] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many different reagents and methodologies have been utilised for the modification of synthetic and biological macromolecular systems. In addition, an area of intense research at present is the construction of hybrid biosynthetic polymers, comprised of biologically active species immobilised or complexed with synthetic polymers. One of the most useful and widely applicable techniques available for functionalisation of macromolecular systems involves indiscriminate carbene insertion processes. The highly reactive and non-specific nature of carbenes has enabled a multitude of macromolecular structures to be functionalised without the need for specialised reagents or additives. The use of diazirines as stable carbene precursors has increased dramatically over the past twenty years and these reagents are fast becoming the most popular photophors for photoaffinity labelling and biological applications in which covalent modification of macromolecular structures is the basis to understanding structure-activity relationships. This review reports the synthesis and application of a diverse range of diazirines in macromolecular systems.
Collapse
Affiliation(s)
- Anton Blencowe
- School of Chemistry, The University of Reading, Whiteknights, Reading, Berkshire, UKRG6 6AD.
| | - Wayne Hayes
- School of Chemistry, The University of Reading, Whiteknights, Reading, Berkshire, UKRG6 6AD.
| |
Collapse
|
24
|
Ohgami N, Ko DC, Thomas M, Scott MP, Chang CCY, Chang TY. Binding between the Niemann-Pick C1 protein and a photoactivatable cholesterol analog requires a functional sterol-sensing domain. Proc Natl Acad Sci U S A 2004; 101:12473-8. [PMID: 15314240 PMCID: PMC514655 DOI: 10.1073/pnas.0405255101] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Indexed: 11/18/2022] Open
Abstract
Niemann-Pick type C (NPC) 1 protein plays important roles in moving cholesterol and other lipids out of late endosomes by means of vesicular trafficking, but it is not known whether NPC1 directly interacts with cholesterol. We performed photoaffinity labeling of intact cells expressing fluorescent protein (FP)-tagged NPC1 by using [(3)H]7,7-azocholestanol ([(3)H]AC). After immunoprecipitation, (3)H-labeled NPC1-GFP appeared as a single band. Including excess unlabeled sterol to the labeling reaction significantly diminished the labeling. Altering the NPC1 sterol-sensing domain (SSD) with loss-of-function mutations (P692S and Y635C) severely reduced the extent of labeling. To further demonstrate the specificity of labeling, we show that NPC2, a late endosomal/lysosomal protein that binds to cholesterol with high affinity, is labeled, whereas mutant NPC2 proteins inactive in binding cholesterol are not. Vamp7, an abundant late endosomal membrane protein without an SSD but with one transmembrane domain, cannot be labeled. Binding between [(3)H]AC and NPC1 does not require NPC2. Treating cells with either U-18666A, a compound that creates an NPC-like phenotype, or with bafilomycin A1, a compound that raises late endosomal pH, has no effect on labeling of NPC1-YFP, suggesting that both drugs affect processes other than NPC1 binding to cholesterol. We also developed a procedure to label the NPC1-YFP by [(3)H]AC in vitro and showed that cholesterol is more effective in protection against labeling than its analogs epicholesterol or 5-alpha-cholestan. Overall, the results demonstrate that there is direct binding between NPC1 and azocholestanol; the binding does not require NPC2 but requires a functional SSD within NPC1.
Collapse
Affiliation(s)
- Nobutaka Ohgami
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | | | |
Collapse
|
25
|
Spencer TA, Wang P, Li D, Russel JS, Blank DH, Huuskonen J, Fielding PE, Fielding CJ. Benzophenone-containing cholesterol surrogates: synthesis and biological evaluation. J Lipid Res 2004; 45:1510-8. [PMID: 15175357 DOI: 10.1194/jlr.m400081-jlr200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eight analogs of cholesterol (1) containing a benzophenone group have been synthesized as prospective photoaffinity labels for studies in cellular sterol efflux and HDL formation. Six of these compounds (4-9) have the photophore replacing different portions of the cholesterol alkyl side chain, and two (10 and 11) have it attached via nitrogen at carbon 3. The suitability of these analogs as cholesterol surrogates was determined by examining their ability to replace [3H]1 in fibroblasts preequilibrated with [3H]1. All eight analogs were effective in replacing natural 1 in competition with [3H]1 for apolipoprotein A-I-induced efflux. These are the first compounds shown to replace cholesterol successfully in a complex pathway of multiple intracellular steps. The results suggest an unexpected tolerance of biological membranes regarding the incorporation of sterols of differing chemical structure.
Collapse
Affiliation(s)
- Thomas A Spencer
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| | | | | | | | | | | | | | | |
Collapse
|