1
|
Chiang JL. My lifelong dedication to bile acid research. J Biol Chem 2023:103070. [PMID: 36842499 DOI: 10.1016/j.jbc.2023.103070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 02/28/2023] Open
Abstract
It is a great honor to be invited to write a reflection of my lifelong bile acid research for the Journal of Biological Chemistry, the premier biochemistry journal in which I am proud to have published 24 manuscripts. I published 21 manuscripts in the Journal of Lipid Research, also a journal of American Society of Biochemistry and Molecular Biology. I started my reflection from my early education in Taiwan, my coming to America for graduate study, my postdoctoral training in cytochrome P450 research, and my lifelong bile acid research career at the not so "visible" Northeast Ohio Medical University. I have witnesses and help to transform this sleepy rural medical school to a well-funded powerhouse in liver research. Writing this reflection of my long, exciting, and rewarding journey in bile acid research brought back many good memories. I am proud of my scientific contribution. I attribute my lifelong academic success to working hard, perseverance, good mentoring, and networking. I hope that this reflection of my academic career may provide guidance to younger investigators who are pursuing academic teaching and research and might inspire the next generation of researchers in biochemistry and metabolic diseases.
Collapse
Affiliation(s)
- JohnY L Chiang
- Northeast Ohio Medical University, Rootstown, OH, 44272.
| |
Collapse
|
2
|
Li H, Yu XH, Ou X, Ouyang XP, Tang CK. Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis. Prog Lipid Res 2021; 83:101109. [PMID: 34097928 DOI: 10.1016/j.plipres.2021.101109] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a quickly emerging global health problem representing the most common chronic liver disease in the world. Atherosclerotic cardiovascular disease represents the leading cause of mortality in NAFLD patients. Cholesterol metabolism has a crucial role in the pathogenesis of both NAFLD and atherosclerosis. The liver is the major organ for cholesterol metabolism. Abnormal hepatic cholesterol metabolism not only leads to NAFLD but also drives the development of atherosclerotic dyslipidemia. The cholesterol level in hepatocytes reflects the dynamic balance between endogenous synthesis, uptake, esterification, and export, a process in which cholesterol is converted to neutral cholesteryl esters either for storage in cytosolic lipid droplets or for secretion as a major constituent of plasma lipoproteins, including very-low-density lipoproteins, chylomicrons, high-density lipoproteins, and low-density lipoproteins. In this review, we describe decades of research aimed at identifying key molecules and cellular players involved in each main aspect of hepatic cholesterol metabolism. Furthermore, we summarize the recent advances regarding the biological processes of hepatic cholesterol transport and its role in NAFLD and atherosclerosis.
Collapse
Affiliation(s)
- Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China
| | - Xiang Ou
- Department of Endocrinology, the First Hospital of Changsha, Changsha, Hunan 410005, China
| | - Xin-Ping Ouyang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
3
|
Lee J, Hong EM, Jung JH, Park SW, Lee SP, Koh DH, Jang HJ, Kae SH. Atorvastatin Induces FXR and CYP7A1 Activation as a Result of the Sequential Action of PPARγ/PGC-1α/HNF-4α in Hep3B Cells. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2021; 77:123-131. [PMID: 33686046 DOI: 10.4166/kjg.2020.156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 11/03/2022]
Abstract
Backgrounds/Aims PPARγ, farnesoid X receptor (FXR) and CYP7A1 are associated with solubility of bile. This study was performed to understand a mechanism and interactions of statin-induced PPARγ, PGC-1α and HNF-4α related to the statin-induced activation of FXR and CYP7A1, and verify whether the mevalonate pathway is involved in the mechanism. Methods MTT assays were performed using cultured human Hep3B cells to determine the effect of atorvastatin on the cell proliferation. Expression levels of indicated proteins were measured using Western blotting assays by inhibiting the protein expression or not. Results Atorvastatin increased expression of PPARγ, PGC-1α, HNF-4α, FXR, and CYP7A1 in Hep3B cells. PPARγ ligand of troglitazone upregulated the expression of PGC-1α, HNF-4α, FXR, and CYP7A1 in Hep3B cells. Silencing of PPARγ, PGC1α, and HNF4α using respective siRNA demonstrated that atorvastatin-induced FXR and CYP7A1 activation required sequential action of PPARγ /PGC-1α/HNF-4α. The silencing of PPARγ completely inhibited atorvastatin-induced PGC-1α expression, and the PGC1α silencing partially inhibited atorvastatin-induced PPARγ expression. The inhibition of HNF4α did not affect atorvastatin-induced PPARγ expression, but partially inhibited atorvastatin-induced PGC-1α expression. Besides, mevalonate completely reversed the effect of atorvastatin on PPARγ, PGC-1α, HNF-4α, FXR, and CYP7A1. Conclusions Atorvastatin induces FXR and CYP7A1 activation as a result of sequential action of PPARγ/PGC-1α/HNF-4α in human hepatocytes. We propose that atorvastatin enhances solubility of cholesterol in bile by simultaneously activating of FXR and CYP7A1.
