1
|
Suchy-Dicey A, Howard B, Longstreth WT, Reiman EM, Buchwald D. APOE genotype, hippocampus, and cognitive markers of Alzheimer's disease in American Indians: Data from the Strong Heart Study. Alzheimers Dement 2022; 18:2518-2526. [PMID: 35142437 PMCID: PMC9363523 DOI: 10.1002/alz.12573] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/01/2021] [Accepted: 12/10/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND The apolipoprotein E (APOE) ε4 allele confers higher risk of neurodegeneration and Alzheimer's disease (AD), but differs by race/ethnicity. We examined this association in American Indians. METHODS The Strong Heart Study is a population-based cohort of American Indians who were 64 to 95 years of age in 2010 to 2013. APOE ε4 status, brain imaging, and neuropsychological testing was collected in N = 811 individuals. Summary statistics, graphics, and generalized linear regressions-adjusted for sociodemographics, clinical features, and intracranial volume with bootstrap variance estimator-compared APOE ε4 carriers with non-carriers. RESULTS APOE ε4 carriers comprised 22% of the population (0.7% homozygotes). Participants were mean 73 years, 67% female, and 54% had some college education. The majority were obese (>50%), hypertensive (>80%), and diabetic (>50%). Neither imaging findings nor multidomain cognitive testing showed any substantive differences between APOE ε4 carriers and non-carriers. CONCLUSION We found no evidence of neurodegenerative risk from APOE ε4 in American Indians. Additional studies are needed to examine potential protective features.
Collapse
Affiliation(s)
- Astrid Suchy-Dicey
- Washington State University Elson S Floyd College of Medicine, Seattle, Washington, USA
| | - Barbara Howard
- MedStar Health Research Institute, Phoenix, Arizona, USA
| | - W T Longstreth
- University of Washington Neurology and Epidemiology Departments, Seattle, Washington, USA
| | | | - Dedra Buchwald
- Washington State University Elson S Floyd College of Medicine, Seattle, Washington, USA
| |
Collapse
|
2
|
Liu Y, Tang J, He Y, Jia G, Liu G, Tian G, Chen X, Cai J, Kang B, Zhao H. Selenogenome and AMPK signal insight into the protective effect of dietary selenium on chronic heat stress-induced hepatic metabolic disorder in growing pigs. J Anim Sci Biotechnol 2021; 12:68. [PMID: 34116728 PMCID: PMC8196429 DOI: 10.1186/s40104-021-00590-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Chronic heat stress (CHS) disrupts hepatic metabolic homeostasis and jeopardizes product quality of pigs. Selenium (Se) may regulate the metabolic state through affect selenoprotein. Thus, we investigate the protective effect of dietary hydroxy-4-methylselenobutanoic acid (HMSeBA) on CHS induced hepatic metabolic disorder in growing pigs, and the corresponding response of selenoprotein. METHODS Forty crossbreed growing pigs were randomly assigned to five groups: control group raised in the thermoneutral environment (22 ± 2 °C) with basal diet; four CHS groups raised in hyperthermal condition (33 ± 2 °C) with basal diet and supplied with 0.0, 0.2, 0.4, and 0.6 mg Se/kg HMSeBA, respectively. The trial lasted 28 d. The serum biochemical, hepatic metabolism related enzyme, protein and gene expression and 25 selenoproteins in liver tissue were determined by real-time PCR, ELISA and western blot. RESULTS CHS significantly increased the rectal temperature, respiration rate, serum aspartate aminotransferase (AST) and low-density lipoprotein cholesterol (LDL-C) of pigs, up-regulated hepatic heat shock protein 70 (HSP70) and induced lower liver weight, glycogen content, hepatic glucokinase and glutathione peroxidase (GSH-Px). The CHS-induced liver metabolic disorder was associated with the aberrant expression of 6 metabolism-related gene and 11 selenoprotein encoding genes, and decreased the protein abundance of GCK, GPX4 and SELENOS. HMSeBA improved anti-oxidative capacity of liver. 0.4 or 0.6 mg Se/kg HMSeBA supplementation recovered the liver weight, glycogen content and rescue of mRNA abundance of genes related to metabolism and protein levels of GCK. HMSeBA supplementation changed expressions of 15 selenoprotein encoding genes, and enhanced protein expression of GPX1, GPX4 and SELENOS in the liver affected by CHS. CHS alone showed no impact while HMSeBA supplementation increased protein levels of p-AMPKα in the liver. CONCLUSIONS In summary, HMSeBA supplementation beyond nutrient requirement mitigates CHS-induced hepatic metabolic disorder, recovered the liver glycogen content and the processes that are associated with the activation of AMPK signal and regulation of selenoproteins in the liver of growing pigs.
Collapse
Affiliation(s)
- Yan Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Jiayong Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Ying He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Gang Jia
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Guangmang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Gang Tian
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Xiaoling Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Jingyi Cai
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
3
|
Grau-Perez M, Voruganti VS, Balakrishnan P, Haack K, Goessler W, Franceschini N, Redón J, Cole SA, Navas-Acien A, Tellez-Plaza M. Genetic variation and urine cadmium levels: ABCC1 effects in the Strong Heart Family Study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116717. [PMID: 33640655 PMCID: PMC8026674 DOI: 10.1016/j.envpol.2021.116717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Genetic effects are suspected to influence cadmium internal dose. Our objective was to assess genetic determinants of urine cadmium in American Indian adults participating in the Strong Heart Family Study (SHFS). Urine cadmium levels and genotyped short tandem repeat (STR) markers were available on 1936 SHFS participants. We investigated heritability, including gene-by-sex and smoking interactions, and STR-based quantitative trait locus (QTL) linkage, using a variance-component decomposition approach, which incorporates the genetic information contained in the pedigrees. We also used available single nucleotide polymorphisms (SNPs) from Illumina's Metabochip and custom panel to assess whether promising QTLs associated regions could be attributed to SNPs annotated to specific genes. Median urine cadmium levels were 0.44 μg/g creatinine. The heritability of urine cadmium concentrations was 28%, with no evidence of gene-by-sex or -smoking interaction. We found strong statistical evidence for a genetic locus at chromosome 16 determining urine cadmium concentrations (Logarithm of odds score [LOD] = 3.8). Among the top 20 associated SNPs in this locus, 17 were annotated to ABCC1 (p-values from 0.0002 to 0.02), and attenuated the maximum linkage peak by a ∼40%. Suggestive QTL signals (LOD>1.9) in chromosomes 2, 6, 11, 14, and 19, showed associated SNPs in the genes NDUFA10, PDE10A, PLEKHA7, BAZ1A and CHAF1A, respectively. Our findings support that urinary cadmium levels are heritable and influenced by a QTL on chromosome 16, which was explained by genetic variation in ABCC1. Studies with extended sets of genome-wide markers are needed to confirm these findings and to identify additional metabolism and toxicity pathways for cadmium.
