1
|
Native and Oxidized Low-Density Lipoproteins Increase the Expression of the LDL Receptor and the LOX-1 Receptor, Respectively, in Arterial Endothelial Cells. Cells 2022; 11:cells11020204. [PMID: 35053320 PMCID: PMC8774144 DOI: 10.3390/cells11020204] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/29/2022] Open
Abstract
Atherosclerotic artery disease is the major cause of death and an immense burden on healthcare systems worldwide. The formation of atherosclerotic plaques is promoted by high levels of low-density lipoproteins (LDL) in the blood, especially in the oxidized form. Circulating LDL is taken up by conventional and non-classical endothelial cell receptors and deposited in the vessel wall. The exact mechanism of LDL interaction with vascular endothelial cells is not fully understood. Moreover, it appears to depend on the type and location of the vessel affected and the receptor involved. Here, we analyze how native LDL (nLDL) and oxidized LDL (oxLDL) modulate the expression of their receptors-classical LDLR and alternative LOX-1-in endothelial cells derived from human umbilical artery (HUAECs), used as an example of a medium-sized vessel, which is typically affected by atherosclerosis. Exposure of HUAECs to nLDL resulted in moderate nLDL uptake and gradual increase in LDLR, but not LOX-1, expression over 24 h. Conversely, exposure of HUAECs to oxLDL, led to significant accumulation of oxLDL and rapid induction of LOX-1, but not LDLR, within 7 h. These activation processes were associated with phosphorylation of protein kinases ERK1/2 and p38, followed by activation of the transcription factor AP-1 and its binding to the promoters of the respective receptor genes. Both nLDL-induced LDLR mRNA expression and oxLDL-induced LOX-1 mRNA expression were abolished by blocking ERK1/2, p-38 or AP-1. In addition, oxLDL, but not nLDL, was capable of inducing LOX-1 through the NF-κB-controlled pathway. These observations indicate that in arterial endothelial cells nLDL and oxLDL signal mainly via LDLR and LOX-1 receptors, respectively, and engage ERK1/2 and p38 kinases, and AP-1, as well as NF-κB transcription factors to exert feed-forward regulation and increase the expression of these receptors, which may perpetuate endothelial dysfunction in atherosclerosis.
Collapse
|
2
|
Lopes-Virella MF, Virella G. Modified LDL Immune Complexes and Cardiovascular Disease. Curr Med Chem 2019; 26:1680-1692. [DOI: 10.2174/0929867325666180524114429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/17/2017] [Accepted: 12/28/2017] [Indexed: 12/17/2022]
Abstract
Modified forms of LDL, both spontaneously formed in the organism or prepared in the laboratory, are immunogenic. As a consequence, antigen-antibody complexes (immune complexes, IC) formed in vivo can be measured in the peripheral blood, and their levels are strong predictors of cardiovascular disease (CVD). It has been possible to generate antibodies that recognize different LDL modifications, allowing the analysis of circulating IC constitution. Clinical studies showed that the antigenic constitution of the IC has a modulating effect on the development of CVD. Patients whose IC react strongly with antibodies to copper oxidized LDL (oxLDL) show progressive development of atherosclerosis as demonstrated by increased intima–media thickness and increased coronary calcification scores. In contrast, patients whose IC react strongly with antibodies to the heavily oxidized malondialdehyde LDL prepared in vitro (MDA-LDL) are at a high risk of acute vascular events, mainly myocardial infarction. In vitro studies have shown that while oxLDL IC induce both cell proliferation and mild to moderate macrophage apoptosis, MDA-LDL IC induce a more marked macrophage apoptosis but not cell proliferation. In addition, MDA-LDL IC induce the release of higher levels of matrix metalloproteinases and TNF than oxLDL IC. High levels of TNF are likely to be a major factor leading to apoptosis and high levels of metalloproteinases are likely to play a role in the thinning of the fibrous cap of the atheromatous plaque. The combination of apoptosis and fibrous cap thinning is a well-known characteristic of vulnerable plaques, which are more prone to rupture and responsible for the majority of acute cardiovascular events.
Collapse
Affiliation(s)
- Maria F. Lopes-Virella
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA; Ralph A. Johnson VA Medical Center, Charleston, SC, United States
| | - Gabriel Virella
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
3
|
Ochiai A, Miyata S, Iwase M, Shimizu M, Inoue J, Sato R. Kaempferol stimulates gene expression of low-density lipoprotein receptor through activation of Sp1 in cultured hepatocytes. Sci Rep 2016; 6:24940. [PMID: 27109240 PMCID: PMC4842988 DOI: 10.1038/srep24940] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/07/2016] [Indexed: 01/15/2023] Open
Abstract
A high level of plasma low-density lipoprotein (LDL) cholesterol is considered a risk factor for atherosclerosis. Because the hepatic LDL receptor (LDLR) is essential for clearing plasma LDL cholesterol, activation of LDLR is a promising therapeutic target for patients with atherosclerotic disease. Here we demonstrated how the flavonoid kaempferol stimulated the gene expression and activity of LDLR in HepG2 cells. The kaempferol-mediated stimulation of LDLR gene expression was completely inhibited by knockdown of Sp1 gene expression. Treatment of HepG2 cells with kaempferol stimulated the recruitment of Sp1 to the promoter region of the LDLR gene, as well as the phosphorylation of Sp1 on Thr-453 and Thr-739. Moreover, these kaempferol-mediated processes were inhibited in the presence of U0126, an ERK pathway inhibitor. These results suggest that kaempferol may increase the activity of Sp1 through stimulation of Sp1 phosphorylation by ERK1/2 and subsequent induction of LDLR expression and activity.