Collapse
Affiliation(s)
- Jin Lee
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Dongtan Sacred Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Eun Mi Hong
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Dongtan Sacred Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Jang Han Jung
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Dongtan Sacred Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Se Woo Park
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Dongtan Sacred Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Sang Pyo Lee
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Dongtan Sacred Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Dong Hee Koh
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Dongtan Sacred Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Hyun Joo Jang
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Dongtan Sacred Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Sea Hyub Kae
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Dongtan Sacred Hospital, Hallym University College of Medicine, Hwaseong, Korea
| |
Collapse
|
4
|
Xiao Y, Yan W, Zhou K, Cao Y, Cai W. Glucocorticoid treatment alters systemic bile acid homeostasis by regulating the biosynthesis and transport of bile salts. Dig Liver Dis 2016; 48:771-9. [PMID: 27133208 DOI: 10.1016/j.dld.2016.03.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Dysregulation of systemic bile acid homeostasis can lead to cholestatic liver diseases and metabolic syndromes. As important anti-inflammatory and immunosuppressive drugs, synthetic glucocorticoids (GCs) are used to treat several cholestatic disorders, including biliary atresia (BA), because of their effects on the regulation of bile acid metabolism. However, the molecular mechanisms that underlie GCs regulation of bile acid homeostasis remain unclear. AIMS To provide a mechanistic basis for the effects of GCs on bile acid homeostasis. METHODS Male rats were treated with methylprednisolone for 7 days with slow-release osmotic pumps under physiological and cholestatic status that was induced by bile duct ligation (BDL). Expression of glucocorticoid receptor (GR) and genes related to bile acid metabolism was investigated using western blotting, qRT-PCR and immunohistochemistry. RESULTS We show here that sustained treatment with GCs in rats disrupts the normal changes in systemic bile acid distribution by elevating plasma bile acid levels and reducing faecal bile acid loss. Treatment with GCs stimulated bile acid absorption in the ileum by increasing expression of the apical sodium-dependent bile acid transporter (Asbt). Concomitantly, administration of GCs enhanced liver bile acid uptake by increasing the expression of the major hepatocyte basolateral bile transporter (Ntcp). The reduced expression of a bile acid synthesis rate-controlling enzyme, Cyp7a1, suggests that treatment with GCs suppressed hepatic bile acid synthesis. CONCLUSION Our study provides evidence that GCs can increase enterohepatic bile acid circulation through regulation of the biosynthesis and transport of bile salts, which suggests that plasma bile acid levels should be monitored during treatment with GCs in patients with BA.
