1
|
Ding Z, Song H, Wang F. Role of lipins in cardiovascular diseases. Lipids Health Dis 2023; 22:196. [PMID: 37964368 PMCID: PMC10644651 DOI: 10.1186/s12944-023-01961-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023] Open
Abstract
Lipin family members in mammals include lipins 1, 2, and 3. Lipin family proteins play a crucial role in lipid metabolism due to their bifunctionality as both transcriptional coregulators and phosphatidate phosphatase (PAP) enzymes. In this review, we discuss the structural features, expression patterns, and pathophysiologic functions of lipins, emphasizing their direct as well as indirect roles in cardiovascular diseases (CVDs). Elucidating the regulation of lipins facilitates a deeper understanding of the roles of lipins in the processes underlying CVDs. The activity of lipins is modulated at various levels, e.g., in the form of the transcription of genes, post-translational modifications, and subcellular protein localization. Because lipin characteristics are undergoing progressive clarification, further research is necessitated to then actuate the investigation of lipins as viable therapeutic targets in CVDs.
Collapse
Affiliation(s)
- Zerui Ding
- The Endocrinology Department of the Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Hongyu Song
- The Endocrinology Department of the Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Fang Wang
- The Endocrinology Department of the Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
2
|
Prabakaran AD, McFarland K, Miz K, Durumutla HB, Piczer K, El Abdellaoui Soussi F, Latimer H, Werbrich C, Blair NS, Millay DP, Prideaux B, Finck BN, Quattrocelli M. Glucocorticoid intermittence coordinates rescue of energy and mass in aging-related sarcopenia through the myocyte-autonomous PGC1alpha-Lipin1 transactivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562573. [PMID: 37905062 PMCID: PMC10614926 DOI: 10.1101/2023.10.16.562573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Sarcopenia burdens the elderly population through loss of muscle energy and mass, yet treatments to functionally rescue both parameters are missing. The glucocorticoid prednisone remodels muscle metabolism based on frequency of intake, but its mechanisms in sarcopenia are unknown. We found that once-weekly intermittent prednisone rescued muscle quality in aged 24-month-old mice to levels comparable to young 4-month-old mice. We discovered an age- and sex-independent glucocorticoid receptor transactivation program in muscle encompassing PGC1alpha and its co-factor Lipin1. Treatment coordinately improved mitochondrial abundance through isoform 1 and muscle mass through isoform 4 of the myocyte-specific PGC1alpha, which was required for the treatment-driven increase in carbon shuttling from glucose oxidation to amino acid biogenesis. We also probed the myocyte-specific Lipin1 as non-redundant factor coaxing PGC1alpha upregulation to the stimulation of both oxidative and anabolic capacities. Our study unveils an aging-resistant druggable program in myocytes to coordinately rescue energy and mass in sarcopenia.
Collapse
Affiliation(s)
- Ashok Daniel Prabakaran
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kevin McFarland
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Karen Miz
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hima Bindu Durumutla
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kevin Piczer
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Fadoua El Abdellaoui Soussi
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hannah Latimer
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Cole Werbrich
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - N. Scott Blair
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Douglas P Millay
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Brendan Prideaux
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Brian N Finck
- Department of Medicine, Center for Human Nutrition, Washington University in St Louis, MO, USA
| | - Mattia Quattrocelli
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
3
|
Chen W, Mehlkop O, Scharn A, Nolte H, Klemm P, Henschke S, Steuernagel L, Sotelo-Hitschfeld T, Kaya E, Wunderlich CM, Langer T, Kononenko NL, Giavalisco P, Brüning JC. Nutrient-sensing AgRP neurons relay control of liver autophagy during energy deprivation. Cell Metab 2023; 35:786-806.e13. [PMID: 37075752 PMCID: PMC10173804 DOI: 10.1016/j.cmet.2023.03.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/01/2023] [Accepted: 03/27/2023] [Indexed: 04/21/2023]
Abstract
Autophagy represents a key regulator of aging and metabolism in sensing energy deprivation. We find that fasting in mice activates autophagy in the liver paralleled by activation of hypothalamic AgRP neurons. Optogenetic and chemogenetic activation of AgRP neurons induces autophagy, alters phosphorylation of autophagy regulators, and promotes ketogenesis. AgRP neuron-dependent induction of liver autophagy relies on NPY release in the paraventricular nucleus of the hypothalamus (PVH) via presynaptic inhibition of NPY1R-expressing neurons to activate PVHCRH neurons. Conversely, inhibiting AgRP neurons during energy deprivation abrogates induction of hepatic autophagy and rewiring of metabolism. AgRP neuron activation increases circulating corticosterone concentrations, and reduction of hepatic glucocorticoid receptor expression attenuates AgRP neuron-dependent activation of hepatic autophagy. Collectively, our study reveals a fundamental regulatory principle of liver autophagy in control of metabolic adaptation during nutrient deprivation.
Collapse
Affiliation(s)
- Weiyi Chen
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Oliver Mehlkop
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Alexandra Scharn
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Hendrik Nolte
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931 Cologne, Germany
| | - Paul Klemm
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Sinika Henschke
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Lukas Steuernagel
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Tamara Sotelo-Hitschfeld
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Ecem Kaya
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Claudia Maria Wunderlich
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931 Cologne, Germany
| | - Natalia L Kononenko
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany; Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Patrick Giavalisco
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931 Cologne, Germany
| | - Jens Claus Brüning
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany; National Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| |
Collapse
|
4
|
Wang C, Fu H, Yang J, Liu L, Zhang F, Yang C, Li H, Chen J, Li Q, Wang X, Ye Y, Sheng N, Guo Y, Dai J, Xu G, Liu X, Wang J. PFO5DoDA disrupts hepatic homeostasis primarily through glucocorticoid signaling inhibition. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130831. [PMID: 36696776 DOI: 10.1016/j.jhazmat.2023.130831] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/30/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Legacy per- and polyfluoroalkyl substances (PFASs) are a worldwide health concern due to their potential bioaccumulation and toxicity in humans. A variety of perfluoroether carboxylic acids (PFECAs) have been developed as next-generation replacements of legacy PFASs. However, information regarding their possible environmental and human health risks is limited. In the present study, we explored the effects of PFECAs on mice based on long-term exposure to environmentally relevant doses of perfluoro-3,5,7,9,11-pentaoxadodecanoic acid (PFO5DoDA). Results showed that PFECAs exposure suppressed many cellular stress signals and resulted in hepatomegaly. PFO5DoDA acted as an agonist of the peroxisome proliferator-activated receptor (PPAR) in vitro and modulated PPAR-dependent gene expression in the liver. Importantly, PFECAs had an inhibitory effect on the glucocorticoid receptor (GR), which may contribute to the extensive suppression of stress signals. Of note, the GR suppression induced by PFECAs was not reported by legacy perfluorooctanoic acid (PFOA). PFO5DoDA-induced changes in both GR and PPAR signals remodeled hepatic metabolic profiles, including decreased fatty acids and amino acids and increased β-oxidation. Mechanistically, PFO5DoDA inhibited GR transactivation by degradation of GR proteins. Our results emphasize the potential risk of PFECAs to human health, which were introduced to ease concerns regarding legacy PFASs.