Collapse
Affiliation(s)
- Maria Grau-Perez
- Area of Cardiometabolic and Renal Risk, Institute for Biomedical Research Hospital Clinic of Valencia (INCLIVA), Valencia, Valencia, Spain; Department of Preventive Medicine and Public Health and Microbiology, Universidad Autonoma de Madrid, Madrid, Madrid, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain.
| | - V Saroja Voruganti
- Department of Nutrition and Nutrition Research Institute, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Karin Haack
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Walter Goessler
- Institute of Chemistry - Analytical Chemistry, Karl-Franzens University of Graz, Graz, Austria
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Josep Redón
- Area of Cardiometabolic and Renal Risk, Institute for Biomedical Research Hospital Clinic of Valencia (INCLIVA), Valencia, Valencia, Spain; Department of Internal Medicine, Hospital Clinic of Valencia, University of Valencia, Valencia, Valencia, Spain
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | - Maria Tellez-Plaza
- Area of Cardiometabolic and Renal Risk, Institute for Biomedical Research Hospital Clinic of Valencia (INCLIVA), Valencia, Valencia, Spain; Department of Preventive Medicine and Public Health and Microbiology, Universidad Autonoma de Madrid, Madrid, Madrid, Spain; Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Madrid, Spain; Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
4
|
Genetic analysis of hsCRP in American Indians: The Strong Heart Family Study. PLoS One 2019; 14:e0223574. [PMID: 31622379 PMCID: PMC6797125 DOI: 10.1371/journal.pone.0223574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Background Increased serum levels of C-reactive protein (CRP), an important component of the innate immune response, are associated with increased risk of cardiovascular disease (CVD). Multiple single nucleotide polymorphisms (SNP) have been identified which are associated with CRP levels, and Mendelian randomization studies have shown a positive association between SNPs increasing CRP expression and risk of colon cancer (but thus far not CVD). The effects of individual genetic variants often interact with the genetic background of a population and hence we sought to resolve the genetic determinants of serum CRP in a number of American Indian populations. Methods The Strong Heart Family Study (SHFS) has serum CRP measurements from 2428 tribal members, recruited as large families from three regions of the United States. Microsatellite markers and MetaboChip defined SNP genotypes were incorporated into variance components, decomposition-based linkage and association analyses. Results CRP levels exhibited significant heritability (h2 = 0.33 ± 0.05, p<1.3 X 10−20). A locus on chromosome (chr) 6, near marker D6S281 (approximately at 169.6 Mb, GRCh38/hg38) showed suggestive linkage (LOD = 1.9) to CRP levels. No individual SNPs were found associated with CRP levels after Bonferroni adjustment for multiple testing (threshold <7.77 x 10−7), however, we found nominal associations, many of which replicate previous findings at the CRP, HNF1A and 7 other loci. In addition, we report association of 46 SNPs located at 7 novel loci on chromosomes 2, 5, 6(2 loci), 9, 10 and 17, with an average of 15.3 Kb between SNPs and all with p-values less than 7.2 X 10−4. Conclusion In agreement with evidence from other populations, these data show CRP serum levels are under considerable genetic influence; and include loci, such as near CRP and other genes, that replicate results from other ethnic groups. These findings also suggest possible novel loci on chr 6 and other chromosomes that warrant further investigation.
Collapse
|
5
|
Cholerton B, Omidpanah A, Verney SP, Nelson LA, Baker LD, Suchy-Dicey A, Longstreth WT, Howard BV, Henderson JA, Montine TJ, Buchwald D. Type 2 diabetes and later cognitive function in older American Indians: The Strong Heart Study. Int J Geriatr Psychiatry 2019; 34:1050-1057. [PMID: 30924200 PMCID: PMC6579638 DOI: 10.1002/gps.5108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/29/2018] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Insulin resistance is a substantial health issue for American Indians, with type 2 diabetes overrepresented in this population as compared with non-Hispanic whites. Insulin resistance and its related conditions in turn increase risk for dementia and cognitive impairment. The aim of the current study was to determine whether type 2 diabetes and insulin resistance at midlife was associated with later-life cognitive testing in a large sample of older American Indians, aged 65 and older. METHODS American Indian participants who underwent both fasting blood draw as part of the Strong Heart Study and had subsequent cognitive testing as part of the later adjunct Cerebrovascular Disease and its Consequences in American Indians study were included (n = 790). Regression models examined type 2 diabetes and impaired fasting glucose and subsequent cognitive test performance as part of a longitudinal study design. The relationship between a continuous measure of insulin resistance and later cognitive test performance was assessed using generalized estimating equations. RESULTS Controlling for demographic and clinical factors, verbal fluency and processing speed/working memory were significantly negatively associated with having type 2 diabetes and with insulin resistance, but not with impaired fasting glucose. CONCLUSION In this sample of American Indians, type 2 diabetes at midlife was associated with subsequent lower performance on measures of executive function. These results may have important implications for future implementation of diagnostic and intervention services in this population.
