1
|
Zouhir A, Semmar N. Structure-activity trend analysis between amino-acids and minimal inhibitory concentration of antimicrobial peptides. Chem Biol Drug Des 2021; 99:438-455. [PMID: 34965022 DOI: 10.1111/cbdd.14003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/03/2021] [Accepted: 10/23/2021] [Indexed: 11/29/2022]
Abstract
Antimicrobial peptides (AMPs) provide large structural libraries of molecules with high variability of constitutional amino-acids (AAs). Highlighting structural organization and structure-activity trends in such molecular systems provide key information on structural associations and functional conditions that could usefully help for drug design. This work presents link analyses between minimal inhibitory concentration (MIC) and different types of constitutional AAs of anti-Pseudomonas aeruginosa AMPs. This scope was based on a dataset of 328 published molecules. Regulation levels of AAs in AMPs were statistically ordinated by correspondence analysis helping for classification of the 328 AMPs into nine structurally homogeneous peptide clusters (PCs 1-9) characterized by high/low relative occurrences of different AAs. Within each PC, negative trends between MIC and AAs were highlighted by iterated multiple linear regression models built by bootstrap processes (bagging). MIC-decrease was linked to different AAs that varied with PCs: alcohol type AAs (Thr, Ser) in Cys-rich and low Arg PCs (PCs 1-3); basic AAs (Lys, Arg) in Pro-rich and low Val PCs (PCs 4-8); Trp (heterocyclic AA) in Arg-rich PCs (PCs 6, 7, 9). Aliphatic AAs (more particularly Gly) showed MIC-reduction effects in different PCs essentially under interactive forms.
Collapse
Affiliation(s)
- Abdelmajid Zouhir
- University of Tunis El Manar, Institut Supérieur des Sciences Biologiques Appliquées de Tunis
| | - Nabil Semmar
- University of Tunis El Manar, Laboratory of BioInformatics, bioMathematics and bioStatistics (BIMS), Pasteur Institute of Tunis, Tunisia
| |
Collapse
|
2
|
Afonso CB, Spickett CM. Lipoproteins as targets and markers of lipoxidation. Redox Biol 2018; 23:101066. [PMID: 30579928 PMCID: PMC6859580 DOI: 10.1016/j.redox.2018.101066] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/28/2018] [Accepted: 12/05/2018] [Indexed: 12/24/2022] Open
Abstract
Lipoproteins are essential systemic lipid transport particles, composed of apolipoproteins embedded in a phospholipid and cholesterol monolayer surrounding a cargo of diverse lipid species. Many of the lipids present are susceptible to oxidative damage by lipid peroxidation, giving rise to the formation of reactive lipid peroxidation products (rLPPs). In view of the close proximity of the protein and lipid moieties within lipoproteins, the probability of adduct formation between rLPPs and amino acid residues of the proteins, a process called lipoxidation, is high. There has been interest for many years in the biological effects of such modifications, but the field has been limited to some extent by the availability of methods to determine the sites and exact nature of such modification. More recently, the availability of a wide range of antibodies to lipoxidation products, as well as advances in analytical techniques such as liquid chromatography tandem mass spectrometry (LC-MSMS), have increased our knowledge substantially. While most work has focused on LDL, oxidation of which has long been associated with pro-inflammatory responses and atherosclerosis, some studies on HDL, VLDL and Lipoprotein(a) have also been reported. As the broader topic of LDL oxidation has been reviewed previously, this review focuses on lipoxidative modifications of lipoproteins, from the historical background through to recent advances in the field. We consider the main methods of analysis for detecting rLPP adducts on apolipoproteins, including their advantages and disadvantages, as well as the biological effects of lipoxidized lipoproteins and their potential roles in diseases. Lipoproteins can be modified by reactive Lipid Peroxidation Products (rLPPs). Lipoprotein lipoxidation is known to occur in several inflammatory diseases. Biochemical, immunochemical and mass spectrometry methods can detect rLPP adducts. Due to higher information output, MS can facilitate localization of modifications. Antibodies against some rLPPs have been used to identify lipoxidation in vivo.
Collapse
Affiliation(s)
- Catarina B Afonso
- School of Life and Health Sciences, Aston University, Aston Triangle, Aston University, Birmingham B4 7ET, UK
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston University, Aston Triangle, Aston University, Birmingham B4 7ET, UK.
| |
Collapse
|
3
|
Sukseree S, László L, Gruber F, Bergmann S, Narzt MS, Nagelreiter IM, Höftberger R, Molnár K, Rauter G, Birngruber T, Larue L, Kovacs GG, Tschachler E, Eckhart L. Filamentous Aggregation of Sequestosome-1/p62 in Brain Neurons and Neuroepithelial Cells upon Tyr-Cre-Mediated Deletion of the Autophagy Gene Atg7. Mol Neurobiol 2018; 55:8425-8437. [PMID: 29550918 PMCID: PMC6153718 DOI: 10.1007/s12035-018-0996-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 03/07/2018] [Indexed: 12/21/2022]
Abstract
Defects in autophagy and the resulting deposition of protein aggregates have been implicated in aging and neurodegenerative diseases. While gene targeting in the mouse has facilitated the characterization of these processes in different types of neurons, potential roles of autophagy and accumulation of protein substrates in neuroepithelial cells have remained elusive. Here we report that Atg7f/fTyr-Cre mice, in which autophagy-related 7 (Atg7) is conditionally deleted under the control of the tyrosinase promoter, are a model for accumulations of the autophagy adapter and substrate sequestosome-1/p62 in both neuronal and neuroepithelial cells. In the brain of Atg7f/fTyr-Cre but not of fully autophagy competent control mice, p62 aggregates were present in sporadic neurons in the cortex and other brain regions as well in epithelial cells of the choroid plexus and the ependyma. Western blot analysis confirmed a dramatic increase of p62 abundance and formation of high-molecular weight species of p62 in the brain of Atg7f/fTyr-Cre mice relative to Atg7f/f controls. Immuno-electron microscopy showed that p62 formed filamentous aggregates in neurons and ependymal cells. p62 aggregates were also highly abundant in the ciliary body in the eye. Atg7f/fTyr-Cre mice reached an age of more than 2 years although neurological defects manifesting in abnormal hindlimb clasping reflexes were evident in old mice. These results show that p62 filaments form in response to impaired autophagy in vivo and suggest that Atg7f/fTyr-Cre mice are a model useful to study the long-term effects of autophagy deficiency on the homeostasis of different neuroectoderm-derived cells.