Collapse
Affiliation(s)
- Chang Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Huayu Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jun Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lei Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Fenghong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Chunyu Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Hongyuan Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiamiao Chen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaolin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yaorui Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Nan Sheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jianshe Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
5
|
Pei Y, Song Y, Wang B, Lin C, Yang Y, Li H, Feng Z. Integrated lipidomics and RNA sequencing analysis reveal novel changes during 3T3-L1 cell adipogenesis. PeerJ 2022; 10:e13417. [PMID: 35529487 PMCID: PMC9074861 DOI: 10.7717/peerj.13417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/19/2022] [Indexed: 01/14/2023] Open
Abstract
After adipogenic differentiation, key regulators of adipogenesis are stimulated and cells begin to accumulate lipids. To identify specific changes in lipid composition and gene expression patterns during 3T3-L1 cell adipogenesis, we carried out lipidomics and RNA sequencing analysis of undifferentiated and differentiated 3T3-L1 cells. The analysis revealed significant changes in lipid content and gene expression patterns during adipogenesis. Slc2a4 was up-regulated, which may enhance glucose transport; Gpat3, Agpat2, Lipin1 and Dgat were also up-regulated, potentially to enrich intracellular triacylglycerol (TG). Increased expression levels of Pnpla2, Lipe, Acsl1 and Lpl likely increase intracellular free fatty acids, which can then be used for subsequent synthesis of other lipids, such as sphingomyelin (SM) and ceramide (Cer). Enriched intracellular diacylglycerol (DG) can also provide more raw materials for the synthesis of phosphatidylinositol (PI), phosphatidylcholine (PC), phosphatidylethanolamine (PE), ether-PE, and ether-PC, whereas high expression of Pla3 may enhance the formation of lysophophatidylcholine (LPC) and lysophosphatidylethanolamine (LPE). Therefore, in the process of adipogenesis of 3T3-L1 cells, a series of genes are activated, resulting in large changes in the contents of various lipid metabolites in the cells, especially TG, DG, SM, Cer, PI, PC, PE, etherPE, etherPC, LPC and LPE. These findings provide a theoretical basis for our understanding the pathophysiology of obesity.
Collapse
Affiliation(s)
- Yangli Pei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yuxin Song
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Bingyuan Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chenghong Lin
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Ying Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
6
|
Establishment of reporter cells that respond to glucocorticoids by a transposon-mediated promoter-trapping system. Eur J Pharm Sci 2021; 162:105819. [PMID: 33775826 DOI: 10.1016/j.ejps.2021.105819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/04/2021] [Accepted: 03/20/2021] [Indexed: 11/19/2022]
Abstract
Previously, we had established a highly sensitive trap vector system for the efficient isolation of reporter cells for a certain condition of interest. In this study, we used this system to screen reporter cells that express the luciferase and enhanced green fluorescent protein genes in response to dexamethasone, a glucocorticoid receptor agonist to facilitate glucocorticoid signaling research. In total, 10 clones were isolated. The insertion sites of the trap vector were analyzed using 5' rapid amplification of cDNA ends (5' RACE), whereupon LPIN1, PKP2, and FKBP5 were identified as genes that were upregulated by the dexamethasone treatment. Specifically, PKP2 has not previously been focused as a gene that responds to glucocorticoids. The PKP2 mRNA was analyzed and induction of the endogenous gene was confirmed by real-time polymerase chain reaction. Given that PKP2 does not appear to have a consensus glucocorticoid response element (GRE) sequence, this reporter clone could supplement the current GRE-based reporter systems that are prevalently used. Because different clones showed different responses to glucocorticoids, these clones should provide more information than analysis with a single reporter clone. This paper demonstrates that the previously developed trap vector technology can contribute to the rapid construction of drug evaluation systems.
Collapse
|
7
|
Lutkewitte AJ, Finck BN. Regulation of Signaling and Metabolism by Lipin-mediated Phosphatidic Acid Phosphohydrolase Activity. Biomolecules 2020; 10:E1386. [PMID: 33003344 PMCID: PMC7600782 DOI: 10.3390/biom10101386] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Phosphatidic acid (PA) is a glycerophospholipid intermediate in the triglyceride synthesis pathway that has incredibly important structural functions as a component of cell membranes and dynamic effects on intracellular and intercellular signaling pathways. Although there are many pathways to synthesize and degrade PA, a family of PA phosphohydrolases (lipin family proteins) that generate diacylglycerol constitute the primary pathway for PA incorporation into triglycerides. Previously, it was believed that the pool of PA used to synthesize triglyceride was distinct, compartmentalized, and did not widely intersect with signaling pathways. However, we now know that modulating the activity of lipin 1 has profound effects on signaling in a variety of cell types. Indeed, in most tissues except adipose tissue, lipin-mediated PA phosphohydrolase activity is far from limiting for normal rates of triglyceride synthesis, but rather impacts critical signaling cascades that control cellular homeostasis. In this review, we will discuss how lipin-mediated control of PA concentrations regulates metabolism and signaling in mammalian organisms.
Collapse
Affiliation(s)
| | - Brian N. Finck
- Center for Human Nutrition, Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, Euclid Avenue, Campus Box 8031, St. Louis, MO 63110, USA;
| |
Collapse
|
8
|
Chowdhury D, Wang C, Lu A, Zhu H. Identifying Transcription Factor Combinations to Modulate Circadian Rhythms by Leveraging Virtual Knockouts on Transcription Networks. iScience 2020; 23:101490. [PMID: 32920484 PMCID: PMC7492989 DOI: 10.1016/j.isci.2020.101490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/24/2020] [Accepted: 08/19/2020] [Indexed: 02/02/2023] Open
Abstract
The mammalian circadian systems consist of indigenous, self-sustained 24-h rhythm generators. They comprise many genes, molecules, and regulators. To decode their systematic controls, a robust computational approach was employed. It integrates transcription-factor-occupancy and time-series gene-expression data as input. The model equations were constructed and solved to determine the transcriptional regulatory logics in the mouse transcriptome network. This hypothesizes to explore the underlying mechanisms of combinatorial transcriptional regulations for circadian rhythms in mouse. We reconstructed the quantitative transcriptional-regulatory networks for circadian gene regulation at a dynamic scale. Transcriptional-simulations with virtually knocked-out mutants were performed to estimate their influence on networks. The potential transcriptional-regulators-combinations modulating the circadian rhythms were identified. Of them, CLOCK/CRY1 double knockout preserves the highest modulating capacity. Our quantitative framework offers a quick, robust, and physiologically relevant way to characterize the druggable targets to modulate the circadian rhythms at a dynamic scale effectively.
Collapse
Affiliation(s)
- Debajyoti Chowdhury
- HKBU Institute for Research and Continuing Education, Shenzhen 518057, China
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Chao Wang
- HKBU Institute for Research and Continuing Education, Shenzhen 518057, China
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Aiping Lu
- HKBU Institute for Research and Continuing Education, Shenzhen 518057, China
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Hailong Zhu
- HKBU Institute for Research and Continuing Education, Shenzhen 518057, China
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
9
|
Ferguson D, Hutson I, Tycksen E, Pietka TA, Bauerle K, Harris CA. Role of Mineralocorticoid Receptor in Adipogenesis and Obesity in Male Mice. Endocrinology 2020; 161:bqz010. [PMID: 32036385 PMCID: PMC7007880 DOI: 10.1210/endocr/bqz010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023]
Abstract
Increased visceral adiposity and hyperglycemia, 2 characteristics of metabolic syndrome, are also present in conditions of excess glucocorticoids (GCs). GCs are hormones thought to act primarily via the glucocorticoid receptor (GR). GCs are commonly prescribed for inflammatory disorders, yet their use is limited due to many adverse metabolic side effects. In addition to GR, GCs also bind the mineralocorticoid receptor (MR), but there are many conflicting studies about the exact role of MR in metabolic disease. Using MR knockout mice (MRKO), we find that both white and brown adipose depots form normally when compared with wild-type mice at P5. We created mice with adipocyte-specific deletion of MR (FMRKO) to better understand the role of MR in metabolic dysfunction. Treatment of mice with excess GCs for 4 weeks, via corticosterone in drinking water, induced increased fat mass and glucose intolerance to similar levels in FMRKO and floxed control mice. Separately, when fed a high-fat diet for 16 weeks, FMRKO mice had reduced body weight, fat mass, and hepatic steatosis, relative to floxed control mice. Decreased adiposity likely resulted from increased energy expenditure since food intake was not different. RNA sequencing analysis revealed decreased enrichment of genes associated with adipogenesis in inguinal white adipose of FMRKO mice. Differentiation of mouse embryonic fibroblasts (MEFs) showed modestly impaired adipogenesis in MRKO MEFs compared with wild type, but this was rescued upon the addition of peroxisome proliferator-activated receptor gamma (PPARγ) agonist or PPARγ overexpression. Collectively, these studies provide further evidence supporting the potential value of MR as a therapeutic target for conditions associated with metabolic syndrome.