Collapse
Affiliation(s)
- Ayasa Ochiai
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Shingo Miyata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masamori Iwase
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Makoto Shimizu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Jun Inoue
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Ryuichiro Sato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
4
|
Bissig-Choisat B, Wang L, Legras X, Saha PK, Chen L, Bell P, Pankowicz FP, Hill MC, Barzi M, Leyton CK, Leung HCE, Kruse RL, Himes RW, Goss JA, Wilson JM, Chan L, Lagor WR, Bissig KD. Development and rescue of human familial hypercholesterolaemia in a xenograft mouse model. Nat Commun 2015; 6:7339. [PMID: 26081744 PMCID: PMC4557302 DOI: 10.1038/ncomms8339] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/28/2015] [Indexed: 12/22/2022] Open
Abstract
Diseases of lipid metabolism are a major cause of human morbidity, but no animal model entirely recapitulates human lipoprotein metabolism. Here we develop a xenograft mouse model using hepatocytes from a patient with familial hypercholesterolaemia caused by loss-of-function mutations in the low-density lipoprotein receptor (LDLR). Like familial hypercholesterolaemia patients, our familial hypercholesterolaemia liver chimeric mice develop hypercholesterolaemia and a 'humanized‘ serum profile, including expression of the emerging drug targets cholesteryl ester transfer protein and apolipoprotein (a), for which no genes exist in mice. We go on to replace the missing LDLR in familial hypercholesterolaemia liver chimeric mice using an adeno-associated virus 9-based gene therapy and restore normal lipoprotein profiles after administration of a single dose. Our study marks the first time a human metabolic disease is induced in an experimental animal model by human hepatocyte transplantation and treated by gene therapy. Such xenograft platforms offer the ability to validate human experimental therapies and may foster their rapid translation into the clinic. Familial hypercholesterolemia (FH) is a congenital disease associated with high plasma cholesterol levels. Here, the authors recapitulate FH in chimeric mice, in which livers are repopulated with hepatocytes from an FH patient, and successfully correct the disease using adenovirus-mediated gene therapy.
Collapse
Affiliation(s)
- Beatrice Bissig-Choisat
- Center for Cell and Gene Therapy, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Lili Wang
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xavier Legras
- Center for Cell and Gene Therapy, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Pradip K Saha
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Diabetes and Endocrinology Research Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Leon Chen
- Center for Cell and Gene Therapy, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Peter Bell
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Francis P Pankowicz
- Center for Cell and Gene Therapy, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Molecular and Cellular Biology Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Matthew C Hill
- Center for Cell and Gene Therapy, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Mercedes Barzi
- Center for Cell and Gene Therapy, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Claudia Kettlun Leyton
- Center for Cell and Gene Therapy, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hon-Chiu Eastwood Leung
- Department of Pediatrics, Department of Molecular and Cellular Biology, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, and Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Robert L Kruse
- Center for Cell and Gene Therapy, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ryan W Himes
- Department of Pediatrics, Texas Children's Hospital, Houston, Texas 77030, USA
| | - John A Goss
- Department of Surgery, Texas Children's Hospital, Houston, Texas 77030, USA
| | - James M Wilson
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Lawrence Chan
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Diabetes and Endocrinology Research Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - William R Lagor
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Karl-Dimiter Bissig
- Center for Cell and Gene Therapy, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Dan L. Duncan Cancer Center, and Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
7
|
Effects of fish oil and conjugated linoleic acids on expression of target genes of PPAR alpha and sterol regulatory element-binding proteins in the liver of laying hens. Br J Nutr 2008; 100:355-63. [PMID: 18205990 DOI: 10.1017/s0007114507883024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In mammals, (n-3) PUFA and conjugated linoleic acids (CLA) act as activators of PPAR alpha and alter nuclear concentrations of sterol regulatory element-binding proteins (SREBP) in the liver, and thereby influence hepatic lipid catabolism and synthesis. In this study, we investigated the hypothesis that (n-3) PUFA and CLA exert similar effects in the liver of laying hens. Thirty hens (64 weeks old) were fed diets containing 30 g/kg of sunflower oil (control), fish oil (salmon oil) or CLA in TAG form (containing predominantly cis-9, trans-11 CLA and trans-10, cis-12 CLA) for 5 weeks. Hens fed fish oil had a higher expression of some PPAR alpha target genes and a lower nuclear concentration of SREBP-2 in the liver and lower concentrations of cholesterol and TAG in plasma than control hens. Nuclear concentration of SREBP-1 and its target genes involved in lipogenesis were not altered in hens fed fish oil. Hens fed CLA had increased concentrations of TAG and cholesterol in the liver. However, their mRNA levels of PPAR alpha target genes and nuclear concentrations of SREBP-1 and SREBP-2 as well as mRNA levels of their target genes in the liver were largely unchanged compared to control hens. The results of this study suggest that (n-3) PUFA cause a moderate activation of PPAR alpha and lower cholesterol synthesis but do not impair fatty acid synthesis in the liver of laying hens. CLA lead to an accumulation of TAG and cholesterol in the liver of hens by mechanisms to be elucidated in further studies.
Collapse
|