Collapse
Affiliation(s)
- Brenna Cholerton
- Department of Pathology, Stanford University, Palo Alto, California, USA
| | - Adam Omidpanah
- Department of Community Health, Washington State University, Seattle, Washington, USA
| | - Steven P. Verney
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Lonnie A. Nelson
- Department of Community Health, Washington State University, Seattle, Washington, USA
| | - Laura D. Baker
- Department of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Astrid Suchy-Dicey
- Department of Community Health, Washington State University, Seattle, Washington, USA
| | - William T. Longstreth
- Department of Neurology, School of Medicine, University of Washington, Seattle, Washington, USA,Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
| | | | | | - Thomas J. Montine
- Department of Pathology, Stanford University, Palo Alto, California, USA
| | - Dedra Buchwald
- Department of Community Health, Washington State University, Seattle, Washington, USA
| |
Collapse
|
6
|
Total Brain and Hippocampal Volumes and Cognition in Older American Indians: The Strong Heart Study. Alzheimer Dis Assoc Disord 2017; 31:94-100. [PMID: 28538087 DOI: 10.1097/wad.0000000000000203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Estimates of hippocampal volume by magnetic resonance imaging have clinical and cognitive correlations and can assist in early Alzheimer disease diagnosis. However, little is known about the relationship between global or regional brain volumes and cognitive test performance in American Indians. MATERIALS AND METHODS American Indian participants (N=698; median age, 72 y) recruited for the Cerebrovascular Disease and its Consequences in American Indians study, an ancillary study of the Strong Heart Study cohort, were enrolled. Linear regression models assessed the relationship between magnetic resonance imaging brain volumes (total brain and hippocampi) and cognitive measures of verbal learning and recall, processing speed, verbal fluency, and global cognition. RESULTS After controlling for demographic and clinical factors, all volumetric measurements were positively associated with processing speed. Total brain volume was also positively associated with verbal learning, but not with verbal recall. Conversely, left hippocampal volume was associated with both verbal learning and recall. The relationship between hippocampal volume and recall performance was more pronounced among those with lower scores on a global cognitive measure. Controlling for APOE ε4 did not substantively affect the associations. CONCLUSIONS These results support further investigation into the relationship between structural Alzheimer disease biomarkers, cognition, genetics, and vascular risk factors in aging American Indians.
Collapse
|
7
|
Arbour L, Asuri S, Whittome B, Polanco F, Hegele RA. The Genetics of Cardiovascular Disease in Canadian and International Aboriginal Populations. Can J Cardiol 2015; 31:1094-115. [DOI: 10.1016/j.cjca.2015.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 12/16/2022] Open
|
8
|
Zhu Y, Voruganti VS, Lin J, Matsuguchi T, Blackburn E, Best LG, Lee ET, MacCluer JW, Cole SA, Zhao J. QTL mapping of leukocyte telomere length in American Indians: the Strong Heart Family Study. Aging (Albany NY) 2014; 5:704-16. [PMID: 24036517 PMCID: PMC3808702 DOI: 10.18632/aging.100600] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Telomeres play a central role in cellular senescence and are associated with a variety of age-related disorders such as dementia, Alzheimer's disease and atherosclerosis. Telomere length varies greatly among individuals of the same age, and is heritable. Here we performed a genome-wide linkage scan to identify quantitative trait loci (QTL) influencing leukocyte telomere length (LTL) measured by quantitative PCR in 3,665 American Indians (aged 14-93 years) from 94 large, multi-generational families. All participants were recruited by the Strong Heart Family Study (SHFS), a prospective study to identify genetic factors for cardiovascular disease and its risk factors in American Indians residing in Oklahoma, Arizona and Dakota. LTL heritability was estimated to be between 51% and 62%, suggesting a strong genetic predisposition to interindividual variation of LTL in this population. Significant QTLs were localized to chromosome 13 (Logarithm of odds score (LOD)=3.9) at 13q12.11, to 18q22.2 (LOD=3.2) and to 3p14.1 (LOD=3.0) for Oklahoma. This is the first study to identify susceptibility loci influencing leukocyte telomere variation in American Indians, a minority group suffering from a disproportionately high rate of type 2 diabetes and other age-related disorders.