Collapse
Affiliation(s)
- Daniel Ferguson
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
| | - Irina Hutson
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
| | - Eric Tycksen
- Genome Technology Access Center, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Terri A Pietka
- Nutrition and Geriatrics Division, Washington University School of Medicine, St. Louis, Missouri
| | - Kevin Bauerle
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
| | - Charles A Harris
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
- Department of Medicine, Veterans Affairs St Louis Healthcare System, John Cochran Division, St. Louis, Missouri
| |
Collapse
|
10
|
Hernández-Díazcouder A, Romero-Nava R, Carbó R, Sánchez-Lozada LG, Sánchez-Muñoz F. High Fructose Intake and Adipogenesis. Int J Mol Sci 2019; 20:E2787. [PMID: 31181590 PMCID: PMC6600229 DOI: 10.3390/ijms20112787] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
In modern societies, high fructose intake from sugar-sweetened beverages has contributed to obesity development. In the diet, sucrose and high fructose corn syrup are the main sources of fructose and can be metabolized in the intestine and transported into the systemic circulation. The liver can metabolize around 70% of fructose intake, while the remaining is metabolized by other tissues. Several tissues including adipose tissue express the main fructose transporter GLUT5. In vivo, chronic fructose intake promotes white adipose tissue accumulation through activating adipogenesis. In vitro experiments have also demonstrated that fructose alone induces adipogenesis by several mechanisms, including (1) triglycerides and very-low-density lipoprotein (VLDL) production by fructose metabolism, (2) the stimulation of glucocorticoid activation by increasing 11β-HSD1 activity, and (3) the promotion of reactive oxygen species (ROS) production through uric acid, NOX and XOR expression, mTORC1 signaling and Ang II induction. Moreover, it has been observed that fructose induces adipogenesis through increased ACE2 expression, which promotes high Ang-(1-7) levels, and through the inhibition of the thermogenic program by regulating Sirt1 and UCP1. Finally, microRNAs may also be involved in regulating adipogenesis in high fructose intake conditions. In this paper, we propose further directions for research in fructose participation in adipogenesis.
Collapse
Affiliation(s)
- Adrián Hernández-Díazcouder
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico.
- Departamento de Ciencias de la Salud, Área de Investigación Médica, Universidad Autónoma Metropolitana Iztapalapa, Mexico city 09340, Mexico.
| | - Rodrigo Romero-Nava
- Departamento de Ciencias de la Salud, Área de Investigación Médica, Universidad Autónoma Metropolitana Iztapalapa, Mexico city 09340, Mexico.
- Laboratorio de investigación en Farmacología, Hospital Infantil de México Federico Gómez, Mexico city 06720, Mexico.
- Sección de Postgraduados, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico city 11340, Mexico.
| | - Roxana Carbó
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico.
| | - L Gabriela Sánchez-Lozada
- Laboratorio de Fisiopatología Renal, Departamento de Nefrología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico.
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico.
- Sección de Postgraduados, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico city 11340, Mexico.
| |
Collapse
|
11
|
You M, Jogasuria A, Lee K, Wu J, Zhang Y, Lee YK, Sadana P. Signal Transduction Mechanisms of Alcoholic Fatty Liver Disease: Emer ging Role of Lipin-1. Curr Mol Pharmacol 2019; 10:226-236. [PMID: 26278388 DOI: 10.2174/1874467208666150817112109] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 02/06/2023]
Abstract
Lipin-1, a mammalian phosphatidic acid phosphatase (PAP), is a bi-functional molecule involved in various signaling pathways via its function as a PAP enzyme in the triglyceride synthesis pathway and in the nucleus as a transcriptional co-regulator. In the liver, lipin-1 is known to play a vital role in controlling the lipid metabolism and inflammation process at multiple regulatory levels. Alcoholic fatty liver disease (AFLD) is one of the earliest forms of liver injury and approximately 8-20% of patients with simple steatosis can develop into more severe forms of liver injury, including steatohepatitis, fibrosis/ cirrhosis, and eventually hepatocellular carcinoma (HCC). The signal transduction mechanisms for alcohol-induced detrimental effects in liver involves alteration of complex and multiple signaling pathways largely governed by a central and upstream signaling system, namely, sirtuin 1 (SIRT1)-AMP activated kinase (AMPK) axis. Emerging evidence suggests a pivotal role of lipin-1 as a crucial downstream regulator of SIRT1-AMPK signaling system that is likely to be ultimately responsible for development and progression of AFLD. Several lines of evidence demonstrate that ethanol exposure significantly induces lipin-1 gene and protein expression levels in cultured hepatocytes and in the livers of rodents, induces lipin-1-PAP activity, impairs the functional activity of nuclear lipin-1, disrupts lipin-1 mRNA alternative splicing and induces lipin-1 nucleocytoplasmic shuttling. Such impairment in response to ethanol leads to derangement of hepatic lipid metabolism, and excessive production of inflammatory cytokines in the livers of the rodents and human alcoholics. This review summarizes current knowledge about the role of lipin-1 in the pathogenesis of AFLD and its potential signal transduction mechanisms.
Collapse
Affiliation(s)
- Min You
- 4209 State Route 44, Rootstown OH 44272. United States
| | | | | | - Jiashin Wu
- Department of Pharmaceutical Sciences. 0
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, College of Pharmacy and College of Medicine, Rootstown OH 44272. United States
| | - Yoon Kwang Lee
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, College of Pharmacy and College of Medicine, Rootstown OH 44272. United States
| | | |
Collapse
|
12
|
Okuno H, Okuzono H, Hayase A, Kumagai F, Tanii S, Hino N, Okada Y, Tachibana K, Doi T, Ishimoto K. Lipin-1 is a novel substrate of protein phosphatase PGAM5. Biochem Biophys Res Commun 2019; 509:886-891. [PMID: 30642635 DOI: 10.1016/j.bbrc.2019.01.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 01/06/2019] [Indexed: 10/27/2022]
Abstract
Lipin-1 has multiple functions that regulate lipid and energy metabolism according to its subcellular localization. The subcellular localization of Lipin-1 is determined by kinase-dependent phosphorylation; however, the phosphatase that dephosphorylates and inactivates Lipin-1 has remained elusive. Using an immunoprecipitation and LC-MS/MS approach we have identified phosphoglycerate mutase family member 5 (PGAM5), a serine/threonine specific protein phosphatase, as a regulator of Lipin-1 activity. Treatment of human hepatocellular carcinoma cells with carbonyl cyanide m-chlorophenyl hydrazone (CCCP), which activates endogenous PGAM5, promoted dephosphorylation and nuclear accumulation of Lipin-1. Our findings further elucidate the molecular mechanisms that regulate Lipin-1.
