1
|
Diaz L, Bielczyk-Maczynska E. High-density lipoprotein cholesterol: how studying the 'good cholesterol' could improve cardiovascular health. Open Biol 2025; 15:240372. [PMID: 39965658 PMCID: PMC11835495 DOI: 10.1098/rsob.240372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
High cholesterol levels are associated with an increased risk of cardiovascular disease, specifically atherosclerosis, a leading cause of death worldwide. Atherosclerosis occurs when cholesterol and fat build up in plaques along blood vessel walls, restricting blood flow and preventing nutrients and oxygen from diffusing in and out of the bloodstream. High-density lipoprotein cholesterol (HDL) particles prevent the build-up of such plaques, removing excess cholesterol from the peripheral tissues and delivering it to the liver, where it can be removed from the body. This pathway is known as reverse cholesterol transport (RCT). Because HDL plays a key role in preventing plaque buildup, understanding how this molecule and RCT function in the body could help us develop much-needed new atherosclerosis therapies and prevention strategies. However, HDL metabolism is complex, and research on HDL has been less favoured than research investigating a much better-understood molecule, low-density lipoprotein cholesterol, as a treatment target. More specifically, the receptors involved in the process of taking up HDL within the liver and their relationships to one another, along with the mechanism of whole, or holoparticle uptake of HDL remain to be clarified. In this review, we discuss several outstanding mysteries in HDL metabolism, consider why previous clinical trials to improve cardiovascular health by modulating HDL levels have been unsuccessful and argue that understanding HDL metabolism is essential for crafting interventions to reduce cardiovascular disease risk.
Collapse
Affiliation(s)
- Lucy Diaz
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Ewa Bielczyk-Maczynska
- The Hormel Institute, University of Minnesota, Austin, MN, USA
- The Institute for Diabetes, Obesity, and Metabolism, University of Minnesota, Minneapolis, MN, USA
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Sahebi R, Hassanian SM, Ghayour‐Mobarhan M, Farrokhi E, Rezayi M, Samadi S, Bahramian S, Ferns GA, Avan A. Scavenger receptor Class B type I as a potential risk stratification biomarker and therapeutic target in cardiovascular disease. J Cell Physiol 2019; 234:16925-16932. [DOI: 10.1002/jcp.28393] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Reza Sahebi
- Department of Modern Sciences and Technologies, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Department of Molecular Medicine, School of Advanced Technologies Shahrekord University of Medical Sciences Shahrekord Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Majid Ghayour‐Mobarhan
- Department of Modern Sciences and Technologies, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Effat Farrokhi
- Department of Molecular Medicine, School of Advanced Technologies Shahrekord University of Medical Sciences Shahrekord Iran
| | - Majid Rezayi
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Sara Samadi
- Department of Modern Sciences and Technologies, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Shabbou Bahramian
- Stem Cell Research Center Golestan University of Medical Sciences Gorgan Iran
| | - Gordon A. Ferns
- Division of Medical Education Brighton & Sussex Medical School, Falmer Brighton Sussex
| | - Amir Avan
- Metabolic Syndrome Research Center Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
3
|
Melchior JT, Street SE, Andraski AB, Furtado JD, Sacks FM, Shute RL, Greve EI, Swertfeger DK, Li H, Shah AS, Lu LJ, Davidson WS. Apolipoprotein A-II alters the proteome of human lipoproteins and enhances cholesterol efflux from ABCA1. J Lipid Res 2017; 58:1374-1385. [PMID: 28476857 DOI: 10.1194/jlr.m075382] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/25/2017] [Indexed: 12/25/2022] Open
Abstract
HDLs are a family of heterogeneous particles that vary in size, composition, and function. The structure of most HDLs is maintained by two scaffold proteins, apoA-I and apoA-II, but up to 95 other "accessory" proteins have been found associated with the particles. Recent evidence suggests that these accessory proteins are distributed across various subspecies and drive specific biological functions. Unfortunately, our understanding of the molecular composition of such subspecies is limited. To begin to address this issue, we separated human plasma and HDL isolated by ultracentrifugation (UC-HDL) into particles with apoA-I and no apoA-II (LpA-I) and those with both apoA-I and apoA-II (LpA-I/A-II). MS studies revealed distinct differences between the subfractions. LpA-I exhibited significantly more protein diversity than LpA-I/A-II when isolated directly from plasma. However, this difference was lost in UC-HDL. Most LpA-I/A-II accessory proteins were associated with lipid transport pathways, whereas those in LpA-I were associated with inflammatory response, hemostasis, immune response, metal ion binding, and protease inhibition. We found that the presence of apoA-II enhanced ABCA1-mediated efflux compared with LpA-I particles. This effect was independent of the accessory protein signature suggesting that apoA-II induces a structural change in apoA-I in HDLs.