Collapse
Affiliation(s)
- Yun Zhu
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhang L, Franceschini N, Buzkova P, Wassel CL, Roman MJ, North KE, Crawford DC, Boston J, Brown-Gentry KD, Cole SA, Deelman E, Goodloe R, Heiss G, Jenny NS, Jorgensen NW, Matise TC, McClellan BE, Nato AQ, Ritchie MD, Wilson S, Kao WHL. Lack of associations of ten candidate coronary heart disease risk genetic variants and subclinical atherosclerosis in four US populations: the Population Architecture using Genomics and Epidemiology (PAGE) study. Atherosclerosis 2013; 228:390-9. [PMID: 23587283 PMCID: PMC3717342 DOI: 10.1016/j.atherosclerosis.2013.02.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 12/30/2022]
Abstract
BACKGROUND A number of genetic variants have been discovered by recent genome-wide association studies for their associations with clinical coronary heart disease (CHD). However, it is unclear whether these variants are also associated with the development of CHD as measured by subclinical atherosclerosis phenotypes, ankle brachial index (ABI), carotid artery intima-media thickness (cIMT) and carotid plaque. METHODS Ten CHD risk single nucleotide polymorphisms (SNPs) were genotyped in individuals of European American (EA), African American (AA), American Indian (AI), and Mexican American (MA) ancestry in the Population Architecture using Genomics and Epidemiology (PAGE) study. In each individual study, we performed linear or logistic regression to examine population-specific associations between SNPs and ABI, common and internal cIMT, and plaque. The results from individual studies were meta-analyzed using a fixed effect inverse variance weighted model. RESULTS None of the ten SNPs was significantly associated with ABI and common or internal cIMT, after Bonferroni correction. In the sample of 13,337 EA, 3809 AA, and 5353 AI individuals with carotid plaque measurement, the GCKR SNP rs780094 was significantly associated with the presence of plaque in AI only (OR = 1.32, 95% confidence interval: 1.17, 1.49, P = 1.08 × 10(-5)), but not in the other populations (P = 0.90 in EA and P = 0.99 in AA). A 9p21 region SNP, rs1333049, was nominally associated with plaque in EA (OR = 1.07, P = 0.02) and in AI (OR = 1.10, P = 0.05). CONCLUSIONS We identified a significant association between rs780094 and plaque in AI populations, which needs to be replicated in future studies. There was little evidence that the index CHD risk variants identified through genome-wide association studies in EA influence the development of CHD through subclinical atherosclerosis as assessed by cIMT and ABI across ancestries.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Petra Buzkova
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Christina L. Wassel
- Division of Cardiology, Weill Cornell Medical College, New York, New York, USA
| | - Mary J. Roman
- Division of Cardiology, Weill Cornell Medical College, New York, New York, USA
| | - Kari E. North
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Dana C. Crawford
- Center for Human Genetics Research, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Jonathan Boston
- Center for Human Genetics Research, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Kristin D. Brown-Gentry
- Center for Human Genetics Research, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Shelley A. Cole
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Ewa Deelman
- Information Sciences Institute, University of Southern California, Los Angeles, California, USA
| | - Robert Goodloe
- Center for Human Genetics Research, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Gerardo Heiss
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Nancy S. Jenny
- Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Neal W. Jorgensen
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Tara C. Matise
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
| | - Bob E. McClellan
- Center for Human Genetics Research, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Alejandro Q. Nato
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
| | - Marylyn D. Ritchie
- Center for Human Genetics Research, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Sarah Wilson
- Center for Human Genetics Research, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - WH Linda Kao
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Zhang L, Spencer KL, Voruganti VS, Jorgensen NW, Fornage M, Best LG, Brown-Gentry KD, Cole SA, Crawford DC, Deelman E, Franceschini N, Gaffo AL, Glenn KR, Heiss G, Jenny NS, Kottgen A, Li Q, Liu K, Matise TC, North KE, Umans JG, Kao WHL. Association of functional polymorphism rs2231142 (Q141K) in the ABCG2 gene with serum uric acid and gout in 4 US populations: the PAGE Study. Am J Epidemiol 2013; 177:923-32. [PMID: 23552988 DOI: 10.1093/aje/kws330] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A loss-of-function mutation (Q141K, rs2231142) in the ATP-binding cassette, subfamily G, member 2 gene (ABCG2) has been shown to be associated with serum uric acid levels and gout in Asians, Europeans, and European and African Americans; however, less is known about these associations in other populations. Rs2231142 was genotyped in 22,734 European Americans, 9,720 African Americans, 3,849 Mexican Americans, and 3,550 American Indians in the Population Architecture using Genomics and Epidemiology (PAGE) Study (2008-2012). Rs2231142 was significantly associated with serum uric acid levels (P = 2.37 × 10(-67), P = 3.98 × 10(-5), P = 6.97 × 10(-9), and P = 5.33 × 10(-4) in European Americans, African Americans, Mexican Americans, and American Indians, respectively) and gout (P = 2.83 × 10(-10), P = 0.01, and P = 0.01 in European Americans, African Americans, and Mexican Americans, respectively). Overall, the T allele was associated with a 0.24-mg/dL increase in serum uric acid level (P = 1.37 × 10(-80)) and a 1.75-fold increase in the odds of gout (P = 1.09 × 10(-12)). The association between rs2231142 and serum uric acid was significantly stronger in men, postmenopausal women, and hormone therapy users compared with their counterparts. The association with gout was also significantly stronger in men than in women. These results highlight a possible role of sex hormones in the regulation of ABCG2 urate transporter and its potential implications for the prevention, diagnosis, and treatment of hyperuricemia and gout.
Collapse
|
11
|
Zhu J, Yan JJ, Kuai ZP, Gao W, Tang JJ, Jia EZ, Yang ZJ, Wang LS. The role of PRKCH gene variants in coronary artery disease in a Chinese population. Mol Biol Rep 2011; 39:1777-82. [PMID: 21625852 DOI: 10.1007/s11033-011-0918-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 05/18/2011] [Indexed: 11/26/2022]
Abstract
The aim of the present study was to assess the influences of PRKCH gene variants (1425G/A and _15) on the risk of coronary artery disease (CAD) in a Chinese population. Our study population consisted of 470 CAD patients and 434 control subjects. The alleles frequencies of the two variants were significantly higher among CAD patients than control subjects (P = 0.001 for 1425G/A and P = 0.001 for _15, respectively). In the CAD group, the A allele carriers of 1425G/A and _15 polymorphisms had higher low-density lipoprotein cholesterol (LDL-C) levels than homozygote G allele carriers (P = 0.001 and P = 0.021, respectively). In a multiple logistic regression model adjusted for age, sex, body mass index (BMI), etc., a markedly increased risk of developing CAD was found in subjects carrying GA or AA genotype (P = 0.005 and P = 0.018, respectively). In conclusion, we observed that there was a remarkable association of minor alleles (1425G/A and _15) in the PRKCH gene with an elevated risk of CAD and increased levels of LDL-C in this Chinese population.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 Jiangsu Province, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Ken-Dror G, Talmud PJ, Humphries SE, Drenos F. APOE/C1/C4/C2 gene cluster genotypes, haplotypes and lipid levels in prospective coronary heart disease risk among UK healthy men. Mol Med 2010. [PMID: 20498921 DOI: 10.2119/molmed.2010-00044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of common APOE variants on plasma lipids, particularly low density lipoprotein (LDL) levels, and coronary heart disease (CHD) risk is well known; the influence of variation in the other nearby apolipoprotein genes APOC1, APOC4 and APOC2 is unclear. This study examines the association between APOE/C1/C4/C2 gene cluster variation using tagging SNPs and plasma lipid concentration along with risk of CHD in a prospective cohort. Genotypes for 11 common APOE/C1/C4/C2 SNPs were determined in 2,767 middle-aged (49 to 64 years) men from the Second Northwick Park Heart Study, with 275 CHD events over a 15-year follow-up period. Seven SNPs showed significant associations with one or more lipid trait in univariate analysis. Multivariate and haplotype analysis showed that the APOE genotypes are most strongly associated with effects on LDL-C and apoB concentration (explaining 3.4% of the LDL-C variance) while the other SNPs in this gene cluster explained an additional 1.2%. Haplotypes in APOC2 and APOC4 were associated with modest effects on HDL-C and apoAI (explaining respectively 1.4% and 1.2%). Carriers of the APOE ɛ2 SNP had a significantly lower risk of CHD hazard ratio (HR) of 0.63 (95% confidence interval [CI]: 0.42-0.95), as did carriers of the APOC2 SNP rs5127 (HR = 0.72, 95% CI: 0.56-0.93), while carriers of APOC1 SNP rs4803770 had higher risk of CHD (HR = 1.36, 95% CI: 1.04-1.78) compared with noncarriers. While the common APOE polymorphism explains the majority of the locus genetic determinants of plasma lipid levels, additional SNPs in the APOC1/C2 region may contribute to CHD risk, but these effects require confirmation.