Collapse
Affiliation(s)
- Supawadee Sukseree
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria
| | - Lajos László
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Florian Gruber
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria.,Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria
| | - Sophie Bergmann
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria
| | - Marie Sophie Narzt
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria.,Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria
| | - Ionela Mariana Nagelreiter
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria.,Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria
| | - Romana Höftberger
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Kinga Molnár
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Günther Rauter
- Division of Biomedical Research, Medical University of Graz, Graz, Austria
| | - Thomas Birngruber
- Joanneum Research, Health - Institute for Biomedicine and Health Sciences, Graz, Austria
| | - Lionel Larue
- Institut Curie, INSERM U1021, CNRS UMR3347, Normal and Pathological Development of Melanocytes, PSL Research University, Orsay, France.,INSERM, Orsay, France.,Equipe labellisée - Ligue Nationale contre le Cancer, Université Paris 11, Orsay, France
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria.
| |
Collapse
|
4
|
Wang G, Wakamiya M, Wang J, Ansari GAS, Firoze Khan M. iNOS null MRL+/+ mice show attenuation of trichloroethene-mediated autoimmunity: contribution of reactive nitrogen species and lipid-derived reactive aldehydes. Free Radic Biol Med 2015; 89:770-6. [PMID: 26472195 PMCID: PMC4684749 DOI: 10.1016/j.freeradbiomed.2015.10.402] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/23/2015] [Accepted: 10/08/2015] [Indexed: 12/31/2022]
Abstract
Earlier studies from our laboratory in MRL+/+ mice suggest that free radicals, especially overproduction of reactive nitrogen species (RNS) and lipid-derived reactive aldehydes (LDRAs), are associated with trichloroethene (TCE)-mediated autoimmune response. The current study was undertaken to further assess the contribution of RNS and LDRAs in TCE-mediated autoimmunity by using iNOS-null MRL+/+ mice. iNOS-null MRL+/+ mice were obtained by backcrossing iNOS-null mice (B6.129P2-Nos2(tm1Lau)/J) to MRL +/+ mice. Female MRL+/+ and iNOS-null MRL+/+ mice were given TCE (10 mmol/kg, i.p., every 4(th) day) for 6 weeks; their respective controls received corn oil only. TCE exposure led to significantly increased iNOS mRNA in livers, iNOS protein in livers and sera, increased nitrotyrosine (NT) formation in both livers and sera, induction of MDA-/HNE-protein adducts in livers and their respective antibodies in sera along with significant increases in serum antinuclear antibodies (ANA) and anti-dsDNA in MRL+/+ mice. Even though in iNOS-null MRL+/+ mice, the iNOS and NT levels were negligible in both TCE-treated and untreated groups, TCE treatment still led to significant increases in MDA-/HNE-protein adducts and their respective antibodies along with increases in serum ANA and anti-dsDNA compared to controls. Most remarkably, the increases in serum ANA and anti-dsDNA induced by TCE in the iNOS-null MRL+/+ mice were significantly less pronounced compared to that in MRL+/+ mice. Our results provide further evidence that both RNS and LDRAs contribute to TCE-induced autoimmunity in MRL+/+ mice, and iNOS deficiency attenuates this autoimmune response.
Collapse
Affiliation(s)
- Gangduo Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - Maki Wakamiya
- Transgenic Mouse Core Facility, Institute for Translational Sciences and Animal Resource Center
| | - Jianling Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - G A S Ansari
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - M Firoze Khan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555.
| |
Collapse
|
5
|
Toller-Kawahisa JE, Canicoba NC, Venancio VP, Kawahisa R, Antunes LMG, Cunha TM, Marzocchi-Machado CM. Systemic lupus erythematosus onset in lupus-prone B6.MRL/lpr mice Is influenced by weight gain and Is preceded by an increase in neutrophil oxidative burst activity. Free Radic Biol Med 2015; 86:362-73. [PMID: 26117329 DOI: 10.1016/j.freeradbiomed.2015.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/08/2015] [Accepted: 06/11/2015] [Indexed: 12/23/2022]
Abstract
In this study, we assessed whether weight gain influenced the systemic lupus erythematosus (SLE) onset and/or outcome, and examined the role that reactive oxygen species (ROS) production by neutrophils played in the SLE onset and/or outcome. Female control (C57BL/6) and lupus-prone B6.MRL/lpr mice (CM and LPM, respectively) at 4 weeks old were fed standard diet or standard diet plus cafeteria diet during 12 weeks. SLE diagnosis relied on the presence of both antinuclear antibodies (ANA) and renal abnormalities. We found that the percentage of weight gain in CM and LPM increased as a function of the length of cafeteria diet feeding period, but it was not associated with energy intake. Cafeteria diet-fed CM and LPM at 8 and 12 weeks old were overweight, while CM and LPM at 16 weeks old were obese. Compared with standard diet-fed CM and LPM, cafeteria diet-fed CM and LPM exhibited elevated glucose and total cholesterol levels, and diminished triglycerides levels. Standard diet-fed 16-week-old LPM and cafeteria diet-fed 12-week-old LPM had nephritis, characterized by the increased interstitial infiltration of leukocytes. Cafeteria diet-induced weight gain rose the frequency of homogeneous and speckled ANA staining patterns in the 12- and 16-week-old LPM groups. Together, these results indicated that weight gain anticipated the SLE onset. In addition, neutrophils from cafeteria diet-fed 8-week-old LPM exhibited augmented ROS production capacity; in standard diet-fed LPM, such rise occurred only in the 16-week-old group. Thus, the neutrophil ROS production capacity was increased before the SLE onset and during its outcome. Overweight and obese CM and LPM displayed elevated levels of kidney, liver, heart, and spleen lipid peroxidation. In conclusion, cafeteria diet-induced weight gain is associated with the increased production of ANA and neutrophil-derived ROS, which may contribute to accelerate the SLE onset.
Collapse
Affiliation(s)
- Juliana Escher Toller-Kawahisa
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Nathália Cristina Canicoba
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n, Ribeirão Preto, SP 14040-903, Brazil
| | - Vinicius Paula Venancio
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n, Ribeirão Preto, SP 14040-903, Brazil
| | - Rogério Kawahisa
- Graduação em Fisioterapia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Lusânia Maria Greggi Antunes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n, Ribeirão Preto, SP 14040-903, Brazil
| | - Thiago Mattar Cunha
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Cleni Mara Marzocchi-Machado
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n, Ribeirão Preto, SP 14040-903, Brazil.
| |
Collapse
|
6
|
Ortona E, Maselli A, Delunardo F, Colasanti T, Giovannetti A, Pierdominici M. Relationship between redox status and cell fate in immunity and autoimmunity. Antioxid Redox Signal 2014; 21:103-22. [PMID: 24359147 DOI: 10.1089/ars.2013.5752] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE The signaling function of redox molecules is essential for an efficient and proper execution of a large number of cellular processes, contributing to the maintenance of cell homeostasis. Excessive oxidative stress is considered as playing an important role in the pathogenesis of autoimmune diseases by enhancing inflammation and breaking down the immunological tolerance through protein structural modifications that induce the appearance of neo/cryptic epitopes. RECENT ADVANCES There is a complex reciprocal relationship between oxidative stress and both apoptosis and autophagy, which is essential to determine cell fate. This is especially relevant in the context of autoimmune disorders in which apoptosis and autophagy play a crucial pathogenic role. CRITICAL ISSUES In this review, we describe the latest developments with regard to the involvement of redox molecules in the initiation and progression of autoimmune disorders, focusing on their role in cell fate regulation. We also discuss new therapeutic approaches that target oxidative stress in the treatment of these disorders. The administration of antioxidants is scarcely studied in autoimmunity, and future analyses are needed to assess its beneficial effects in preventing or ameliorating these diseases. FUTURE DIRECTIONS Deciphering the intricate relationships between oxidative stress and both apoptosis and autophagy in the context of autoimmunity could be critical in elucidating key pathogenic mechanisms and could lead to novel interventions for the clinical management of autoimmune diseases.