Collapse
Affiliation(s)
- John T Melchior
- Department of Pathology and Laboratory Medicine, Center for Lipid and Arteriosclerosis Science, University of Cincinnati, Cincinnati, OH 45237
| | - Scott E Street
- Department of Pathology and Laboratory Medicine, Center for Lipid and Arteriosclerosis Science, University of Cincinnati, Cincinnati, OH 45237
| | - Allison B Andraski
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA 02115
| | - Jeremy D Furtado
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA 02115
| | - Frank M Sacks
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA 02115; Department of Genetics & Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115
| | - Rebecca L Shute
- Department of Pathology and Laboratory Medicine, Center for Lipid and Arteriosclerosis Science, University of Cincinnati, Cincinnati, OH 45237
| | - Emily I Greve
- Department of Pathology and Laboratory Medicine, Center for Lipid and Arteriosclerosis Science, University of Cincinnati, Cincinnati, OH 45237
| | - Debi K Swertfeger
- Division of Biomedical Informatics Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229
| | - Hailong Li
- Division of Biomedical Informatics Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229
| | - Amy S Shah
- Division of Endocrinology, Department of Pediatrics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229
| | - L Jason Lu
- Division of Biomedical Informatics Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, Center for Lipid and Arteriosclerosis Science, University of Cincinnati, Cincinnati, OH 45237.
| |
Collapse
|
4
|
Gillard BK, Bassett GR, Gotto AM, Rosales C, Pownall HJ. Scavenger receptor B1 (SR-B1) profoundly excludes high density lipoprotein (HDL) apolipoprotein AII as it nibbles HDL-cholesteryl ester. J Biol Chem 2017; 292:8864-8873. [PMID: 28373285 DOI: 10.1074/jbc.m117.781963] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/24/2017] [Indexed: 01/12/2023] Open
Abstract
Reverse cholesterol transport (transfer of macrophage-cholesterol in the subendothelial space of the arterial wall to the liver) is terminated by selective high density lipoprotein (HDL)-cholesteryl ester (CE) uptake, mediated by scavenger receptor class B, type 1 (SR-B1). We tested the validity of two models for this process: "gobbling," i.e. one-step transfer of all HDL-CE to the cell and "nibbling," multiple successive cycles of SR-B1-HDL association during which a few CEs transfer to the cell. Concurrently, we compared cellular uptake of apoAI with that of apoAII, which is more lipophilic than apoAI, using HDL-[3H]CE labeled with [125I]apoAI or [125I]apoAII. The studies were conducted in CHO-K1 and CHO-ldlA7 cells (LDLR-/-) with (CHO-SR-B1) and without SR-B1 overexpression and in human Huh7 hepatocytes. Relative to CE, both apoAI and apoAII were excluded from uptake by all cells. However, apoAII was more highly excluded from uptake (2-4×) than apoAI. To distinguish gobbling versus nibbling mechanisms, media from incubations of HDL with CHO-SR-B1 cells were analyzed by non-denaturing PAGE, size-exclusion chromatography, and the distribution of apoAI, apoAII, cholesterol, and phospholipid among HDL species as a function of incubation time. HDL size gradually decreased, i.e. nibbling, with the concurrent release of lipid-free apoAI; apoAII was retained in an HDL remnant. Our data support an SR-B1 nibbling mechanism that is similar to that of streptococcal serum opacity factor, which also selectively removes CE and releases apoAI, leaving an apoAII-rich remnant.