Collapse
Affiliation(s)
- Gie Ken-Dror
- Centre for Cardiovascular Genetics, BHF Laboratories, The Rayne Building, Department of Medicine, Royal Free and University College Medical School, 5 University Street, London, United Kingdom
| | | | | | | |
Collapse
|
13
|
Ken-Dror G, Talmud PJ, Humphries SE, Drenos F. APOE/C1/C4/C2 gene cluster genotypes, haplotypes and lipid levels in prospective coronary heart disease risk among UK healthy men. Mol Med 2010; 16:389-99. [PMID: 20498921 DOI: 10.2119/molmed.2010.00044] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 05/18/2010] [Indexed: 11/06/2022] Open
Abstract
The role of common APOE variants on plasma lipids, particularly low density lipoprotein (LDL) levels, and coronary heart disease (CHD) risk is well known; the influence of variation in the other nearby apolipoprotein genes APOC1, APOC4 and APOC2 is unclear. This study examines the association between APOE/C1/C4/C2 gene cluster variation using tagging SNPs and plasma lipid concentration along with risk of CHD in a prospective cohort. Genotypes for 11 common APOE/C1/C4/C2 SNPs were determined in 2,767 middle-aged (49 to 64 years) men from the Second Northwick Park Heart Study, with 275 CHD events over a 15-year follow-up period. Seven SNPs showed significant associations with one or more lipid trait in univariate analysis. Multivariate and haplotype analysis showed that the APOE genotypes are most strongly associated with effects on LDL-C and apoB concentration (explaining 3.4% of the LDL-C variance) while the other SNPs in this gene cluster explained an additional 1.2%. Haplotypes in APOC2 and APOC4 were associated with modest effects on HDL-C and apoAI (explaining respectively 1.4% and 1.2%). Carriers of the APOE ɛ2 SNP had a significantly lower risk of CHD hazard ratio (HR) of 0.63 (95% confidence interval [CI]: 0.42-0.95), as did carriers of the APOC2 SNP rs5127 (HR = 0.72, 95% CI: 0.56-0.93), while carriers of APOC1 SNP rs4803770 had higher risk of CHD (HR = 1.36, 95% CI: 1.04-1.78) compared with noncarriers. While the common APOE polymorphism explains the majority of the locus genetic determinants of plasma lipid levels, additional SNPs in the APOC1/C2 region may contribute to CHD risk, but these effects require confirmation.
Collapse
Affiliation(s)
- Gie Ken-Dror
- Centre for Cardiovascular Genetics, BHF Laboratories, The Rayne Building, Department of Medicine, Royal Free and University College Medical School, 5 University Street, London, United Kingdom
| | | | | | | |
Collapse
|
14
|
Morris A, Ferdinand KC. Hyperlipidemia in racial/ethnic minorities: differences in lipid profiles and the impact of statin therapy. ACTA ACUST UNITED AC 2009. [DOI: 10.2217/clp.09.70] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Genetic influence on variation in serum uric acid in American Indians: the strong heart family study. Hum Genet 2009; 126:667-76. [PMID: 19590895 DOI: 10.1007/s00439-009-0716-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 06/13/2009] [Indexed: 12/22/2022]
Abstract
Hyperuricemia is associated with the metabolic syndrome, gout, renal and cardiovascular disease (CVD). American Indians have high rates of CVD and 25% of individuals in the strong heart family study (SHFS) have high serum uric acid levels. The aim of this study was to investigate the genetic determinants of serum uric acid variation in American Indian participants of the SHFS. A variance component decomposition approach (implemented in SOLAR) was used to conduct univariate genetic analyses in each of three study centers and the combined sample. Serum uric acid was adjusted for age, sex, age x sex, BMI, estimated glomerular filtration rate, alcohol intake, diabetic status and medications. Overall mean +/- SD serum uric acid for all individuals was 5.14 +/- 1.5 mg/dl. Serum uric acid was found to be significantly heritable (0.46 +/- 0.03 in all centers, and 0.39 +/- 0.07, 0.51 +/- 0.05, 0.44 +/- 0.06 in Arizona, Dakotas and Oklahoma, respectively). Multipoint linkage analysis showed significant evidence of linkage for serum uric acid on chromosome 11 in the Dakotas center [logarithm of odds score (LOD) = 3.02] and in the combined sample (LOD = 3.56) and on chromosome 1 (LOD = 3.51) in the combined sample. A strong positional candidate gene in the chromosome 11 region is solute carrier family22, member 12 (SLC22A12) that encodes a major uric acid transporter URAT1. These results show a significant genetic influence and a possible role for one or more genes on chromosomes 1 and 11 on the variation in serum uric acid in American Indian populations.