Collapse
Affiliation(s)
- Elena Ortona
- 1 Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità , Rome, Italy
| | | | | | | | | | | |
Collapse
|
7
|
N-Acetylcysteine protects against trichloroethene-mediated autoimmunity by attenuating oxidative stress. Toxicol Appl Pharmacol 2013; 273:189-95. [PMID: 23993974 DOI: 10.1016/j.taap.2013.08.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/09/2013] [Accepted: 08/14/2013] [Indexed: 12/19/2022]
Abstract
Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, is known to induce autoimmunity both in humans and animal models. However, mechanisms underlying TCE-mediated autoimmunity remain largely unknown. Previous studies from our laboratory in MRL+/+ mice suggest that oxidative stress may contribute to TCE-induced autoimmune response. The current study was undertaken to further assess the role of oxidative stress in TCE-induced autoimmunity by supplementing with an antioxidant N-acetylcysteine (NAC). Groups of female MRL+/+ mice were given TCE, NAC or TCE+NAC for 6 weeks (TCE, 10mmol/kg, i.p., every 4th day; NAC, 250mg/kg/day through drinking water). TCE exposure led to significant increases in serum levels of anti-nuclear, anti-dsDNA and anti-Sm antibodies. TCE exposure also led to significant induction of anti-malondiadelhyde (MDA)- and anti-hydroxynonenal (HNE)-protein adduct antibodies which were associated with increased ANA in the sera along with increased MDA-/HNE-protein adducts in the livers and kidneys, and increases in protein oxidation (carbonylation) in the sera, livers and kidneys, suggesting an overall increase in oxidative stress. Moreover, TCE exposure also resulted in increased release of IL-17 from splenocytes and increases in IL-17 mRNA expression. Remarkably, NAC supplementation attenuated not only the TCE-induced oxidative stress, IL-17 release and mRNA expression, but also the markers of autoimmunity, as evident from decreased levels of ANA, anti-dsDNA and anti-Sm antibodies in the sera. These results provide further support to a role of oxidative stress in TCE-induced autoimmune response. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for preventive and/or therapeutic strategies.
Collapse
|
8
|
Al-Shobaili HA, Alzolibani AA, Al Robaee AA, Meki ARMA, Rasheed Z. Biochemical markers of oxidative and nitrosative stress in acne vulgaris: correlation with disease activity. J Clin Lab Anal 2013; 27:45-52. [PMID: 23325743 DOI: 10.1002/jcla.21560] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 10/17/2012] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Acne vulgaris is a multifactorial skin disorder of unknown etiology. Free radical-mediated reactions have been implicated but their role in eliciting this response and contributing to disease progress remains unexplored. This study was undertaken to investigate the status and contribution of oxidative/nitrosative stress in patients with acne vulgaris. METHODS Sera from 50 acne vulgaris with varying levels of disease activity (mild, moderate, and severe) according to the Global Acne Grading System (GAGS) and 40 age- and sex-matched controls were evaluated for serum levels of oxidative/nitrosative stress markers, including protein oxidation, lipid peroxidation and nitric oxide (NO), superoxide dismutase (SOD), and glutathione (GSH). RESULTS Serum analysis showed significantly higher levels of carbonyl contents, malondialdehyde (MDA) and NO, in acne patients compared with healthy controls (P < 0.05). Interestingly, not only there were an increased number of subjects positive for carbonyl contents, but also the levels of these oxidants were significantly increased with the increase of the disease activity (P < 0.05). In addition, a significant correlation was observed between the levels of carbonyl contents and the GAGS scores (r = 0.341, r = 0.355, and r = 0.299, respectively). Furthermore, sera from acne patients had lower levels of SOD and GSH compared with healthy control sera. CONCLUSION These findings support an association between oxidative/nitrosative stress and acne. The stronger response observed in serum samples from patients with higher GAGS scores suggests that markers of oxidative/nitrosative stress may be useful in evaluating the progression of acne and in elucidating the mechanisms of disease pathogenesis.
Collapse
Affiliation(s)
- Hani A Al-Shobaili
- Department of Dermatology, College of Medicine, Qassim University, Kingdom of Saudi Arabia
| | | | | | | | | |
Collapse
|
9
|
Gaens KHJ, Stehouwer CDA, Schalkwijk CG. Advanced glycation endproducts and its receptor for advanced glycation endproducts in obesity. Curr Opin Lipidol 2013; 24:4-11. [PMID: 23298958 DOI: 10.1097/mol.0b013e32835aea13] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW To highlight the potential importance of advanced glycation endproducts (AGEs) and advanced-lipoxidation endproducts (ALEs) in obesity and obesity-related complications, and the contribution of the receptor for advanced glycation endproducts (RAGE) and the glyoxylase defense system therein. RECENT FINDINGS Formation of AGEs/ALEs and its precursors, including methylglyoxal (MGO), are increased in conditions characterized by hyperglycemia, hyperlipidemia and enhanced oxidative stress. This metabolic profile is generally considered typical for obesity. Increased plasma and/or tissue levels of MGO and of specific AGEs/ALEs, such as N(ε)-(carboxymethyl)lysine (CML), in obesity have recently been described. In addition to increased formation, the suppressed defense system in obesity against AGEs/ALEs formation, that is, the glyoxylase system, will further contribute to AGEs/ALEs formation in obesity. AGEs/ALEs are not inert. In-vitro studies showed that AGEs induced the production of inflammatory mediators in adipocytes and macrophages via RAGE activation, which may subsequently contribute to the development of obesity-related complications. SUMMARY The recognition of an enhanced AGEs/ALEs formation in adipose tissue and the biological consequences thereof may lead to a further understanding of underlying mechanisms in dysregulated production of adipokines in obesity.
Collapse
Affiliation(s)
- Katrien H J Gaens
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | | |
Collapse
|
10
|
Oral advanced glycation endproducts (AGEs) promote insulin resistance and diabetes by depleting the antioxidant defenses AGE receptor-1 and sirtuin 1. Proc Natl Acad Sci U S A 2012; 109:15888-93. [PMID: 22908267 DOI: 10.1073/pnas.1205847109] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The epidemics of insulin resistance (IR) and type 2 diabetes (T2D) affect the first world as well as less-developed countries, and now affect children as well. Persistently elevated oxidative stress and inflammation (OS/Infl) precede these polygenic conditions. A hallmark of contemporary lifestyle is a preference for thermally processed nutrients, replete with pro-OS/Infl advanced glycation endproducts (AGEs), which enhance appetite and cause overnutrition. We propose that chronic ingestion of oral AGEs promotes IR and T2D. The mechanism(s) involved in these findings were assessed in four generations of C57BL6 mice fed isocaloric diets with or without AGEs [synthetic methyl-glyoxal-derivatives (MG(+))]. F3/MG(+) mice manifested increased adiposity and premature IR, marked by severe deficiency of anti-AGE advanced glycation receptor 1 (AGER1) and of survival factor sirtuin 1 (SIRT1) in white adipose tissue (WAT), skeletal muscle, and liver. Impaired 2-deoxy-glucose uptake was associated with marked changes in insulin receptor (InsR), IRS-1, IRS-2, Akt activation, and a macrophage and adipocyte shift to a pro-OS/inflammatory (M1) phenotype. These features were absent in F3/MG(-) mice. MG stimulation of 3T3-L1 adipocytes led to suppressed AGER1 and SIRT1, and altered InsR, IRS-1, IRS-2 phosphorylation, and nuclear factor kappa-light chain enhancer of activated B cells (Nf-κB) p65 acetylation. Gene modulation revealed these effects to be coregulated by AGER1 and SIRT1. Thus, prolonged oral exposure to MG-AGEs can deplete host-defenses AGER1 and SIRT1, raise basal OS/Infl, and increase susceptibility to dysmetabolic IR. Because exposure to AGEs can be decreased, these insights provide an important framework for alleviating a major lifestyle-linked disease epidemic.