Collapse
Affiliation(s)
- Baiba K Gillard
- From the Houston Methodist Research Institute, Houston Texas 77030, .,Weill Cornell Medicine, New York, New York 10065, and
| | | | - Antonio M Gotto
- From the Houston Methodist Research Institute, Houston Texas 77030.,Weill Cornell Medicine, New York, New York 10065, and
| | - Corina Rosales
- From the Houston Methodist Research Institute, Houston Texas 77030.,Weill Cornell Medicine, New York, New York 10065, and
| | - Henry J Pownall
- From the Houston Methodist Research Institute, Houston Texas 77030.,Weill Cornell Medicine, New York, New York 10065, and
| |
Collapse
|
5
|
Parra-Guillen ZP, Fioravanti J, Medina-Echeverz J, Gomar C, Ardaiz N, Troconiz IF, Berraondo P. Kinetic and dynamic computational model-based characterization of new proteins in mice: application to interferon alpha linked to apolipoprotein A-I. PLoS One 2012; 7:e42100. [PMID: 22848716 PMCID: PMC3407104 DOI: 10.1371/journal.pone.0042100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 07/02/2012] [Indexed: 02/06/2023] Open
Abstract
Interferon alpha linked to apolipoprotein A-I has been recently proposed as an improved interferon-based therapy. In the present study, we aimed to develop a computational model to gain further insight into the in vivo behaviour of this new fusion protein. In order to facilitate in vivo evaluation of interferon and the fusion protein without altering their biological properties, green fluorescent protein was incorporated into their structures. Kinetic and dynamic behaviour of both compounds was successfully described after plasmid hydrodynamic administration and in situ synthesis of the studied proteins. Results from the modelling exercise showed that apolipoprotein A-I conferred a modified kinetic behaviour, varying molecule distribution and prolonging half-life without altering liver dynamic performance. However, differences in the gene expression activity were observed at brain level between both compounds. Those differences could be explained by modifications in the dynamic, but also in the biodistribution properties, which would be worth evaluating in future experiments. Therefore, the modelling approach provided a global comprehension of a complex system and allowed us to compare the in vivo behaviour of both compounds and to identify critical aspects that might be important to understand the system better and suggests a need for new model-based experiments.
Collapse
Affiliation(s)
- Zinnia Patricia Parra-Guillen
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Pamplona, Navarra, Spain
| | - Jessica Fioravanti
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research (CIMA), Pamplona, Navarra, Spain
| | - Jose Medina-Echeverz
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research (CIMA), Pamplona, Navarra, Spain
| | - Celia Gomar
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research (CIMA), Pamplona, Navarra, Spain
| | - Nuria Ardaiz
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research (CIMA), Pamplona, Navarra, Spain
| | - Iñaki F. Troconiz
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Pamplona, Navarra, Spain
| | - Pedro Berraondo
- Division of Hepatology and Gene Therapy, Centre for Applied Medical Research (CIMA), Pamplona, Navarra, Spain
- * E-mail:
| |
Collapse
|
6
|
Rye KA, Barter PJ. Predictive value of different HDL particles for the protection against or risk of coronary heart disease. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:473-80. [PMID: 22051746 DOI: 10.1016/j.bbalip.2011.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/10/2011] [Accepted: 10/13/2011] [Indexed: 12/26/2022]
Abstract
The inverse relationship between plasma HDL levels and the risk of developing coronary heart disease is well established. The underlying mechanisms of this relationship are poorly understood, largely because HDL consist of several functionally distinct subpopulations of particles that are continuously being interconverted from one to another. This review commences with an outline of what is known about the origins of individual HDL subpopulations, how their distribution is regulated, and describes strategies that are currently available for isolating them. We then summarise what is known about the functionality of specific HDL subpopulations, and how these findings might impact on cardiovascular risk. The final section highlights major gaps in existing knowledge of HDL functionality, and suggests how these deficiencies might be addressed. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
Affiliation(s)
- Kerry-Anne Rye
- Lipid Research Group, The Heart Research Institute, Sydney, NSW, Australia.