Collapse
Affiliation(s)
- Yongtao Xiao
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Weihui Yan
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Kejun Zhou
- Shanghai Institute for Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Yi Cao
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute for Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| |
Collapse
|
5
|
Um MY, Hwang KH, Choi WH, Ahn J, Jung CH, Ha TY. Curcumin attenuates adhesion molecules and matrix metalloproteinase expression in hypercholesterolemic rabbits. Nutr Res 2014; 34:886-93. [DOI: 10.1016/j.nutres.2014.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/29/2014] [Accepted: 09/05/2014] [Indexed: 01/09/2023]
|
6
|
Byun HW, Hong EM, Park SH, Koh DH, Choi MH, Jang HJ, Kae SH, Lee J. Pravastatin activates the expression of farnesoid X receptor and liver X receptor alpha in Hep3B cells. Hepatobiliary Pancreat Dis Int 2014; 13:65-73. [PMID: 24463082 DOI: 10.1016/s1499-3872(14)60009-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Statins are suggested to preserve gallbladder function by suppressing pro-inflammatory cytokines and preventing cholesterol accumulation in gallbladder epithelial cells. They also affect cross-talk among the nuclear hormone receptors that regulate cholesterol-bile acid metabolism in the nuclei of hepatocytes. However, there is controversy over whether or how statins change the expression of peroxisome proliferator-activated receptor (PPAR)alpha, PPARgamma, liver X receptor alpha (LXRalpha), farnesoid X receptor (FXR), ABCG5, ABCG8, and 7alpha-hydroxylase (CYP7A1) which are directly involved in the cholesterol saturation index in bile. METHODS Human Hep3B cells were cultured on dishes. MTT assays were performed to determine the appropriate concentrations of reagents to be used. The protein expression of PPARalpha and PPARgamma was measured by Western blotting analysis, and the mRNA expression of LXRalpha, FXR, ABCG5, ABCG8 and CYP7A1 was estimated by RT-PCR. RESULTS In cultured Hep3B cells, pravastatin activated PPARalpha and PPARgamma protein expression, induced stronger expression of PPARgamma than that of PPARalpha, increased LXRalpha mRNA expression, activated ABCG5 and ABCG8 mRNA expression mediated by FXR as well as LXRalpha, enhanced FXR mRNA expression, and increased CYP7A1 mRNA expression mediated by the PPARgamma and LXRalpha pathways, together or independently. CONCLUSION Our data suggested that pravastatin prevents cholesterol gallstone diseases via the increase of FXR, LXRalpha and CYP7A1 in human hepatocytes.
Collapse
Affiliation(s)
- Hyun Woo Byun
- Division of Gastroenterology, Department of Internal Medicine, Hallym University College of Medicine, Dongtan Sacred Heart Hospital, 40 Seokwoo-dong, Hwasung, Kyungki-Do 445-170, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Howell G, Deng X, Yellaturu C, Park EA, Wilcox HG, Raghow R, Elam MB. N-3 polyunsaturated fatty acids suppress insulin-induced SREBP-1c transcription via reduced trans-activating capacity of LXRalpha. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1791:1190-6. [PMID: 19716432 PMCID: PMC2783506 DOI: 10.1016/j.bbalip.2009.08.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 08/09/2009] [Accepted: 08/13/2009] [Indexed: 01/22/2023]
Abstract
Insulin coordinately up-regulates lipogenic gene transcription via induction of sterol regulatory element binding protein-1c (SREBP-1c). Conversely, polyunsaturated fatty acids (PUFA) decrease lipogenic gene transcription via suppression of SREBP-1c. We therefore examined the ability of n-3 PUFA to mitigate induction of SREBP-1c and its downstream lipogenic targets by insulin in primary rat hepatocyte cultures. Insulin induced expression of SREBP-1c mRNA 5-6 fold as well as rat SREBP-1c promoter activity. These effects were prevented by the n-3 fatty acids eicosapentaenoic acid (20:5 n-3; EPA) and docosahexaenoic acid (22:6 n-3, DHA), but not by the monounsaturated fatty acid oleic acid (18:1 n-6, OLA). N-3 fatty acids also effectively prevented insulin induction of the downstream lipogenic enzyme targets fatty acid synthase (FAS) and acetyl carboxyl coenzyme acetyltransferase-1 (ACC-1), and reduced de novo lipogenesis. The SREBP-1c promoter contains an insulin response unit consisting of tandem LXRalpha response elements (LXREs) as well as sites for NF-Y, Sp1, and SREBP-1c itself. The LXREs were identified as a primary site mediating suppression of SREBP-1c transcription by n-3 PUFA. DHA effectively prevented LXRalpha-dependent activation of both the wild type SREBP-1c promoter and the synthetic LXRE-driven promoter, and significantly blunted LXRalpha-dependent activation of a Gal4-LXRalpha chimeric protein thus demonstrating that n-3 PUFA effectively mitigate induction of SREBP-1c by insulin via reduced trans-activation of LXRalpha.