Collapse
|
11
|
Wang G, Wang J, Fan X, Ansari GAS, Khan MF. Protein adducts of malondialdehyde and 4-hydroxynonenal contribute to trichloroethene-mediated autoimmunity via activating Th17 cells: dose- and time-response studies in female MRL+/+ mice. Toxicology 2012; 292:113-22. [PMID: 22178267 PMCID: PMC3264691 DOI: 10.1016/j.tox.2011.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/22/2011] [Accepted: 12/01/2011] [Indexed: 12/17/2022]
Abstract
Trichloroethene (TCE), a common occupational and environmental toxicant, is known to induce autoimmunity. Previous studies in our laboratory showed increased oxidative stress in TCE-mediated autoimmunity. To further establish the role of oxidative stress and to investigate the mechanisms of TCE-mediated autoimmunity, dose- and time-response studies were conducted in MRL+/+ mice by treating them with TCE via drinking water at doses of 0.5, 1.0 or 2.0mg/ml for 12, 24 or 36 weeks. TCE exposure led to dose-related increases in malondialdehyde (MDA)-/hydroxynonenal (HNE)-protein adducts and their corresponding antibodies in the sera and decreases in GSH and GSH/GSSG ratio in the kidneys at 24 and 36 weeks, with greater changes at 36 weeks. The increases in these protein adducts and decreases in GSH/GSSG ratio were associated with significant elevation in serum anti-nuclear- and anti-ssDNA-antibodies, suggesting an association between TCE-induced oxidative stress and autoimmune response. Interestingly, splenocytes from mice treated with TCE for 24 weeks secreted significantly higher levels of IL-17 and IL-21 than did splenocytes from controls after stimulation with MDA-mouse serum albumin (MSA) or HNE-MSA adducts. The increased release of these cytokines showed a dose-related response and was more pronounced in mice treated with TCE for 36 weeks. These studies provide evidence that MDA- and or HNE-protein adducts contribute to TCE-mediated autoimmunity, which may be via activation of Th17 cells.
Collapse
Affiliation(s)
- Gangduo Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - Jianling Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - Xiuzhen Fan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - G. A. S. Ansari
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - M. Firoze Khan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
12
|
Vinaixa M, Rodriguez MA, Samino S, Díaz M, Beltran A, Mallol R, Bladé C, Ibañez L, Correig X, Yanes O. Metabolomics reveals reduction of metabolic oxidation in women with polycystic ovary syndrome after pioglitazone-flutamide-metformin polytherapy. PLoS One 2011; 6:e29052. [PMID: 22194988 PMCID: PMC3241700 DOI: 10.1371/journal.pone.0029052] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 11/18/2011] [Indexed: 01/17/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a variable disorder characterized by a broad spectrum of anomalies, including hyperandrogenemia, insulin resistance, dyslipidemia, body adiposity, low-grade inflammation and increased cardiovascular disease risks. Recently, a new polytherapy consisting of low-dose flutamide, metformin and pioglitazone in combination with an estro-progestagen resulted in the regulation of endocrine clinical markers in young and non-obese PCOS women. However, the metabolic processes involved in this phenotypic amelioration remain unidentified. In this work, we used NMR and MS-based untargeted metabolomics to study serum samples of young non-obese PCOS women prior to and at the end of a 30 months polytherapy receiving low-dose flutamide, metformin and pioglitazone in combination with an estro-progestagen. Our results reveal that the treatment decreased the levels of oxidized LDL particles in serum, as well as downstream metabolic oxidation products of LDL particles such as 9- and 13-HODE, azelaic acid and glutaric acid. In contrast, the radiuses of small dense LDL and large HDL particles were substantially increased after the treatment. Clinical and endocrine-metabolic markers were also monitored, showing that the level of HDL cholesterol was increased after the treatment, whereas the level of androgens and the carotid intima-media thickness were reduced. Significantly, the abundance of azelaic acid and the carotid intima-media thickness resulted in a high degree of correlation. Altogether, our results reveal that this new polytherapy markedly reverts the oxidant status of untreated PCOS women, and potentially improves the pro-atherosclerosis condition in these patients.
Collapse
Affiliation(s)
- Maria Vinaixa
- Metabolomics Platform of the Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Rovira i Virgili University, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
- * E-mail: (MV); (OY)
| | - Miguel Angel Rodriguez
- Metabolomics Platform of the Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Rovira i Virgili University, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Sara Samino
- Metabolomics Platform of the Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Rovira i Virgili University, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Marta Díaz
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
- Endocrinology Unit, Hospital Sant Joan de Déu-Universitat de Barcelona, Esplugues de Llobregat, Spain
| | - Antoni Beltran
- Metabolomics Platform of the Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Rovira i Virgili University, Tarragona, Spain
| | - Roger Mallol
- Metabolomics Platform of the Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Rovira i Virgili University, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Cinta Bladé
- Metabolomics Platform of the Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Rovira i Virgili University, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Lourdes Ibañez
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
- Endocrinology Unit, Hospital Sant Joan de Déu-Universitat de Barcelona, Esplugues de Llobregat, Spain
| | - Xavier Correig
- Metabolomics Platform of the Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Rovira i Virgili University, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Oscar Yanes
- Metabolomics Platform of the Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Rovira i Virgili University, Tarragona, Spain
- * E-mail: (MV); (OY)
| |
Collapse
|
13
|
Abstract
Persistently elevated oxidative stress and inflammation precede or occur during the development of type 1 or type 2 diabetes mellitus and precipitate devastating complications. Given the rapidly increasing incidence of diabetes mellitus and obesity in the space of a few decades, new genetic mutations are unlikely to be the cause, instead pointing to environmental initiators. A hallmark of contemporary culture is a preference for thermally processed foods, replete with pro-oxidant advanced glycation endproducts (AGEs). These molecules are appetite-increasing and, thus, efficient enhancers of overnutrition (which promotes obesity) and oxidant overload (which promotes inflammation). Studies of genetic and nongenetic animal models of diabetes mellitus suggest that suppression of host defenses, under sustained pressure from food-derived AGEs, may potentially shift homeostasis towards a higher basal level of oxidative stress, inflammation and injury of both insulin-producing and insulin-responsive cells. This sequence promotes both types of diabetes mellitus. Reducing basal oxidative stress by AGE restriction in mice, without energy or nutrient change, reinstates host defenses, alleviates inflammation, prevents diabetes mellitus, vascular and renal complications and extends normal lifespan. Studies in healthy humans and in those with diabetes mellitus show that consumption of high amounts of food-related AGEs is a determinant of insulin resistance and inflammation and that AGE restriction improves both. This Review focuses on AGEs as novel initiators of oxidative stress that precedes, rather than results from, diabetes mellitus. Therapeutic gains from AGE restriction constitute a paradigm shift.
Collapse
Affiliation(s)
- Helen Vlassara
- Division of Experimental Diabetes and Aging, Brookdale Department of Geriatrics, Mount Sinai School of Medicine, New York, NY 10029, USA. helen.vlassara@ mssm.edu
| | | |
Collapse
|
14
|
Grigoriev YG, Mikhailov VF, Ivanov AA, Maltsev VN, Ulanova AM, Stavrakova NM, Nikolaeva IA, Grigoriev OA. Autoimmune processes after long-term low-level exposure to electromagnetic fields part 4. Oxidative intracellular stress response to the long-term rat exposure to nonthermal RF EMF. Biophysics (Nagoya-shi) 2011. [DOI: 10.1134/s0006350910060308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Gaens KH, Stehouwer CDA, Schalkwijk CG. The N ε-(carboxymethyl)lysine-RAGE axis: putative implications for the pathogenesis of obesity-related complications. Expert Rev Endocrinol Metab 2010; 5:839-854. [PMID: 30780826 DOI: 10.1586/eem.10.68] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obesity is an important contributor to the burden of insulin resistance, Type 2 diabetes and cardiovascular disease. An important mechanism by which excess adiposity causes obesity-associated complications is the dysregulated production and secretion of biologically active molecules derived from adipocytes. These adipokines affect the vascular wall and contribute to the development of insulin resistance and Type 2 diabetes. However, factors that cause an increased production of pro-inflammatory adipokines, while decreasing anti-inflammatory adipokines, have not been fully clarified. Owing to local conditions in adipose tissue, that is, increased fatty acids, hypoxia and oxidative stress, we speculate that an increased formation of the major advanced lipoxidation end product, Nε-(carboxymethyl)lysine (CML), may play a role. CML-adducts in proteins are major ligands for the receptor for advanced glycation end products (RAGE). The consequence of RAGE activation by CML is the activation of important signaling inflammatory pathways. The putative role of CML-modified proteins in obesity is addressed in this article. The identification of this pathway may provide an important strategy for novel therapeutic approaches against obesity-associated complications.