| | | |
Collapse
|
7
|
Gauthamadasa K, Rosales C, Pownall HJ, Macha S, Jerome WG, Huang R, Silva RAGD. Speciated human high-density lipoprotein protein proximity profiles. Biochemistry 2010; 49:10656-65. [PMID: 21073165 DOI: 10.1021/bi1015452] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is expected that the attendant structural heterogeneity of human high-density lipoprotein (HDL) complexes is a determinant of its varied metabolic functions. To determine the structural heterogeneity of HDL, we determined major apolipoprotein stoichiometry profiles in human HDL. First, HDL was separated into two main populations, with and without apolipoprotein (apo) A-II, LpA-I and LpA-I/A-II, respectively. Each main population was further separated into six individual subfractions using size exclusion chromatography (SEC). Protein proximity profiles (PPPs) of major apolipoproteins in each individual subfraction was determined by optimally cross-linking apolipoproteins within individual particles with bis(sulfosuccinimidyl) suberate (BS(3)), a bifunctional cross-linker, followed by molecular mass determination by MALDI-MS. The PPPs of LpA-I subfractions indicated that the number of apoA-I molecules increased from two to three to four with an increase in the LpA-I particle size. On the other hand, the entire population of LpA-I/A-II demonstrated the presence of only two proximal apoA-I molecules per particle, while the number of apoA-II molecules varied from one dimeric apoA-II to two and then to three. For most of the PPPs described above, an additional population that contained a single molecule of apoC-III in addition to apoA-I and/or apoA-II was detected. Upon composition analyses of individual subpopulations, LpA-I/A-II exhibited comparable proportions for total protein (∼58%), phospholipids (∼21%), total cholesterol (∼16%), triglycerides (∼5%), and free cholesterol (∼4%) across subfractions. LpA-I components, on the other hand, showed significant variability. This novel information about HDL subfractions will form a basis for an improved understanding of particle-specific functions of HDL.
Collapse
Affiliation(s)
- Kekulawalage Gauthamadasa
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237, United States
| | | | | | | | | | | | | |
Collapse
|
8
|
de Beer MC, Webb NR, Whitaker NL, Wroblewski JM, Jahangiri A, van der Westhuyzen DR, de Beer FC. SR-BI selective lipid uptake: subsequent metabolism of acute phase HDL. Arterioscler Thromb Vasc Biol 2009; 29:1298-303. [PMID: 19304574 DOI: 10.1161/atvbaha.109.186502] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the interaction of SAA and SR-BI in remodeling of acute phase HDL (AP HDL). METHODS AND RESULTS We used SAA and SR-BI adenoviral vector expression models to study the interaction between these entities. SR-BI processing of mouse AP HDL generated progressively smaller discreet HDL particles with distinct apolipoprotein compositions. SR-BI actions segregated apolipoproteins with the smallest particles containing only apoA-I. Larger remnants contained apoA-I, apoA-II, and SAA. Small apoA-I only particles failed to associate with preformed HDL, whereas larger remnants readily did. The presence of SAA on SR-BI-processed HDL particles propelled apoA-I to a small lipid-poor form and accelerated apoA-I catabolism. CONCLUSIONS Data indicate that after core and surface HDL lipid perturbation by SR-BI, SAA propels apoA-I to a small lipid-poor form while accelerating HDL metabolism.
Collapse
Affiliation(s)
- Maria C de Beer
- Graduate Center for Nutritional Science, University of Kentucky Medical Center, Lexington, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Pownall HJ, Hosken BD, Gillard BK, Higgins CL, Lin HY, Massey JB. Speciation of Human Plasma High-Density Lipoprotein (HDL): HDL Stability and Apolipoprotein A-I Partitioning. Biochemistry 2007; 46:7449-59. [PMID: 17530866 DOI: 10.1021/bi700496w] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The distribution of apolipoprotein (apo) A-I between human high-density lipoproteins (HDL) and water is an important component of reverse cholesterol transport and the atheroprotective effects of HDL. Chaotropic perturbation (CP) with guanidinium chloride (Gdm-Cl) reveals HDL instability by inducing the unfolding and transfer of apo A-I but not apo A-II into the aqueous phase while forming larger apo A-I deficient HDL-like particles and small amounts of cholesteryl ester-rich microemulsions (CERMs). Our kinetic and hydrodynamic studies of the CP of HDL species separated according to size and density show that (1) CP mediated an increase in HDL size, which involves quasi-fusion of surface and core lipids, and release of lipid-free apo A-I (these processes correlate linearly), (2) >94% of the HDL lipids remain with an apo A-I deficient particle, (3) apo A-II remains associated with a very stable HDL-like particle even at high levels of Gdm-Cl, and (4) apo A-I unfolding and transfer from HDL to water vary among HDL subfractions with the larger and more buoyant species exhibiting greater stability. Our data indicate that apo A-I's on small HDL (HDL-S) are highly dynamic and, relative to apo A-I on the larger more mature HDL, partition more readily into the aqueous phase, where they initiate the formation of new HDL species. Our data suggest that the greater instability of HDL-S generates free apo A-I and an apo A-I deficient HDL-S that readily fuses with the more stable HDL-L. Thus, the presence of HDL-L drives the CP remodeling of HDL to an equilibrium with even larger HDL-L and more lipid-free apo A-I than with either HDL-L or HDL-S alone. Moreover, according to dilution studies of HDL in 3 M Gdm-Cl, CP of HDL fits a model of apo A-I partitioning between HDL phospholipids and water that is controlled by the principal of opposing forces. These findings suggest that the size and relative amount of HDL lipid determine the HDL stability and the fraction of apo A-I that partitions into the aqueous phase where it is destined for interaction with ABCA1 transporters, thereby initiating reverse cholesterol transport or, alternatively, renal clearance.