Collapse
Affiliation(s)
- Hiroko Okuno
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Haruna Okuzono
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ayaka Hayase
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fumiko Kumagai
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shohei Tanii
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Nobumasa Hino
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshiaki Okada
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keisuke Tachibana
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takefumi Doi
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Kenji Ishimoto
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
13
|
Wang H, Airola MV, Reue K. How lipid droplets "TAG" along: Glycerolipid synthetic enzymes and lipid storage. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1131-1145. [PMID: 28642195 PMCID: PMC5688854 DOI: 10.1016/j.bbalip.2017.06.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/15/2017] [Accepted: 06/15/2017] [Indexed: 02/06/2023]
Abstract
Triacylglycerols (TAG) serve as the predominant form of energy storage in mammalian cells, and TAG synthesis influences conditions such as obesity, fatty liver, and insulin resistance. In most tissues, the glycerol 3-phosphate pathway enzymes are responsible for TAG synthesis, and the regulation and function of these enzymes is therefore important for metabolic homeostasis. Here we review the sites and regulation of glycerol-3-phosphate acyltransferase (GPAT), acylglycerol-3-phosphate acyltransferase (AGPAT), lipin phosphatidic acid phosphatase (PAP), and diacylglycerol acyltransferase (DGAT) enzyme action. We highlight the critical roles that these enzymes play in human health by reviewing Mendelian disorders that result from mutation in the corresponding genes. We also summarize the valuable insights that genetically engineered mouse models have provided into the cellular and physiological roles of GPATs, AGPATs, lipins and DGATs. Finally, we comment on the status and feasibility of therapeutic approaches to metabolic disease that target enzymes of the glycerol 3-phosphate pathway. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
Affiliation(s)
- Huan Wang
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Michael V Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, CA, United States.
| |
Collapse
|
14
|
Seo YJ, Kim KJ, Koh EJ, Choi J, Lee BY. Anti-adipogenesis mechanism of pterostilbene through the activation of heme oxygenase-1 in 3T3-L1 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 33:7-13. [PMID: 28887923 DOI: 10.1016/j.phymed.2017.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/28/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Pterostilbene is a stilbenoid and major compound and has diverse biological activities, such as antioxidant, anti-cancer, and anti-inflammatory. However, it has not been shown whether pterostilbene affects the mitotic clonal expansion during adipogenesis in 3T3-L1 cells. PURPOSE In the present study, we aimed to demonstrate the detailed mechanism of pterostilbene on anti-adipogenesis in 3T3-L1 cells. METHODS Preadipocytes were converted to adipocytes through treatment with MDI (IBMX; 3-isobutyl-1-methylxanthine, DEX; dexamethasone, insulin) in 3T3-L1 cells. Oil Red O staining was performed to measure intracellular lipid accumulation. Western blot analysis was conducted to analyze protein expressions. RESULTS Our results showed that pterostilbene decreased the lipid accumulation compared to MDI-induced differentiation, using Oil Red O staining. Next, we found that pterostilbene suppressed the expression of C/EBPα, PPARγ, and aP2 as well as the mitotic clonal expansion-associated proteins CHOP10 and C/EBPβ, by western blot analysis. Our results indicated that pterostilbene may repress adipocyte differentiation through the activation of HO-1 expression prior to entering into the mitotic clonal expansion in 3T3-L1 cells. RNA interference was used to determine whether HO-1 acts as a regulator of CHOP10. CONCLUSION Our results revealed that pterostilbene induced HO-1 expression which acts as a regulator of CHOP10. Together, we demonstrated that pterostilbene suppresses the initiation of mitotic clonal expansion via up-regulation of HO-1 expression during adipocyte differentiation of 3T3-L1 cells.
Collapse
Affiliation(s)
- Young-Jin Seo
- Department of Food Science and Biotechnology, College of Life Science, CHA University, CHA Biocomplex, 335 Pangyo-ro, Bundang-gu, Seongnam, Kyonggi 463-400, Republic of Korea
| | - Kui-Jin Kim
- Department of Food Science and Biotechnology, College of Life Science, CHA University, CHA Biocomplex, 335 Pangyo-ro, Bundang-gu, Seongnam, Kyonggi 463-400, Republic of Korea
| | - Eun-Jeong Koh
- Department of Food Science and Biotechnology, College of Life Science, CHA University, CHA Biocomplex, 335 Pangyo-ro, Bundang-gu, Seongnam, Kyonggi 463-400, Republic of Korea
| | - Jia Choi
- Department of Food Science and Biotechnology, College of Life Science, CHA University, CHA Biocomplex, 335 Pangyo-ro, Bundang-gu, Seongnam, Kyonggi 463-400, Republic of Korea
| | - Boo-Yong Lee
- Department of Food Science and Biotechnology, College of Life Science, CHA University, CHA Biocomplex, 335 Pangyo-ro, Bundang-gu, Seongnam, Kyonggi 463-400, Republic of Korea.
| |
Collapse
|
15
|
Zeng Y, Wang C, Niu Y, Chi D, Xu M, Si L, Qu X, Li J. The influence of delipidation on triglyceride and LIPIN1 of porcine embryos derived from parthenogenetic activation. Reprod Domest Anim 2017; 52:842-850. [PMID: 28455945 DOI: 10.1111/rda.12987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/20/2017] [Indexed: 11/28/2022]
Abstract
Proteins in the LIPIN family play key roles in lipid synthesis mainly on triacylglycerol (TAG) biosynthesis, and they also act as transcriptional coactivators to regulate the expression of genes involved in lipid metabolism with other nuclear factors. Hence, this study was designed to investigate LIPIN1 in pig oocytes and embryos by the delipidation. After delipidation, the content of lipids (LDs) and TAG in MII oocyte was significantly reduced; however, a similar increasing tendency of TAG was shown during embryos development. Subsequently, the expression of genes related to TAG biosynthesis including GPAT1, AGPAT1, AGPAT2, LIPIN1, DGAT and the nuclear factors interacted with LIPIN1 including PPARα and PPARγ was investigated. It is obvious that DGAT and GPAT1, and LIPIN1 increased significantly after delipidation at 1-cell and 4-cell stage, and the expression of PPARα and PPARγ also increased at 4-cell stage. By immunofluorescence staining and Western blots, LIPIN1 was found to exhibit a dynamic localization pattern and gradually increase with the development of delipated embryo. In the early developmental stages (1-, 2- and 4-cell stages), it was distributed over the cortical layer. But at the blastocyst stage, a homogeneous distribution of LIPIN1 was observed in cytoplasm. At 2-cell stage, the expression of PPARα decreased when LIPIN1 was interfered by small interfering RNA, but PPARγ has no significant difference. Therefore, in this study, we find after delipidation, the content of TAG and LIPIN1 will gradually increase during embryo development and nuclear factor PPARα and PPARγ can also be affected by delipidation. The interaction of LIPIN1 and PPARα exists in porcine embryo.
Collapse
Affiliation(s)
- Y Zeng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - C Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Y Niu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - D Chi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - M Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - L Si
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - X Qu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - J Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
16
|
Mota de Sá P, Richard AJ, Hang H, Stephens JM. Transcriptional Regulation of Adipogenesis. Compr Physiol 2017; 7:635-674. [PMID: 28333384 DOI: 10.1002/cphy.c160022] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adipocytes are the defining cell type of adipose tissue. Once considered a passive participant in energy storage, adipose tissue is now recognized as a dynamic organ that contributes to several important physiological processes, such as lipid metabolism, systemic energy homeostasis, and whole-body insulin sensitivity. Therefore, understanding the mechanisms involved in its development and function is of great importance. Adipocyte differentiation is a highly orchestrated process which can vary between different fat depots as well as between the sexes. While hormones, miRNAs, cytoskeletal proteins, and many other effectors can modulate adipocyte development, the best understood regulators of adipogenesis are the transcription factors that inhibit or promote this process. Ectopic expression and knockdown approaches in cultured cells have been widely used to understand the contribution of transcription factors to adipocyte development, providing a basis for more sophisticated in vivo strategies to examine adipogenesis. To date, over two dozen transcription factors have been shown to play important roles in adipocyte development. These transcription factors belong to several families with many different DNA-binding domains. While peroxisome proliferator-activated receptor gamma (PPARγ) is undoubtedly the most important transcriptional modulator of adipocyte development in all types of adipose tissue, members of the CCAAT/enhancer-binding protein, Krüppel-like transcription factor, signal transducer and activator of transcription, GATA, early B cell factor, and interferon-regulatory factor families also regulate adipogenesis. The importance of PPARγ activity is underscored by several covalent modifications that modulate its activity and its ability to modulate adipocyte development. This review will primarily focus on the transcriptional control of adipogenesis in white fat cells and on the mechanisms involved in this fine-tuned developmental process. © 2017 American Physiological Society. Compr Physiol 7:635-674, 2017.