Collapse
Affiliation(s)
- Katrien Hj Gaens
- a Department of Internal Medicine, Laboratory for Metabolism and Vascular Medicine, Maastricht University Medical Centre, P Debeyelaan 25, PO Box 5800, 6206 AZ Maastricht, The Netherlands
- b Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Coen DA Stehouwer
- a Department of Internal Medicine, Laboratory for Metabolism and Vascular Medicine, Maastricht University Medical Centre, P Debeyelaan 25, PO Box 5800, 6206 AZ Maastricht, The Netherlands
- b Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Casper G Schalkwijk
- a Department of Internal Medicine, Laboratory for Metabolism and Vascular Medicine, Maastricht University Medical Centre, P Debeyelaan 25, PO Box 5800, 6206 AZ Maastricht, The Netherlands
- b Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
- c
| |
Collapse
|
16
|
Wang G, Pierangeli SS, Papalardo E, Ansari G, Khan MF. Markers of oxidative and nitrosative stress in systemic lupus erythematosus: correlation with disease activity. ARTHRITIS AND RHEUMATISM 2010; 62:2064-72. [PMID: 20201076 PMCID: PMC2935652 DOI: 10.1002/art.27442] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Free radical-mediated reactions have been implicated as contributors in a number of autoimmune diseases, including systemic lupus erythematosus (SLE). However, the potential for oxidative/nitrosative stress to elicit an autoimmune response or to contribute to disease pathogenesis, and thus be useful when determining a prognosis, remains largely unexplored in humans. This study was undertaken to investigate the status and contribution of oxidative/nitrosative stress in patients with SLE. METHODS Sera from 72 SLE patients with varying levels of disease activity according to the SLE Disease Activity Index (SLEDAI) and 36 age- and sex-matched healthy controls were evaluated for serum levels of oxidative/nitrosative stress markers, including antibodies to malondialdehyde (anti-MDA) protein adducts and to 4-hydroxynonenal (anti-HNE) protein adducts, MDA/HNE protein adducts, superoxide dismutase (SOD), nitrotyrosine (NT), and inducible nitric oxide synthase (iNOS). RESULTS Serum analysis showed significantly higher levels of both anti-MDA/anti-HNE protein adduct antibodies and MDA/HNE protein adducts in SLE patients compared with healthy controls. Interestingly, not only was there an increased number of subjects positive for anti-MDA or anti-HNE antibodies, but also the levels of both of these antibodies were statistically significantly higher among SLE patients whose SLEDAI scores were > or = 6 as compared with SLE patients with lower SLEDAI scores (SLEDAI score <6). In addition, a significant correlation was observed between the levels of anti-MDA or anti-HNE antibodies and the SLEDAI score (r = 0.734 and r = 0.647, respectively), suggesting a possible causal relationship between these antibodies and SLE. Furthermore, sera from SLE patients had lower levels of SOD and higher levels of iNOS and NT compared with healthy control sera. CONCLUSION These findings support an association between oxidative/nitrosative stress and SLE. The stronger response observed in serum samples from patients with higher SLEDAI scores suggests that markers of oxidative/nitrosative stress may be useful in evaluating the progression of SLE and in elucidating the mechanisms of disease pathogenesis.
Collapse
Affiliation(s)
- Gangduo Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Silvia S. Pierangeli
- Department of Internal Medicine, Division of Rheumatology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Elizabeth Papalardo
- Department of Internal Medicine, Division of Rheumatology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - G.A.S. Ansari
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - M. Firoze Khan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
17
|
Jafari M, Ghanei M. Evaluation of plasma, erythrocytes, and bronchoalveolar lavage fluid antioxidant defense system in sulfur mustard-injured patients. Clin Toxicol (Phila) 2010; 48:184-92. [PMID: 20397800 DOI: 10.3109/15563651003623297] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Sulfur mustard (SM) is a strong alkylating agent that causes acute and chronic effects on different organs following exposure. Main late respiratory complications are chronic obstructive pulmonary disease, bronchiectasis, asthma, and bronchiolitis obliterans. It seems that oxidative stress plays a major role in pathogenesis of diseases. This study was undertaken to evaluate the long-term effect of SM on plasma, erythrocytes, and brochoalveolar lavage fluid antioxidant defense system in SM-injured patients. METHODS Brochoalveolar lavage fluid, plasma, and erythrocyte samples were taken from 54 patients in the case group exposed to SM and 25 controls with chronic respiratory disease without a history of exposure to SM. RESULTS Superoxide dismutase, catalase, and glutathione peroxidase activities in lavage fluid, plasma, and erythrocytes were significantly higher in case group. The increased glutathione S-transferase activity in lavage fluid was associated with a depletion of glutathione and an increase of malondialdehyde levels. There was no significant change observed in glutathione reductase activity. CONCLUSIONS The data suggest that oxidative damage might have an important role for patients exposed to SM. SM may induce an oxidative stress response by depleting the antioxidant defense systems and increasing lipid peroxidation in lung cells.
Collapse
Affiliation(s)
- Mahvash Jafari
- Department of Biochemistry, Chemical Injuries Research Center, Janbazan Medical and Engineering Research Center, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
18
|
Giroud S, Perret M, Gilbert C, Zahariev A, Goudable J, Le Maho Y, Oudart H, Momken I, Aujard F, Blanc S. Dietary palmitate and linoleate oxidations, oxidative stress, and DNA damage differ according to season in mouse lemurs exposed to a chronic food deprivation. Am J Physiol Regul Integr Comp Physiol 2009; 297:R950-9. [DOI: 10.1152/ajpregu.00214.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the extent to which the increase in torpor expression in the grey mouse lemur, due to graded food restriction, is modulated by a trade-off between a whole body sparing of polyunsaturated dietary fatty acids and the related oxidative stress generated during daily torpor. We measured changes in torpor frequency, total energy expenditure (TEE), linoleate (polyunsaturated fatty acid) and palmitate (saturated fatty acid) oxidation, hexanoyl-lysine (HEL; the product of linoleate peroxidation), and 8-hydroxydeoxyguanosine (8OHdG; a marker of DNA damage). Animals under summer-acclimated long days (LD) or winter-acclimated short days (SD) were exposed to a 40% (LD40 and SD40) and 80% (LD80 and SD80) 35-day calorie restriction (CR). During CR, all groups reduced their body mass, but LD80 animals reached survival-threatened levels at day 22 and were then excluded from the CR trial. Only SD mouse lemurs increased their torpor frequency with CR and displayed a decrease in their TEE adjusted for fat-free mass. After CR, SD40 mouse lemurs shifted the dietary fatty acid oxidation toward palmitate and spared linoleate. Such a shift was not observed in LD animals and during severe CR, during which oxidation of both dietary fatty acids was increased. Concomitantly, HEL increased in both LD40 and SD80 groups, whereas DNA damage was only seen in SD80 food-restricted animals. HEL correlated positively with linoleate oxidation confirming in vivo the substrate/product relationship demonstrated in vitro, and negatively with TEE adjusted for fat-free mass, suggesting higher oxidative stress associated with increased torpor expression. This suggests a seasonal-dependant, cost-benefit trade-off between maximizing torpor propensity and minimizing oxidative stress that is associated with a shift toward sparing of dietary polyunsaturated fatty acids that is dependent upon the expression of a winter phenotype.