Collapse
Affiliation(s)
- Henry J Pownall
- Section of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW One of the major mechanisms whereby HDL particles are felt to protect against atherosclerosis is that of reverse cholesterol transport from atherosclerotic lesion macrophages to the liver, with subsequent excretion of cholesterol in the bile. This review focuses on recent progress in our understanding of reverse cholesterol transport and the factors that determine plasma HDL cholesterol concentrations. RECENT FINDINGS The liver and intestine are the major sites of apolipoprotein A-I synthesis and nascent HDL particle secretion. The liver has recently been shown to be a major contributor to the plasma HDL-cholesterol concentration, but the precise site or mechanism whereby hepatically-synthesized HDL acquire the bulk of their lipid content remains to be determined. Contrastingly, macrophages contribute little to the plasma HDL cholesterol pool, whereas the quantitatively small macrophage-specific reverse cholesterol transport contributes disproportionately to protection against atherosclerosis. Studies have highlighted the coordinate action of cell surface lipid transporters, cholesterol esterification enzymes and lipid transfer factors in the early steps of reverse cholesterol transport and the recycling of pre-beta HDL particles to create a ready supply of cholesterol acceptor HDL particles. Most of the variation in plasma HDL-cholesterol levels in human populations is accounted for by variations in HDL clearance rather than production. SUMMARY Our understanding of the in-vivo metabolism of HDL particles and their role in reverse cholesterol transport is rapidly evolving, with long-standing concepts being constantly challenged by emerging evidence. An in-depth understanding of HDL metabolism will guide the rational design of novel pharmacological therapies that effectively protect against atherosclerosis.
Collapse
Affiliation(s)
- Gary F Lewis
- Department of Medicine, University of Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW To rationalize the distinctive biological behavior of apolipoprotein (apo)A-I and apoA-II in light of differences in their respective structures, properties, and physico-chemical behavior. RECENT FINDINGS The distinctive metabolic behavior of apoA-I compared with that of apoA-II, which are revealed as differences in their interactions with the HDL receptor, scavenger receptor class B type I, can be understood in terms of their physico-chemical properties. Detergent and chaotropic perturbation of HDL unmasks properties that distinguish apoA-I from apoA-II and emulate the secondary effects of lecithin: cholesterol acyltransferase, cholesteryl ester transfer protein, and phospholipid transfer protein - the key protein factors in HDL remodeling, that is, formation of lipid-free apoA-I but not apoA-II and particle fusion. Thus, of the two major HDL apolipoproteins, apoA-I is the more plastic and labile and this difference gives apoA-I a unique physiological role that has been verified in mouse models of HDL metabolism. SUMMARY The compositions, structures, and properties of HDL particles are important determinants of the mechanisms by which these antiatherogenic lipoproteins are metabolized. Although the plasma lipid transfer proteins and lipid-modifying enzymes are important determinants of HDL processing, the distinctive structures and properties of apoA-I and apoA-II, the two major HDL proteins, determine in different ways the thermodynamic stability of HDL - the former through its greater plasticity and the latter by its higher lipophilicity. These distinctions have been revealed by physico-chemical studies of HDL stability in the context of numerous studies of enzyme and lipid transfer activities and of the interaction of HDL with its hepatic scavenger receptor.
Collapse
|