Collapse
Affiliation(s)
- Paula Mota de Sá
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Allison J Richard
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Hardy Hang
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Jacqueline M Stephens
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| |
Collapse
|
17
|
Gulliver LSM. Xenobiotics and the Glucocorticoid Receptor. Toxicol Appl Pharmacol 2017; 319:69-79. [DOI: 10.1016/j.taap.2017.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/03/2017] [Indexed: 11/27/2022]
|
18
|
Lee YJ, Seo MJ, Lee OH, Kim KJ, Lee BY. Hesperetin inhibits lipid accumulation and ROS production during adipocyte differentiation in 3T3-L1 cells. J Food Biochem 2016. [DOI: 10.1111/jfbc.12348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yeon-Joo Lee
- Department of Food Science and Biotechnology College of Life Science; CHA University; Seongnam Kyonggi 463-400 South Korea
| | - Min-Jung Seo
- Molecular Imaging Research Center; Korea Institute of Radiological and Medical Sciences; Seoul South Korea
| | - Ok-Hwan Lee
- Department of Food Science and Biotechnology; Kangwon National University; Chuncheon 200-701 South Korea
| | - Kui-Jin Kim
- Department of Food Science and Biotechnology College of Life Science; CHA University; Seongnam Kyonggi 463-400 South Korea
| | - Boo-Yong Lee
- Department of Food Science and Biotechnology College of Life Science; CHA University; Seongnam Kyonggi 463-400 South Korea
| |
Collapse
|
19
|
Forkhead box A3 mediates glucocorticoid receptor function in adipose tissue. Proc Natl Acad Sci U S A 2016; 113:3377-82. [PMID: 26957608 DOI: 10.1073/pnas.1601281113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Glucocorticoids (GCs) are widely prescribed anti-inflammatory agents, but their chronic use leads to undesirable side effects such as excessive expansion of adipose tissue. We have recently shown that the forkhead box protein A3 (Foxa3) is a calorie-hoarding factor that regulates the selective enlargement of epididymal fat depots and suppresses energy expenditure in a nutritional- and age-dependent manner. It has been demonstrated that Foxa3 levels are elevated in adipose depots in response to high-fat diet regimens and during the aging process; however no studies to date have elucidated the mechanisms that control Foxa3's expression in fat. Given the established effects of GCs in increasing visceral adiposity and in reducing thermogenesis, we assessed the existence of a possible link between GCs and Foxa3. Computational prediction analysis combined with molecular studies revealed that Foxa3 is regulated by the glucocorticoid receptor (GR) in preadipocytes, adipocytes, and adipose tissues and is required to facilitate the binding of the GR to its target gene promoters in fat depots. Analysis of the long-term effects of dexamethasone treatment in mice revealed that Foxa3 ablation protects mice specifically against fat accretion but not against other pathological side effects elicited by this synthetic GC in tissues such as liver, muscle, and spleen. In conclusion our studies provide the first demonstration, to our knowledge, that Foxa3 is a direct target of GC action in adipose tissues and point to a role of Foxa3 as a mediator of the side effects induced in fat tissues by chronic treatment with synthetic steroids.
Collapse
|
20
|
Meijer IA, Sasarman F, Maftei C, Rossignol E, Vanasse M, Major P, Mitchell GA, Brunel-Guitton C. LPIN1 deficiency with severe recurrent rhabdomyolysis and persistent elevation of creatine kinase levels due to chromosome 2 maternal isodisomy. Mol Genet Metab Rep 2015. [PMID: 28649549 PMCID: PMC5471397 DOI: 10.1016/j.ymgmr.2015.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Fatty acid oxidation disorders and lipin-1 deficiency are the commonest genetic causes of rhabdomyolysis in children. We describe a lipin-1-deficient boy with recurrent, severe rhabdomyolytic episodes from the age of 4 years. Analysis of the LPIN1 gene that encodes lipin-1 revealed a novel homozygous frameshift mutation in exon 9, c.1381delC (p.Leu461SerfsX47), and complete uniparental isodisomy of maternal chromosome 2. This mutation is predicted to cause complete lipin-1 deficiency. The patient had six rhabdomyolytic crises, with creatine kinase (CK) levels up to 300,000 U/L (normal, 30 to 200). Plasma CK remained elevated between crises. A treatment protocol was instituted, with early aggressive monitoring, hydration, electrolyte replacement and high caloric, high carbohydrate intake. The patient received dexamethasone during two crises, which was well-tolerated and in these episodes, peak CK values were lower than in preceding episodes. Studies of anti-inflammatory therapy may be indicated in lipin-1 deficiency.
Collapse
Affiliation(s)
- I A Meijer
- Division of Pediatric Neurology, Department of Pediatrics, Université de Montréal, and CHU Sainte Justine, 3175 Côte Sainte-Catherine, Montreal, Quebec H3T 1C5, Canada
| | - F Sasarman
- Division of Biochemical Genetics Laboratory, Université de Montréal and CHU Sainte Justine, 3175 Côte Sainte-Catherine, Montreal, Quebec H3T 1C5, Canada
| | - C Maftei
- Medical Genetics, Department of Pediatrics, Université de Montréal and CHU Sainte Justine, 3175 Côte Sainte-Catherine, Montreal, Quebec H3T 1C5, Canada
| | - E Rossignol
- Division of Pediatric Neurology, Department of Pediatrics, Université de Montréal, and CHU Sainte Justine, 3175 Côte Sainte-Catherine, Montreal, Quebec H3T 1C5, Canada
| | - M Vanasse
- Division of Pediatric Neurology, Department of Pediatrics, Université de Montréal, and CHU Sainte Justine, 3175 Côte Sainte-Catherine, Montreal, Quebec H3T 1C5, Canada
| | - P Major
- Division of Pediatric Neurology, Department of Pediatrics, Université de Montréal, and CHU Sainte Justine, 3175 Côte Sainte-Catherine, Montreal, Quebec H3T 1C5, Canada
| | - G A Mitchell
- Medical Genetics, Department of Pediatrics, Université de Montréal and CHU Sainte Justine, 3175 Côte Sainte-Catherine, Montreal, Quebec H3T 1C5, Canada
| | - C Brunel-Guitton
- Division of Biochemical Genetics Laboratory, Université de Montréal and CHU Sainte Justine, 3175 Côte Sainte-Catherine, Montreal, Quebec H3T 1C5, Canada.,Medical Genetics, Department of Pediatrics, Université de Montréal and CHU Sainte Justine, 3175 Côte Sainte-Catherine, Montreal, Quebec H3T 1C5, Canada
| |
Collapse
|
21
|
Woods CP, Hazlehurst JM, Tomlinson JW. Glucocorticoids and non-alcoholic fatty liver disease. J Steroid Biochem Mol Biol 2015; 154:94-103. [PMID: 26241028 DOI: 10.1016/j.jsbmb.2015.07.020] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the global obesity and metabolic disease epidemic and is rapidly becoming the leading cause of liver cirrhosis and indication for liver transplantation worldwide. The hallmark pathological finding in NAFLD is excess lipid accumulation within hepatocytes, but it is a spectrum of disease ranging from benign hepatic steatosis to steatohepatitis through to fibrosis, cirrhosis and risk of hepatocellular carcinoma. The exact pathophysiology remains unclear with a multi-hit hypothesis generally accepted as being required for inflammation and fibrosis to develop after initial steatosis. Glucocorticoids have been implicated in the pathogenesis of NAFLD across all stages. They have a diverse array of metabolic functions that have the potential to drive NAFLD acting on both liver and adipose tissue. In the fasting state, they are able to mobilize lipid, increasing fatty acid delivery and in the fed state can promote lipid accumulation. Their action is controlled at multiple levels and in this review will outline the evidence base for the role of GCs in the pathogenesis of NAFLD from cell systems, rodent models and clinical studies and describe interventional strategies that have been employed to modulate glucocorticoid action as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Conor P Woods
- Oxford Centre for Diabetes Endocrinology & Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, OX3 7LJ, UK
| | - Jonathon M Hazlehurst
- Oxford Centre for Diabetes Endocrinology & Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, OX3 7LJ, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes Endocrinology & Metabolism (OCDEM), Churchill Hospital, Headington, Oxford, OX3 7LJ, UK.