Collapse
|
16
|
Mottl AK, Vupputuri S, Cole SA, Almasy L, Göring HHH, Diego VP, Laston S, Shara N, Lee ET, Best LG, Fabsitz RR, MacCluer JW, Umans JG, North KE. Linkage analysis of albuminuria. J Am Soc Nephrol 2009; 20:1597-606. [PMID: 19369405 PMCID: PMC2709673 DOI: 10.1681/asn.2008080895] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 01/13/2009] [Indexed: 02/02/2023] Open
Abstract
American Indians have a higher prevalence of albuminuria than the general population, likely resulting from a combination of environmental and genetic risk factors. To localize gene regions influencing variation in urinary albumin-to-creatinine ratio, we performed a linkage analysis and explored gene-by-diabetes, -hypertension, and -obesity interactions in a large cohort of American Indian families. We recruited >3600 individuals from 13 American Indian tribes from three centers (Arizona, North and South Dakota, and Oklahoma). We performed multipoint variance component linkage analysis in each center as well as in the entire cohort after controlling for center effects. We used two modeling strategies: Model 1 incorporated age, gender, and interaction terms; model 2 also controlled for diabetes, BP, body mass index, HDL, LDL, triglycerides, and smoking status. We evaluated interactions with diabetes, hypertension, and obesity using additive, interaction-specific linkage and stratified analyses. Loci suggestive for linkage to urinary albumin-to-creatinine ratio included 1q, 6p, 9q, 18q, and 20p. Gene-by-diabetes interaction was present with a quantitative trait locus specific to the diabetic stratum in the Dakotas isolated on 18q21.2 to 21.3 using model 1 (logarithm of odds = 3.3). Gene-by-hypertension interaction was present with quantitative trait loci specific to the hypertensive stratum in the Dakotas on 7q21.11 using model 1 (logarithm of odds = 3.4) and 10q25.1 using model 2 (logarithm of odds = 3.3). These loci replicate findings from multiple other genome scans of kidney disease phenotypes with distinct populations and are worthy of further study.
Collapse
Affiliation(s)
- Amy K Mottl
- UNC Kidney Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7155, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
A genome-wide scan for quantitative trait loci affecting serum glucose and lipids in a White Duroc × Erhualian intercross F2 population. Mamm Genome 2009; 20:386-92. [DOI: 10.1007/s00335-009-9190-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 05/05/2009] [Indexed: 11/26/2022]
|
18
|
Aberg K, Dai F, Sun G, Keighley E, Indugula SR, Bausserman L, Viali S, Tuitele J, Deka R, Weeks DE, McGarvey ST. A genome-wide linkage scan identifies multiple chromosomal regions influencing serum lipid levels in the population on the Samoan islands. J Lipid Res 2008; 49:2169-78. [PMID: 18594117 PMCID: PMC2533415 DOI: 10.1194/jlr.m800194-jlr200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 06/18/2008] [Indexed: 11/20/2022] Open
Abstract
Abnormal lipid levels are important risk factors for cardiovascular diseases. We conducted genome-wide variance component linkage analyses to search for loci influencing total cholesterol (TC), LDL, HDL and triglyceride in families residing in American Samoa and Samoa as well as in a combined sample from the two polities. We adjusted the traits for a number of environmental covariates, such as smoking, alcohol consumption, physical activity, and material lifestyle. We found suggestive univariate linkage with log of the odds (LOD) scores > 3 for LDL on 6p21-p12 (LOD 3.13) in Samoa and on 12q21-q23 (LOD 3.07) in American Samoa. Furthermore, in American Samoa on 12q21, we detected genome-wide linkage (LOD(eq) 3.38) to the bivariate trait TC-LDL. Telomeric of this region, on 12q24, we found suggestive bivariate linkage to TC-HDL (LOD(eq) 3.22) in the combined study sample. In addition, we detected suggestive univariate linkage (LOD 1.9-2.93) on chromosomes 4p-q, 6p, 7q, 9q, 11q, 12q 13q, 15q, 16p, 18q, 19p, 19q and Xq23 and suggestive bivariate linkage (LOD(eq) 2.05-2.62) on chromosomes 6p, 7q, 12p, 12q, and 19p-q. In conclusion, chromosome 6p and 12q may host promising susceptibility loci influencing lipid levels; however, the low degree of overlap between the three study samples strongly encourages further studies of the lipid-related traits.
Collapse
Affiliation(s)
- Karolina Aberg
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mottl AK, Vupputuri S, Cole SA, Almasy L, Göring HHH, Diego VP, Laston S, Franceschini N, Shara NM, Lee ET, Best LG, Fabsitz RR, MacCluer JW, Umans JG, North KE. Linkage analysis of glomerular filtration rate in American Indians. Kidney Int 2008; 74:1185-91. [PMID: 18854848 DOI: 10.1038/ki.2008.410] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
American Indians have a disproportionately high rate of kidney disease likely due to a combination of environmental and genetic factors. We performed a genome wide scan of estimated glomerular filtration rate in 3665 participants of the Strong Heart Family Study to localize genes influencing kidney disease risk factors. The participants were men and women from 13 American Indian tribes recruited from 3 centers located in Arizona, the Dakotas and Oklahoma. Multipoint variance component linkage analysis was performed for each center and on the entire cohort after controlling for center effects. Modeling strategies that incorporated age, gender and interaction terms (model 1) and another that also controlled for diabetes mellitus, systolic and diastolic blood pressure, body mass index, low density and high density lipoproteins, triglycerides and smoking status (model 2) were used. Significant evidence for linkage in the Arizona group was found on chromosome 12p12.2 at 39cM (nearest marker D12S310) using model 1. Additional loci with very suggestive evidence for linkage were detected at 1p36.31 for all groups using both models and at 2q33.3 and 9q34.2 for the Dakotas group each using model 1. No significant evidence for additive interaction with diabetes, hypertension or obesity was noted. This evidence for linkage of a quantitative trait locus influencing estimated glomerular filtration rate to a region of chromosome 12p in a large cohort of American Indians will be worth studying in more detail in the future.