Collapse
Affiliation(s)
- Sylvain Giroud
- Institut Pluridisciplinaire Hubert Curien–Département d'Ecologie, Physiologie, Ethologie Unité Mixte de Recherche 7178 Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg
- Mécanismes Adaptatifs et Evolution, Unité Mixte de Recherche 7179 Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy
| | - Martine Perret
- Mécanismes Adaptatifs et Evolution, Unité Mixte de Recherche 7179 Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy
| | - Caroline Gilbert
- Institut Pluridisciplinaire Hubert Curien–Département d'Ecologie, Physiologie, Ethologie Unité Mixte de Recherche 7178 Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg
- Université Henri Poincaré, Nancy Université, Vandoeuvre-Les-Nancy; and
| | - Alexandre Zahariev
- Institut Pluridisciplinaire Hubert Curien–Département d'Ecologie, Physiologie, Ethologie Unité Mixte de Recherche 7178 Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg
| | - Joëlle Goudable
- Institut des Sciences Pharmaceutiques et Biologiques–Faculté de Pharmacie and Fédération de Biochimie, Hôpital E. Herriot, Lyon, France
| | - Yvon Le Maho
- Institut Pluridisciplinaire Hubert Curien–Département d'Ecologie, Physiologie, Ethologie Unité Mixte de Recherche 7178 Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg
| | - Hugues Oudart
- Institut Pluridisciplinaire Hubert Curien–Département d'Ecologie, Physiologie, Ethologie Unité Mixte de Recherche 7178 Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg
| | - Iman Momken
- Institut Pluridisciplinaire Hubert Curien–Département d'Ecologie, Physiologie, Ethologie Unité Mixte de Recherche 7178 Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg
| | - Fabienne Aujard
- Mécanismes Adaptatifs et Evolution, Unité Mixte de Recherche 7179 Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy
| | - Stéphane Blanc
- Institut Pluridisciplinaire Hubert Curien–Département d'Ecologie, Physiologie, Ethologie Unité Mixte de Recherche 7178 Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg
| |
Collapse
|
19
|
Hisaka S, Kato Y, Kitamoto N, Yoshida A, Kubushiro Y, Naito M, Osawa T. Chemical and immunochemical identification of propanoyllysine derived from oxidized n-3 polyunsaturated fatty acid. Free Radic Biol Med 2009; 46:1463-71. [PMID: 19272447 DOI: 10.1016/j.freeradbiomed.2009.02.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 02/18/2009] [Accepted: 02/18/2009] [Indexed: 11/26/2022]
Abstract
It is known that n-3 polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid and eicosapentaenoic acid, are rapidly oxidized in vitro. Nvarepsilon-(propanoyl)lysine (propionyllysine, or PRL) is formed from the reaction of the oxidized products of n-3 PUFAs and lysine. To evaluate the oxidized n-3 PUFA-derived protein modifications in vivo, we have developed detection methods using a novel monoclonal antibody against PRL as well as liquid chromatography-mass spectrometry (LC/MS/MS). The antibody obtained specifically recognized PRL. A strong positive staining in atherosclerotic lesions of hypercholesterolemic rabbits was observed. We have also simultaneously identified and quantified both urinary PRL and urinary Nvarepsilon-(hexanoyl)lysine, using LC/MS/MS using isotope dilution methods. The level of urinary PRL (21.6+/-10.6 micromol/mol of creatinine) significantly correlated with the other oxidative stress markers, 8-oxo-deoxyguanosine, dityrosine, and isoprostanes. The increase in the excretion of amide adducts into the urine of diabetic patients was also confirmed compared to healthy subjects. These results suggest that PRL may be good marker for n-3 PUFA-derived oxidative stress in vivo.
Collapse
Affiliation(s)
- Shinsuke Hisaka
- Nagoya University Graduate School of Bioagricultural Sciences, Nagoya 464-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Medower C, Wen L, Johnson WW. Cytochrome P450 oxidation of the thiophene-containing anticancer drug 3-[(quinolin-4-ylmethyl)-amino]-thiophene-2-carboxylic acid (4-trifluoromethoxy-phenyl)-amide to an electrophilic intermediate. Chem Res Toxicol 2008; 21:1570-7. [PMID: 18672911 DOI: 10.1021/tx700430n] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Compounds that are enzymatically transformed to reactive intermediates are common in nature. Some drugs and many phytochemicals that contain a thiophene ring are oxidized by cytochrome P450 to biological reactive intermediates (BRI) that can covalently bind to thiol nucleophiles. The investigational anticancer agent 3-[(quinolin-4-ylmethyl)-amino]-thiophene-2-carboxylic acid (4-trifluoromethoxy-phenyl)-amide (OSI-930) contains a thiophene moiety that can be oxidized by P450s to an apparent sulfoxide, which can react via Michael-addition to the 5-position of the thiophene ring, as demonstrated by mass spectral characterization of several thioether conjugates of the presumed thiophene S-oxide. Furthermore, a stable deuterium isotope retention experiment in which solvent deuterium was incorporated into the thiophene verifies the sulfoxide pathway. Various thiol nucleophiles are shown by tandem mass spectra to bind with this BRI, which is activated by P450 3A4 and to a slight degree, P450 2D6. Yet various safe drugs, phytochemicals, and endogenous molecules, all noted for their activation to BRI, are not toxic at a normal dose. Thus, multiple features determine any consequence of a BRI, with these complexities determining why one BRI is benign while another is not. The retention of covalent protein adducts of radio-labeled intermediate rat tissue has a half-life of about 1-1.5 days; hence, modified protein is cleared and replaced relatively quickly.
Collapse
Affiliation(s)
- Christine Medower
- Drug Metabolism and Pharmacokinetics, OSI Pharmaceuticals, Boulder, Colorado 80301, USA
| | | | | |
Collapse
|
21
|
Wang G, König R, Ansari GAS, Khan MF. Lipid peroxidation-derived aldehyde-protein adducts contribute to trichloroethene-mediated autoimmunity via activation of CD4+ T cells. Free Radic Biol Med 2008; 44:1475-82. [PMID: 18267128 PMCID: PMC2440665 DOI: 10.1016/j.freeradbiomed.2008.01.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/11/2007] [Accepted: 01/09/2008] [Indexed: 10/22/2022]
Abstract
Lipid peroxidation is implicated in the pathogenesis of various autoimmune diseases. Lipid peroxidation-derived aldehydes such as malondialdehyde (MDA) and 4-hydroxynonenal (HNE) are highly reactive and bind to proteins, but their role in eliciting an autoimmune response and their contribution to disease pathogenesis remain unclear. To investigate the role of lipid peroxidation in the induction and/or exacerbation of autoimmune response, 6-week-old autoimmune-prone female MRL+/+ mice were treated for 4 weeks with trichloroethene (TCE; 10 mmol/kg, ip, once a week), an environmental contaminant known to induce lipid peroxidation. Sera from TCE-treated mice showed significant levels of antibodies against MDA-and HNE-adducted proteins along with antinuclear antibodies. This suggested that TCE exposure not only caused increased lipid peroxidation, but also accelerated autoimmune responses. Furthermore, stimulation of cultured splenic lymphocytes from both control and TCE-treated mice with MDA-adducted mouse serum albumin (MDA-MSA) or HNE-MSA for 72 h showed significant proliferation of CD4+ T cells in TCE-treated mice as analyzed by flow cytometry. Also, splenic lymphocytes from TCE-treated mice released more IL-2 and IFN-gamma into cultures when stimulated with MDA-MSA or HNE-MSA, suggesting a Th1 cell activation. Thus, our data suggest a role for lipid peroxidation-derived aldehydes in TCE-mediated autoimmune responses and involvement of Th1 cell activation.