| |
Collapse
|
22
|
Seo MJ, Lee YJ, Hwang JH, Kim KJ, Lee BY. The inhibitory effects of quercetin on obesity and obesity-induced inflammation by regulation of MAPK signaling. J Nutr Biochem 2015; 26:1308-16. [PMID: 26277481 DOI: 10.1016/j.jnutbio.2015.06.005] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/27/2015] [Accepted: 06/13/2015] [Indexed: 12/20/2022]
Abstract
Quercetin is a flavonoid found in fruits, vegetables, leaves and grains. It has inhibitory, antiviral, antiasthma, anticancer and antiinflammatory effects. Research has suggested that obesity is linked to metabolic disorders. In this study, we examined the inhibitory effect of quercetin on lipid accumulation and obesity-induced inflammation using 3T3-L1, RAW264.7, zebrafish and mouse models. Quercetin suppressed protein levels of the key adipogenic factors C/EBPβ, C/EBPα, PPARγ and FABP4 and the TG-synthesis enzymes lipin1, DGAT1 and LPAATθ. Activation of m-TOR and p70S6K, which are related to insulin and adipogenesis, was down-regulated during adipogenesis in 3T3-L1 cells. Recent research suggested that MAPK signaling factors were involved in adipogenesis and inflammation and that the adipokines MCP-1 and TNF-α attracted macrophages into adipose tissue. Our data showed that quercetin inhibited the MAPK signaling factors ERK1/2, JNK and p38MAPK and MCP-1 and TNF-α in adipocytes and macrophages. Quercetin also inhibited secretion of the inflammatory cytokines IL-1β and IL-6 and stimulated that of IL-10, an antiinflammatory cytokine. In this study, we confirmed the inhibitory effects of quercetin in adipogenesis and inflammation using a mouse model. In mice, quercetin reduced body weight (almost 40%) and suppressed expression of adipogenic, lipogenic and inflammation-related cytokines. Our data demonstrated that quercetin inhibits lipid accumulation and obesity-induced inflammation in the cell and animal models. Our study suggested that quercetin may represent a potential therapeutic agent for other metabolic disorders by regulating obesity and obesity-induced inflammation.
Collapse
Affiliation(s)
- Min-Jung Seo
- Department of Food Science and Biotechnology, CHA University, Seongnam, Kyonggi 463-400, South Korea
| | - Yeon-Joo Lee
- Department of Food Science and Biotechnology, CHA University, Seongnam, Kyonggi 463-400, South Korea
| | - Ji-Hyun Hwang
- Department of Food Science and Biotechnology, CHA University, Seongnam, Kyonggi 463-400, South Korea
| | - Kui-Jin Kim
- Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Boo-Yong Lee
- Department of Food Science and Biotechnology, CHA University, Seongnam, Kyonggi 463-400, South Korea.
| |
Collapse
|
23
|
Emont MP, Mantis S, Kahn JH, Landeche M, Han X, Sargis RM, Cohen RN. Silencing Mediator of Retinoid and Thyroid Hormone Receptors (SMRT) regulates glucocorticoid action in adipocytes. Mol Cell Endocrinol 2015; 407:52-6. [PMID: 25766503 PMCID: PMC4390535 DOI: 10.1016/j.mce.2015.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 02/28/2015] [Accepted: 03/02/2015] [Indexed: 11/15/2022]
Abstract
Local modulation of glucocorticoid action in adipocytes regulates adiposity and systemic insulin sensitivity. However, the specific cofactors that mediate glucocorticoid receptor (GR) action in adipocytes remain unclear. Here we show that the silencing mediator of retinoid and thyroid hormone receptors (SMRT) is recruited to GR in adipocytes and regulates ligand-dependent GR function. Decreased SMRT expression in adipocytes in vivo increases expression of glucocorticoid-responsive genes. Moreover, adipocytes with decreased SMRT expression exhibit altered glucocorticoid regulation of lipolysis. We conclude that SMRT regulates the metabolic functions of GR in adipocytes in vivo. Modulation of GR-SMRT interactions in adipocytes represents a novel approach to control the local degree of glucocorticoid action and thus influence adipocyte metabolic function.
Collapse
Affiliation(s)
- Margo P Emont
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Chicago, 900 E 57th Street, KCBD 8126, Chicago, IL 60637, USA
| | - Stelios Mantis
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Chicago, 900 E 57th Street, KCBD 8126, Chicago, IL 60637, USA
| | - Jonathan H Kahn
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Chicago, 900 E 57th Street, KCBD 8126, Chicago, IL 60637, USA
| | - Michael Landeche
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Chicago, 900 E 57th Street, KCBD 8126, Chicago, IL 60637, USA
| | - Xuan Han
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Chicago, 900 E 57th Street, KCBD 8126, Chicago, IL 60637, USA
| | - Robert M Sargis
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Chicago, 900 E 57th Street, KCBD 8126, Chicago, IL 60637, USA
| | - Ronald N Cohen
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Chicago, 900 E 57th Street, KCBD 8126, Chicago, IL 60637, USA.
| |
Collapse
|
24
|
Shih DM, Yu JM, Vergnes L, Dali-Youcef N, Champion MD, Devarajan A, Zhang P, Castellani LW, Brindley DN, Jamey C, Auwerx J, Reddy ST, Ford DA, Reue K, Lusis AJ. PON3 knockout mice are susceptible to obesity, gallstone formation, and atherosclerosis. FASEB J 2015; 29:1185-97. [PMID: 25477283 PMCID: PMC4396607 DOI: 10.1096/fj.14-260570] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/07/2014] [Indexed: 11/11/2022]
Abstract
We report the engineering and characterization of paraoxonase-3 knockout mice (Pon3KO). The mice were generally healthy but exhibited quantitative alterations in bile acid metabolism and a 37% increased body weight compared to the wild-type mice on a high fat diet. PON3 was enriched in the mitochondria-associated membrane fraction of hepatocytes. PON3 deficiency resulted in impaired mitochondrial respiration, increased mitochondrial superoxide levels, and increased hepatic expression of inflammatory genes. PON3 deficiency did not influence atherosclerosis development on an apolipoprotein E null hyperlipidemic background, but it did lead to a significant 60% increase in atherosclerotic lesion size in Pon3KO mice on the C57BL/6J background when fed a cholate-cholesterol diet. On the diet, the Pon3KO had significantly increased plasma intermediate-density lipoprotein/LDL cholesterol and bile acid levels. They also exhibited significantly elevated levels of hepatotoxicity markers in circulation, a 58% increase in gallstone weight, a 40% increase in hepatic cholesterol level, and increased mortality. Furthermore, Pon3KO mice exhibited decreased hepatic bile acid synthesis and decreased bile acid levels in the small intestine compared with wild-type mice. Our study suggests a role for PON3 in the metabolism of lipid and bile acid as well as protection against atherosclerosis, gallstone disease, and obesity.