Collapse
Affiliation(s)
- Amy K Mottl
- UNC Kidney Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7155, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Best LG, North KE, Li X, Palmieri V, Umans JG, MacCluer J, Laston S, Haack K, Goring H, Diego VP, Almasy L, Lee ET, Tracy RP, Cole S. Linkage study of fibrinogen levels: the Strong Heart Family Study. BMC MEDICAL GENETICS 2008; 9:77. [PMID: 18700015 PMCID: PMC2518547 DOI: 10.1186/1471-2350-9-77] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 08/12/2008] [Indexed: 11/10/2022]
Abstract
Background The pathogenesis of atherosclerosis involves both hemostatic and inflammatory mechanisms. Fibrinogen is associated with both risk of thrombosis and inflammation. A recent meta-analysis showed that risk of coronary heart disease may increase 1.8 fold for 1 g/L of increased fibrinogen, independent of traditional risk factors. It is known that fibrinogen levels may be influenced by demographic, environmental and genetic factors. Epidemiologic and candidate gene studies are available; but few genome-wide linkage studies have been conducted, particularly in minority populations. The Strong Heart Study has demonstrated an increased incidence of cardiovascular disease in the American Indian population, and therefore represents an important source for genetic-epidemiological investigations. Methods The Strong Heart Family Study enrolled over 3,600 American Indian participants in large, multi-generational families, ascertained from an ongoing population-based study in the same communities. Fibrinogen was determined using standard technique in a central laboratory and extensive additional phenotypic measures were obtained. Participants were genotyped for 382 short tandem repeat markers distributed throughout the genome; and results were analyzed using a variance decomposition method, as implemented in the SOLAR 2.0 program. Results Data from 3535 participants were included and after step-wise, linear regression analysis, two models were selected for investigation. Basic demographic adjustments constituted model 1, while model 2 considered waist circumference, diabetes mellitus and postmenopausal status as additional covariates. Five LOD scores between 1.82 and 3.02 were identified, with the maximally adjusted model showing the highest score on chromosome 7 at 28 cM. Genes for two key components of the inflammatory response, i.e. interleukin-6 and "signal transducer and activator of transcription 3" (STAT3), were identified within 2 and 8 Mb of this 1 LOD drop interval respectively. A LOD score of 1.82 on chromosome 17 between 68 and 93 cM is supported by reports from two other populations with LOD scores of 1.4 and 1.95. Conclusion In a minority population with a high prevalence of cardiovascular disease, strong evidence for a novel genetic determinant of fibrinogen levels is found on chromosome 7 at 28 cM. Four other loci, some of which have been suggested by previous studies, were also identified.
Collapse
Affiliation(s)
- Lyle G Best
- Missouri Breaks Industries Research Inc, Timber Lake, SD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mosher MJ, Lange LA, Howard BV, Lee ET, Best LG, Fabsitz RR, Maccluer JW, North KE. Sex-specific interaction between APOE genotype and carbohydrate intake affects plasma HDL-C levels: the Strong Heart Family Study. GENES & NUTRITION 2008; 3:87-97. [PMID: 18850190 PMCID: PMC2467448 DOI: 10.1007/s12263-008-0075-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 12/05/2007] [Indexed: 10/22/2022]
Abstract
Low plasma levels of high-density lipoprotein cholesterol (HDL-C) are identified as a risk factor for cardiovascular disease (CVD). Sexual dimorphism, however, is widely reported in both HDL-C and CVD, with the underlying explanations of these sexual differences not fully understood. HDL-C is a complex trait influenced by both genes and dietary factors. Here we examine evidence for a sex-specific effect of APOE and the macronutrient carbohydrate on HDL-C, triglycerides (TG) and apoprotein A-1 (ApoA-1) in a sample of 326 male and 423 female participants of the Strong Heart Family Study (SHFS). Using general estimating equations in SAS to account for kinship correlations, stratifying by sex, and adjusting for age, body mass index (BMI) and SHS center, we examine the relationship between APOE genotype and carbohydrate intake on circulating levels of HDL-C, TG, and ApoA-1 through a series of carbohydrate-by-sex interactions and stratified analyses. APOE-by-carbohydrate intake shows significant sex-specific effects. All males had similar decreases in HDL-C levels associated with increased carbohydrate intake. However, only those females with APOE-4 alleles showed significantly lower HDL-C levels as their percent of carbohydrate intake increased, while no association was noted between carbohydrate intake and HDL-C in those females without an APOE-4 allele. These findings demonstrate the importance of understanding sex differences in gene-by-nutrient interaction when examining the complex architecture of HDL-C variation.