Collapse
Affiliation(s)
- Gangduo Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rolf König
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - G. A. S. Ansari
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - M. Firoze Khan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
22
|
Wang G, Ansari GAS, Khan MF. Involvement of lipid peroxidation-derived aldehyde-protein adducts in autoimmunity mediated by trichloroethene. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:1977-1985. [PMID: 17966069 DOI: 10.1080/15287390701550888] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Lipid peroxidation, a major contributor to cellular damage, is also implicated in the pathogenesis of autoimmune diseases (AD). The focus of this study was to elucidate the role of lipid peroxidation-derived aldehydes in autoimmunity induced and/or exacerbated by chemical exposure. Previous studies showed that trichloroethene (TCE) is capable of inducing/accelerating autoimmunity. To test whether TCE-induced lipid peroxidation might be involved in the induction/exacerbation of autoimmune responses, groups of autoimmune-prone female MRL +/+ mice were treated with TCE (10 mmol/kg, i.p., every 4th day) for 6 or 12 wk. Significant increases of the formation of malondialdehyde (MDA)- and 4-hydroxynonenal (HNE)-protein adducts were found in the livers of TCE-treated mice at both 6 and 12 wk, but the response was greater at 12 wk. Further characterization of these adducts in liver microsomes showed increased formation of MDA-protein adducts with molecular masses of 86, 65, 56, 44, and 32 kD, and of HNE-protein adducts with molecular masses of 87, 79, 46, and 17 kD in TCE-treated mice. In addition, significant induction of anti-MDA- and anti-HNE-protein adduct-specific antibodies was observed in the sera of TCE-treated mice, and showed a pattern similar to MDA- or HNE-protein adducts. The increases in anti-MDA- and anti-HNE-protein adduct antibodies were associated with significant elevation in serum anti-nuclear-, anti-ssDNA- and anti-dsDNA-antibodies at 6 wk and, to a greater extent, at 12 wk. These studies suggest that TCE-induced lipid peroxidation is associated with induction/exacerbation of autoimmune response in MRL+/+ mice, and thus may play an important role in disease pathogenesis. Further interventional studies are needed to establish a causal relationship between lipid peroxidation and TCE-induced autoimmune response.
Collapse
Affiliation(s)
- Gangduo Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0609, USA
| | | | | |
Collapse
|
23
|
Wang G, Cai P, Ansari GAS, Khan MF. Oxidative and nitrosative stress in trichloroethene-mediated autoimmune response. Toxicology 2007; 229:186-93. [PMID: 17123686 PMCID: PMC1945101 DOI: 10.1016/j.tox.2006.10.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 10/11/2006] [Accepted: 10/23/2006] [Indexed: 11/28/2022]
Abstract
Reactive oxygen and nitrogen species (RONS) are implicated in the pathogenesis of several autoimmune diseases. Also, increased lipid peroxidation and protein nitration are reported in systemic autoimmune diseases. Lipid peroxidation-derived aldehydes (LPDAs) such as malondialdehyde (MDA) and 4-hydroxynonenal (HNE) are highly reactive and bind proteins covalently, but their potential to elicit an autoimmune response and contribution to disease pathogenesis remain unclear. Similarly, nitration of protein could also contribute to disease pathogenesis. To assess the status of lipid peroxidation and/or RONS, autoimmune-prone female MRL+/+ mice (5-week old) were treated with trichloroethene (TCE), an environmental contaminant known to induce autoimmune response, for 48 weeks (0.5mg/ml via drinking water), and formation of antibodies to LPDA-protein adducts was followed in the sera of control and TCE-treated mice. TCE treatment led to greater formation of both anti-MDA- and -HNE-protein adduct antibodies and higher serum iNOS and nitrotyrosine levels. The increase in TCE-induced oxidative stress was associated with increases in anti-nuclear-, anti-ssDNA- and anti-dsDNA-antibodies. These findings suggest that TCE exposure not only leads to oxidative/nitrosative stress, but is also associated with induction/exacerbation of autoimmune response in MRL+/+ mice. Further interventional studies are needed to establish a causal role of RONS in TCE-mediated autoimmunity.
Collapse
Affiliation(s)
- Gangduo Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ping Cai
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - G. A. S. Ansari
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - M. Firoze Khan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
24
|
Brock JWC, Ames JM, Thorpe SR, Baynes JW. Formation of methionine sulfoxide during glycoxidation and lipoxidation of ribonuclease A. Arch Biochem Biophys 2006; 457:170-6. [PMID: 17141728 PMCID: PMC1828205 DOI: 10.1016/j.abb.2006.10.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 10/25/2006] [Accepted: 10/26/2006] [Indexed: 02/02/2023]
Abstract
Chemical modification of proteins by reactive oxygen species affects protein structure, function and turnover during aging and chronic disease. Some of this damage is direct, for example by oxidation of amino acids in protein by peroxide or other reactive oxygen species, but autoxidation of ambient carbohydrates and lipids amplifies both the oxidative and chemical damage to protein and leads to formation of advanced glycoxidation and lipoxidation end-products (AGE/ALEs). In previous work, we have observed the oxidation of methionine during glycoxidation and lipoxidation reactions, and in the present work we set out to determine if methionine sulfoxide (MetSO) in protein was a more sensitive indicator of glycoxidative and lipoxidative damage than AGE/ALEs. We also investigated the sites of methionine oxidation in a model protein, ribonuclease A (RNase), in order to determine whether analysis of the site specificity of methionine oxidation in proteins could be used to indicate the source of the oxidative damage, i.e. carbohydrate or lipid. We describe here the development of an LC/MS/MS for quantification of methionine oxidation at specific sites in RNase during glycoxidation or lipoxidation by glucose or arachidonate, respectively. Glycoxidized and lipoxidized RNase were analyzed by tryptic digestion, followed by reversed phase HPLC and mass spectrometric analysis to quantify methionine and methionine sulfoxide containing peptides. We observed that: (1) compared to AGE/ALEs, methionine sulfoxide was a more sensitive biomarker of glycoxidative or lipoxidative damage to proteins; (2) regardless of oxidizable substrate, the relative rate of oxidation of methionine residues in RNase was Met29>Met30>Met13, with Met79 being resistant to oxidation; and (3) arachidonate produced a significantly greater yield of MetSO, compared to glucose. The methods developed here should be useful for assessing a protein's overall exposure to oxidative stress from a variety of sources in vivo.