Collapse
Affiliation(s)
- Diana M Shih
- *Division of Cardiology, Department of Medicine, Department of Microbiology, Immunology, and Molecular Genetics, Department of Human Genetics, Department of Molecular and Medical Pharmacology, and Department of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, USA; IGBMC, Illkirch and Hôpitaux Universitaires de Strasbourg, and **Laboratoire de Toxicologie, Universitaires de Strasbourg, Strasbourg, France; Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, St. Louis University School of Medicine, St. Louis, Missouri, USA; University of Alberta, Edmonton, Alberta, Canada; and Laboratory for Integrative and Systems Physiology, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Janet M Yu
- *Division of Cardiology, Department of Medicine, Department of Microbiology, Immunology, and Molecular Genetics, Department of Human Genetics, Department of Molecular and Medical Pharmacology, and Department of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, USA; IGBMC, Illkirch and Hôpitaux Universitaires de Strasbourg, and **Laboratoire de Toxicologie, Universitaires de Strasbourg, Strasbourg, France; Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, St. Louis University School of Medicine, St. Louis, Missouri, USA; University of Alberta, Edmonton, Alberta, Canada; and Laboratory for Integrative and Systems Physiology, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Laurent Vergnes
- *Division of Cardiology, Department of Medicine, Department of Microbiology, Immunology, and Molecular Genetics, Department of Human Genetics, Department of Molecular and Medical Pharmacology, and Department of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, USA; IGBMC, Illkirch and Hôpitaux Universitaires de Strasbourg, and **Laboratoire de Toxicologie, Universitaires de Strasbourg, Strasbourg, France; Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, St. Louis University School of Medicine, St. Louis, Missouri, USA; University of Alberta, Edmonton, Alberta, Canada; and Laboratory for Integrative and Systems Physiology, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nassim Dali-Youcef
- *Division of Cardiology, Department of Medicine, Department of Microbiology, Immunology, and Molecular Genetics, Department of Human Genetics, Department of Molecular and Medical Pharmacology, and Department of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, USA; IGBMC, Illkirch and Hôpitaux Universitaires de Strasbourg, and **Laboratoire de Toxicologie, Universitaires de Strasbourg, Strasbourg, France; Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, St. Louis University School of Medicine, St. Louis, Missouri, USA; University of Alberta, Edmonton, Alberta, Canada; and Laboratory for Integrative and Systems Physiology, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Matthew D Champion
- *Division of Cardiology, Department of Medicine, Department of Microbiology, Immunology, and Molecular Genetics, Department of Human Genetics, Department of Molecular and Medical Pharmacology, and Department of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, USA; IGBMC, Illkirch and Hôpitaux Universitaires de Strasbourg, and **Laboratoire de Toxicologie, Universitaires de Strasbourg, Strasbourg, France; Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, St. Louis University School of Medicine, St. Louis, Missouri, USA; University of Alberta, Edmonton, Alberta, Canada; and Laboratory for Integrative and Systems Physiology, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Asokan Devarajan
- *Division of Cardiology, Department of Medicine, Department of Microbiology, Immunology, and Molecular Genetics, Department of Human Genetics, Department of Molecular and Medical Pharmacology, and Department of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, USA; IGBMC, Illkirch and Hôpitaux Universitaires de Strasbourg, and **Laboratoire de Toxicologie, Universitaires de Strasbourg, Strasbourg, France; Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, St. Louis University School of Medicine, St. Louis, Missouri, USA; University of Alberta, Edmonton, Alberta, Canada; and Laboratory for Integrative and Systems Physiology, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Peixiang Zhang
- *Division of Cardiology, Department of Medicine, Department of Microbiology, Immunology, and Molecular Genetics, Department of Human Genetics, Department of Molecular and Medical Pharmacology, and Department of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, USA; IGBMC, Illkirch and Hôpitaux Universitaires de Strasbourg, and **Laboratoire de Toxicologie, Universitaires de Strasbourg, Strasbourg, France; Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, St. Louis University School of Medicine, St. Louis, Missouri, USA; University of Alberta, Edmonton, Alberta, Canada; and Laboratory for Integrative and Systems Physiology, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lawrence W Castellani
- *Division of Cardiology, Department of Medicine, Department of Microbiology, Immunology, and Molecular Genetics, Department of Human Genetics, Department of Molecular and Medical Pharmacology, and Department of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, USA; IGBMC, Illkirch and Hôpitaux Universitaires de Strasbourg, and **Laboratoire de Toxicologie, Universitaires de Strasbourg, Strasbourg, France; Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, St. Louis University School of Medicine, St. Louis, Missouri, USA; University of Alberta, Edmonton, Alberta, Canada; and Laboratory for Integrative and Systems Physiology, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - David N Brindley
- *Division of Cardiology, Department of Medicine, Department of Microbiology, Immunology, and Molecular Genetics, Department of Human Genetics, Department of Molecular and Medical Pharmacology, and Department of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, USA; IGBMC, Illkirch and Hôpitaux Universitaires de Strasbourg, and **Laboratoire de Toxicologie, Universitaires de Strasbourg, Strasbourg, France; Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, St. Louis University School of Medicine, St. Louis, Missouri, USA; University of Alberta, Edmonton, Alberta, Canada; and Laboratory for Integrative and Systems Physiology, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Carole Jamey
- *Division of Cardiology, Department of Medicine, Department of Microbiology, Immunology, and Molecular Genetics, Department of Human Genetics, Department of Molecular and Medical Pharmacology, and Department of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, USA; IGBMC, Illkirch and Hôpitaux Universitaires de Strasbourg, and **Laboratoire de Toxicologie, Universitaires de Strasbourg, Strasbourg, France; Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, St. Louis University School of Medicine, St. Louis, Missouri, USA; University of Alberta, Edmonton, Alberta, Canada; and Laboratory for Integrative and Systems Physiology, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- *Division of Cardiology, Department of Medicine, Department of Microbiology, Immunology, and Molecular Genetics, Department of Human Genetics, Department of Molecular and Medical Pharmacology, and Department of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, USA; IGBMC, Illkirch and Hôpitaux Universitaires de Strasbourg, and **Laboratoire de Toxicologie, Universitaires de Strasbourg, Strasbourg, France; Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, St. Louis University School of Medicine, St. Louis, Missouri, USA; University of Alberta, Edmonton, Alberta, Canada; and Laboratory for Integrative and Systems Physiology, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Srinivasa T Reddy
- *Division of Cardiology, Department of Medicine, Department of Microbiology, Immunology, and Molecular Genetics, Department of Human Genetics, Department of Molecular and Medical Pharmacology, and Department of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, USA; IGBMC, Illkirch and Hôpitaux Universitaires de Strasbourg, and **Laboratoire de Toxicologie, Universitaires de Strasbourg, Strasbourg, France; Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, St. Louis University School of Medicine, St. Louis, Missouri, USA; University of Alberta, Edmonton, Alberta, Canada; and Laboratory for Integrative and Systems Physiology, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - David A Ford
- *Division of Cardiology, Department of Medicine, Department of Microbiology, Immunology, and Molecular Genetics, Department of Human Genetics, Department of Molecular and Medical Pharmacology, and Department of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, USA; IGBMC, Illkirch and Hôpitaux Universitaires de Strasbourg, and **Laboratoire de Toxicologie, Universitaires de Strasbourg, Strasbourg, France; Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, St. Louis University School of Medicine, St. Louis, Missouri, USA; University of Alberta, Edmonton, Alberta, Canada; and Laboratory for Integrative and Systems Physiology, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Karen Reue
- *Division of Cardiology, Department of Medicine, Department of Microbiology, Immunology, and Molecular Genetics, Department of Human Genetics, Department of Molecular and Medical Pharmacology, and Department of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, USA; IGBMC, Illkirch and Hôpitaux Universitaires de Strasbourg, and **Laboratoire de Toxicologie, Universitaires de Strasbourg, Strasbourg, France; Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, St. Louis University School of Medicine, St. Louis, Missouri, USA; University of Alberta, Edmonton, Alberta, Canada; and Laboratory for Integrative and Systems Physiology, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Aldons J Lusis
- *Division of Cardiology, Department of Medicine, Department of Microbiology, Immunology, and Molecular Genetics, Department of Human Genetics, Department of Molecular and Medical Pharmacology, and Department of Medicine and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California, USA; IGBMC, Illkirch and Hôpitaux Universitaires de Strasbourg, and **Laboratoire de Toxicologie, Universitaires de Strasbourg, Strasbourg, France; Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, St. Louis University School of Medicine, St. Louis, Missouri, USA; University of Alberta, Edmonton, Alberta, Canada; and Laboratory for Integrative and Systems Physiology, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
25
|
Nikolić M, Macut D, Djordjevic A, Veličković N, Nestorović N, Bursać B, Antić IB, Macut JB, Matić G, Vojnović Milutinović D. Possible involvement of glucocorticoids in 5α-dihydrotestosterone-induced PCOS-like metabolic disturbances in the rat visceral adipose tissue. Mol Cell Endocrinol 2015; 399:22-31. [PMID: 25179821 DOI: 10.1016/j.mce.2014.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/04/2014] [Accepted: 08/27/2014] [Indexed: 01/12/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a reproductive and metabolic disorder characterized by hyperandrogenism, ovulatory dysfunction, visceral obesity and insulin resistance. We hypothesized that changes in glucocorticoid metabolism and signaling in the visceral adipose tissue may contribute to disturbances of lipid metabolism in the rat model of PCOS obtained by 5α-dihydrotestosterone (DHT) treatment of prepubertal female Wistar rats. The results confirmed that DHT treatment caused anovulation, obesity and dyslipidemia. Enhanced glucocorticoid prereceptor metabolism, assessed by elevated intracellular corticosterone and increased 11 beta-hydroxysteroid dehydrogenase type 1 mRNA and protein levels, was accompanied by glucocorticoid receptor (GR) nuclear accumulation. In concert with the increased expression of GR-regulated prolipogenic genes (lipin-1, sterol regulatory element binding protein 1, fatty acid synthase, phosphoenolpyruvate carboxykinase), histological analyses revealed hypertrophic adipocytes. The results suggest that glucocorticoids influence lipid metabolism in the visceral adipose tissue in the way that may contribute to pathogenesis of metabolic disturbances associated with PCOS.