Collapse
Affiliation(s)
- M J Mosher
- Department of Anthropology, Western Washington University, Bellingham, WA, USA,
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Vinson A, Mahaney MC, Cox LA, Rogers J, VandeBerg JL, Rainwater DL. A pleiotropic QTL on 2p influences serum Lp-PLA2 activity and LDL cholesterol concentration in a baboon model for the genetics of atherosclerosis risk factors. Atherosclerosis 2008; 196:667-73. [PMID: 17767937 PMCID: PMC2289511 DOI: 10.1016/j.atherosclerosis.2007.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 06/22/2007] [Accepted: 07/16/2007] [Indexed: 11/24/2022]
Abstract
Lipoprotein-associated phospholipase A(2) (Lp-PLA(2)), the major portion of which is bound to low-density lipoprotein, is an independent biomarker of cardiovascular disease risk. To search for common genetic determinants of variation in both Lp-PLA(2) activity and LDL cholesterol (LDL-C) concentration, we assayed these substances in serum from 679 pedigreed baboons. Using a maximum likelihood-based variance components approach, we detected significant evidence for a QTL affecting Lp-PLA(2) activity (LOD=2.79, genome-wide P=0.039) and suggestive evidence for a QTL affecting LDL-C levels (LOD=2.16) at the same location on the baboon ortholog of human chromosome 2p. Because we also found a significant genetic correlation between the two traits (rho(G)=0.50, P<0.00001), we conducted bivariate linkage analyses of Lp-PLA(2) activity and LDL-C concentration. These bivariate analyses improved the evidence (LOD=3.19, genome-wide P=0.015) for a QTL at the same location on 2p, corresponding to the human cytogenetic region 2p24.3-p23.2. The QTL-specific correlation between the traits (rho(Q)=0.62) was significantly different from both zero and 1 (P[rho(Q)=0]=0.047; P[rho(Q)=1]=0.022), rejecting the hypothesis of co-incident linkage and consistent with incomplete pleiotropy at this locus. We conclude that polymorphisms at the QTL described in this study exert some genetic effects that are shared between Lp-PLA(2) activity and LDL-C concentration.
Collapse
Affiliation(s)
- A Vinson
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX 78245, United States.
| | | | | | | | | | | |
Collapse
|
23
|
Malhotra A, Elbein SC, Ng MCY, Duggirala R, Arya R, Imperatore G, Adeyemo A, Pollin TI, Hsueh WC, Chan JCN, Rotimi C, Hanson RL, Hasstedt SJ, Wolford JK. Meta-analysis of genome-wide linkage studies of quantitative lipid traits in families ascertained for type 2 diabetes. Diabetes 2007; 56:890-6. [PMID: 17327462 DOI: 10.2337/db06-1057] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Dyslipidemia is a major risk factor for coronary heart disease, which is the predominant cause of mortality in individuals with type 2 diabetes. To date, nine linkage studies for quantitative lipid traits have been performed in families ascertained for type 2 diabetes, individually yielding linkage results that were largely nonoverlapping. Discrepancies in linkage findings are not uncommon and are typically due to limited sample size and heterogeneity. To address these issues and increase the power to detect linkage, we performed a meta-analysis of all published genome scans for quantitative lipid traits conducted in families ascertained for type 2 diabetes. Statistically significant evidence (i.e., P < 0.00043) for linkage was observed for total cholesterol on 7q32.3-q36.3 (152.43-182 cM; P = 0.00004), 19p13.3-p12 (6.57-38.05 cM; P = 0.00026), 19p12-q13.13 (38.05-69.53 cM; P = 0.00001), and 19q13.13-q13.43 (69.53-101.1 cM; P = 0.00033), as well as LDL on 19p13.3-p12 (P = 0.00041). Suggestive evidence (i.e., P < 0.00860) for linkage was also observed for LDL on 19p12-q13.13, triglycerides on 7p11-q21.11 (63.72-93.29 cM), triglyceride/HDL on 7p11-q21.11 and 19p12-q13.13, and LDL/HDL on 16q11.2-q24.3 (65.2-130.4 cM) and 19p12-q13.13. Linkage for lipid traits has been previously observed on both chromosomes 7 and 19 in several unrelated studies and, together with the results of this meta-analysis, provide compelling evidence that these regions harbor important determinants of lipid levels in individuals with type 2 diabetes.
Collapse
Affiliation(s)
- Alka Malhotra
- Diabetes and Obesity Research Unit, Genetic Basis of Human Disease, Translational Genomics Research Institute, 445 N. 5th Street, Phoenix, AZ 85004, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Franceschini N, MacCluer JW, Göring HHH, Cole SA, Rose KM, Almasy L, Diego V, Laston S, Lee ET, Howard BV, Best LG, Fabsitz RR, Roman MJ, North KE. A quantitative trait loci-specific gene-by-sex interaction on systolic blood pressure among American Indians: the Strong Heart Family Study. Hypertension 2006; 48:266-70. [PMID: 16818806 DOI: 10.1161/01.hyp.0000231651.91523.7e] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Age-adjusted systolic blood pressure is higher in males than females. Genetic factors may account for this sex-specific variation. To localize sex-specific quantitative trait loci (QTL) influencing blood pressure, we conducted a genome scan of systolic blood pressure, in males and females, separately and combined, and tested for aggregate and QTL-specific genotype-by-sex interaction in American Indian participants of the Strong Heart Family Study. Blood pressure was measured 3 times and the average of the last 2 measures was used for analyses. Systolic blood pressure was adjusted for age and antihypertensive treatment within study center. We performed variance component linkage analysis in the full sample and stratified by sex among 1168 females and 726 males. Marker allele frequencies were derived using maximum likelihood estimates based on all individuals, and multipoint identity-by-descent sharing was estimated using Loki. We detected suggestive evidence of a QTL influencing systolic blood pressure on chromosome 17 at 129 cM between markers D17S784 and D17S928 (logarithm of odds [LOD] = 2.4). This signal substantially improved when accounting for QTL-specific genotype-by-sex interaction (P = 0.04), because we observed an LOD score of 3.3 for systolic blood pressure in women on chromosome 17 at 136 cM. The magnitude of the linkage signal on chromosome 17q25.3 was slightly attenuated when participants taking antihypertensive medications were excluded, although suggestive evidence for linkage was still identified (LOD = 2.8 in women). Accounting for interaction with sex improved our ability to detect QTLs and demonstrated the importance of considering genotype-by-sex interaction in our search for blood pressure genes.
Collapse
Affiliation(s)
- Nora Franceschini
- Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, Bank of America Center, Chapel Hill, NC 27514-3628, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|