Collapse
Affiliation(s)
- Jonathan W C Brock
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
25
|
Szwergold BS. α-Thiolamines such as cysteine and cysteamine act as effective transglycating agents due to formation of irreversible thiazolidine derivatives. Med Hypotheses 2006; 66:698-707. [PMID: 16359826 DOI: 10.1016/j.mehy.2005.10.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 10/07/2005] [Accepted: 10/11/2005] [Indexed: 11/23/2022]
Abstract
Non-enzymatic glycation of proteins and some phospholipids is considered to be an important factor in the genesis of diabetic complications. While this process has been viewed traditionally as entirely non-enzymatic and unidirectional, the discovery of fructosamine-3-phosphate (FN3K) and identification of FN3K-mediated deglycation mechanisms have made it apparent that non-enzymatic glycation is not unidirectional and that it can be reversed by deglycation reactions. While FN3K operates on ketosamines, the second intermediate in the non-enzymatic glycation cascade, we recently identified another potential deglycation mechanism that can operate on Schiff bases, the first intermediates of the non-enzymatic glycation process. The initial step in this postulated deglycation process is a transglycation reaction between a L.M.W. intracellular nucleophiles and a macromolecule-bound aldosamines, which regenerate unmodified proteins or phospholipids with a concomitant production of aldose-nucleophile transglycation byproducts. In vitro, transglycation occurs readily with amino acids, polyamines, thiols and thiolamines. There are indications that this reaction also occurs in vivo since in an initial GC/MS analysis of human urine we detected significant amounts of a transglycation product, glucose-cysteine (G-Cys), which was markedly increased in diabetics. Despite these encouraging early data, it is not yet clear to what extent transglycation is important in vivo and which intracellular nucleophiles are most relevant to this process. As discussed by us previously in this journal, one likely candidate for this role is glutathione since it is distributed universally and since there are well described mechanisms for removal of S-linked glutathione adducts from cells by the multi-drug-resistance (MDR) pumps. In this paper we report on another class of likely transglycating agents, alpha-thiolamines such as cysteine and cysteamine. While concentrations of these compounds in tissues are significantly lower than those of GSH, they react with Schiff bases more rapidly than GSH and, most significantly they form stable and irreversible thiazolidine products such as glucose-cysteine (G-Cys) and glucose-cysteamine (G-Ctm) that can subsequently be removed from cells. The possibility that alpha-thiolamines may play a physiological role as deglycating agents in vivo is very attractive since it suggests a possible strategy for inhibiting nonenzymatic glycation and diabetic complications that could be readily implemented through nutritional or pharmacological approaches. Such intervention is eminently feasible since there are at least three thiolamines already approved for human use. These include cysteamine used for the treatment of cystinosis; N-acetylcysteine utilized as a mucolytic and antioxidant agent, in the therapy of acetaminophen poisoning and radiocontrast-induced nephrotoxicity; and penicillamine used for treatment of Wilson's disease. Consequently, determining whether these compounds have the expected anti-glycating effects in vivo should be relatively straightforward.
Collapse
Affiliation(s)
- B S Szwergold
- Department of Medicine, Dartmouth Medical School, Remsen 311-314, HB 7515, Hanover, NH 03755, USA.
| |
Collapse
|
26
|
Spiteller G. The relation of lipid peroxidation processes with atherogenesis: A new theory on atherogenesis. Mol Nutr Food Res 2005; 49:999-1013. [PMID: 16270286 DOI: 10.1002/mnfr.200500055] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The extremely high sensitivity of polyunsaturated fatty acids (PUFAs) to oxygen is apparently used by nature to induce stepwise appropriate cell responses. It is hypothesized that any alteration in the cell membrane structure induces influx of Ca2+ ions. Ca2+ ions are required to activate degrading enzymes, such as phospholipases and lipoxygenases (LOX) that transform PUFAs bound to membrane phospholipids to lipidhydroperoxides (LOOHs). Enzymatic reduction products of LOOHs seem to serve as ligands of proteins, which induce gene activation to initiate a physiological response. Increasing external impact on cells is connected with deactivation of LOX, liberation of the iron ion in its active center followed by cleavage of LOOH molecules to LO * radicals. LO * radicals induce a second set of responses leading to generation of unsaturated aldehydic phospholipids and unsaturated epoxyhydroxy acids that contribute to induction of apoptosis. Finally peroxyl radicals are generated by attack of LO * radicals on phospholipids. The latter attack nearly all types of cell constituents: Amino- and hydroxyl groups are oxidized to carbonyl functions, sugars and proteins are cleaved, molecules containing double bonds such as unsaturated fatty acids or cholesterol suffer epoxidation. LOOH molecules and iron ions at the cell wall of an injured cell are in tight contact with phospholipids of neighboring cells and transfer to these reactive radicals. Thus, the damaging processes proceed and cause finally necrosis except the chain reaction is stopped by scavengers, such as glutathione. Consequently, PUFAs incorporated into phospholipids of the cell wall are apparently equally important for the fate of a single organism as the DNA in the nucleus for conservation of the species. This review intends to demonstrate the connection of cell alteration reactions with induction of lipid peroxidation (LPO) processes and their relation to inflammatory diseases, especially atherosclerosis and a possible involvement of food. Previously it was deduced that food rich in cholesterol and saturated fatty acids is atherogenic, while food rich in n-3 PUFAs was recognized to be protective against vascular diseases. These deductions are in contradiction to the fact that saturated fatty acids withstand oxidation while n-3 PUFAs are subjected to LPO like all other PUFAs. Considering the influence of minor food constituents a new theory about atherogenesis and the influence of n-3 PUFAs is represented that might resolve the contradictory results of feeding experiments and chemical experiences. Cholesterol-PUFA esters are minor constituents of mammalian derived food, but main components of low density lipoprotein (LDL). The PUFA part of these esters occasionally suffers oxidation by heating or storage of mammalian derived food. There are indications that these oxidized cholesterol esters are directly incorporated into lipoproteins and transferred via the LDL into endothelial cells where they induce damage and start the sequence of events outlined above. The deduction that consumption of n-3 PUFAs protects against vascular diseases is based on the observation that people living on a fish diet have a low incidence to be affected by vascular diseases. Fish are rich in n-3 PUFAs; thus, it was deduced that the protective properties of a fish diet are due to n-3 PUFAs. Fish, fish oils, and vegetables contain besides n-3 PUFAs as minor constituents furan fatty acids (F-acids). These are radical scavengers and are incorporated after consumption of these nutrients into human phospholipids, leading to the assumption that not n-3 PUFAs, but F-acids are responsible for the beneficial efficiency of a fish diet.
Collapse
Affiliation(s)
- Gerhard Spiteller
- Department of Organic Chemistry, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
27
|
Szwergold BS. Carnosine and anserine act as effective transglycating agents in decomposition of aldose-derived Schiff bases. Biochem Biophys Res Commun 2005; 336:36-41. [PMID: 16112643 DOI: 10.1016/j.bbrc.2005.08.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 08/05/2005] [Indexed: 11/26/2022]
Abstract
There are numerous publications describing the positive effects of carnosine (beta-alanyl-histidine) and anserine (beta-alanyl-1-N-methyl-histidine) on cell and organ function. Of special interest to us is the fact that these dipeptides act to retard and (in one instance) reverse non-enzymatic glycation. To date, the primary explanation for these anti-glycating effects has been the fact that carnosine and anserine can serve as alternative and competitive glycation targets, thereby protecting proteins from this deleterious process. In this paper, we document another mechanism by which these two peptides can retard or reverse glycation. The process involves decomposition of the very first intermediates of the non-enzymatic glycation cascade (aldosamines a.k.a. Schiff bases) by nucleophilic attack of carnosine and/or anserine on the preformed aldosamine such as glucosyl-lysine. If future research shows this reaction is to be physiologically important, this mechanism could explain some of the beneficial effects of carnosine and anserine as anti-glycating agents.
Collapse
|