Collapse
Affiliation(s)
- George Howell
- Department of Pharmacology, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Gilardi F, Mitro N, Godio C, Scotti E, Caruso D, Crestani M, De Fabiani E. The pharmacological exploitation of cholesterol 7alpha-hydroxylase, the key enzyme in bile acid synthesis: from binding resins to chromatin remodelling to reduce plasma cholesterol. Pharmacol Ther 2007; 116:449-72. [PMID: 17959250 DOI: 10.1016/j.pharmthera.2007.08.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 08/16/2007] [Indexed: 01/25/2023]
Abstract
Mammals dispose of cholesterol mainly through 7alpha-hydroxylated bile acids, and the enzyme catalyzing the 7alpha-hydroxylation, cholesterol 7alpha-hydroxylase (CYP7A1), has a deep impact on cholesterol homeostasis. In this review, we present the study of regulation of CYP7A1 as a good exemplification of the extraordinary contribution of molecular biology to the advancement of our understanding of metabolic pathways that has taken place in the last 2 decades. Since the cloning of the gene from different species, experimental evidence has accumulated, indicating that the enzyme is mainly regulated at the transcriptional level and that bile acids are the most important physiological inhibitors of CYP7A1 transcription. Multiple mechanisms are involved in the control of CYP7A1 transcription and a variety of transcription factors and nuclear receptors participate in sophisticated regulatory networks. A higher order of transcriptional regulation, stemming from the so-called histone code, also applies to CYP7A1, and recent findings clearly indicate that chromatin remodelling events have profound effects on its expression. CYP7A1 also acts as a sensor of signals coming from the gut, thus representing another line of defence against the toxic effects of bile acids and a downstream target of agents acting at the intestinal level. From the pharmacological point of view, bile acid binding resins were the first primitive approach targeting the negative feed-back regulation of CYP7A1 to reduce plasma cholesterol. In recent years, new drugs have been designed based on recent discoveries of the regulatory network, thus confirming the position of CYP7A1 as a focus for innovative pharmacological intervention.
Collapse
Affiliation(s)
- Federica Gilardi
- Dipartimento di Scienze Farmacologiche, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
9
|
Shang Q, Pan L, Saumoy M, Chiang JYL, Tint GS, Salen G, Xu G. An overlapping binding site in the CYP7A1 promoter allows activation of FXR to override the stimulation by LXRalpha. Am J Physiol Gastrointest Liver Physiol 2007; 293:G817-23. [PMID: 17690173 DOI: 10.1152/ajpgi.00209.2007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The aim of this study was to explore why in rabbits activation of farnesoid X receptor (FXR) is dominant over activated liver X receptor-alpha (LXRalpha) in the regulation of CYP7A1. We cloned the rabbit CYP7A1 promoter and found a fetoprotein transcription factor (FTF) binding element embedded within the LXRalpha binding site (LXRE). Gel shift assays demonstrated that FTF competes with LXRalpha for binding to LXRE. Short heterodimer partner (SHP) enhances the competitive ability of FTF. Studies in HepG2 cells showed that SHP combined with FTF had more powerful effect to offset the stimulation of CYP7A1 by LXRalpha. Gel shift and chromatin immunoprecipitation assays demonstrated that SHP with FTF diminished LXRalpha binding to the CYP7A1 promoter. In vivo studies in rabbits fed cholesterol for 10 days showed that hepatic expression of SHP but not FTF rose and LXRalpha-bound LXRE decreased. We propose that the SHP/FTF heterodimer occupies LXRE via the embedded FTF binding element and blocks LXRalpha from recruiting to LXRE. Therefore, activation of FXR, which upregulates SHP expression, will eliminate the stimulatory effect of LXRalpha on the CYP7A1 promoter because increased levels of SHP combined with FTF diminish the recruitment of LXRalpha to CYP7A1 promoter.
Collapse
Affiliation(s)
- Quan Shang
- Department of Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | | | | | | | | | | | | |
Collapse
|