Collapse
Affiliation(s)
- Marina Nikolić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade, 142 Despot Stefan Blvd., Belgrade 11000, Serbia
| | - Djuro Macut
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia and School of Medicine, University of Belgrade, Dr Subotića 13, Belgrade 11000, Serbia
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade, 142 Despot Stefan Blvd., Belgrade 11000, Serbia
| | - Nataša Veličković
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade, 142 Despot Stefan Blvd., Belgrade 11000, Serbia
| | - Nataša Nestorović
- Department of Cytology, Institute for Biological Research "Siniša Stanković", University of Belgrade, 142 Despot Stefan Blvd., Belgrade 11000, Serbia
| | - Biljana Bursać
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade, 142 Despot Stefan Blvd., Belgrade 11000, Serbia
| | - Ivana Božić Antić
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia and School of Medicine, University of Belgrade, Dr Subotića 13, Belgrade 11000, Serbia
| | | | - Gordana Matić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade, 142 Despot Stefan Blvd., Belgrade 11000, Serbia
| | - Danijela Vojnović Milutinović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade, 142 Despot Stefan Blvd., Belgrade 11000, Serbia.
| |
Collapse
|
26
|
Kolbe I, Dumbell R, Oster H. Circadian Clocks and the Interaction between Stress Axis and Adipose Function. Int J Endocrinol 2015; 2015:693204. [PMID: 26000016 PMCID: PMC4426660 DOI: 10.1155/2015/693204] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/03/2015] [Accepted: 04/03/2015] [Indexed: 01/21/2023] Open
Abstract
Many physiological processes and most endocrine functions show fluctuations over the course of the day. These so-called circadian rhythms are governed by an endogenous network of cellular clocks and serve as an adaptation to daily and, thus, predictable changes in the organism's environment. Circadian clocks have been described in several tissues of the stress axis and in adipose cells where they regulate the rhythmic and stimulated release of stress hormones, such as glucocorticoids, and various adipokine factors. Recent work suggests that both adipose and stress axis clock systems reciprocally influence each other and adrenal-adipose rhythms may be key players in the development and therapy of metabolic disorders. In this review, we summarize our current understanding of adrenal and adipose tissue rhythms and clocks and how they might interact to regulate energy homoeostasis and stress responses under physiological conditions. Potential chronotherapeutic strategies for the treatment of metabolic and stress disorders are discussed.
Collapse
Affiliation(s)
- Isa Kolbe
- Chronophysiology Group, Medical Department I, University of Lübeck, 23538 Lübeck, Germany
| | - Rebecca Dumbell
- Chronophysiology Group, Medical Department I, University of Lübeck, 23538 Lübeck, Germany
| | - Henrik Oster
- Chronophysiology Group, Medical Department I, University of Lübeck, 23538 Lübeck, Germany
- *Henrik Oster:
| |
Collapse
|
27
|
Woo MS, Choi HS, Seo MJ, Jeon HJ, Lee BY. Ellagic acid suppresses lipid accumulation by suppressing early adipogenic events and cell cycle arrest. Phytother Res 2014; 29:398-406. [PMID: 25462071 DOI: 10.1002/ptr.5264] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/22/2014] [Accepted: 11/09/2014] [Indexed: 12/12/2022]
Abstract
Ellagic acid (EA) is a natural polyphenol found in various fruits and vegetables. In this study, we examined the inhibitory effect of EA on fat accumulation in 3T3-L1 cells during adipogenesis. Our data showed that EA reduced fat accumulation by down-regulating adipogenic markers such as peroxisome proliferator activated receptor γ (PPARγ) and the CCAAT/enhancer binding protein α (C/EBPα) at the mRNA and protein levels in a dose-dependent manner. We found that the decrease in adipogenic markers resulted from reduced expression of some early adipogenic transcription factors such as KLF4, KLF5, Krox20, and C/EBPβ within 24 h. Also, these inhibitions were correlated with down-regulation of TG synthetic enzymes, causing inhibition of triglyceride (TG) levels in 3T3-L1 cells investigated by ORO staining and in zebrafish investigated by TG assay. Additionally, the cell cycle analysis showed that EA inhibited cell cycle progression by arresting cells at the G0/G1 phase.
Collapse
Affiliation(s)
- Mi-Seon Woo
- Department of Biomedical Science, CHA University, Kyonggi, 463-836, South Korea
| | | | | | | | | |
Collapse
|
28
|
Chen Y, Rui BB, Tang LY, Hu CM. Lipin Family Proteins - Key Regulators in Lipid Metabolism. ANNALS OF NUTRITION AND METABOLISM 2014; 66:10-8. [DOI: 10.1159/000368661] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 09/19/2014] [Indexed: 11/19/2022]
Abstract
Background: Proteins in the lipin family play a key role in lipid synthesis due to their phosphatidate phosphatase activity, and they also act as transcriptional coactivators to regulate the expression of genes involved in lipid metabolism. The lipin family includes three members, lipin1, lipin2, and lipin3, which exhibit tissue-specific expression, indicating that they may have distinct roles in mediating disease. To date, most studies have focused on lipin1, whereas the roles of lipin2 and lipin3 are less understood. Summary: This review introduces the structural characteristics, physiological functions, relationship to lipid metabolism, and patterns of expression of the lipin family proteins, highlighting their roles in lipid metabolic homeostasis. © 2014 S. Karger AG, Basel
Collapse
|
29
|
Su Y, van der Spek R, Foppen E, Kwakkel J, Fliers E, Kalsbeek A. Effects of adrenalectomy on daily gene expression rhythms in the rat suprachiasmatic and paraventricular hypothalamic nuclei and in white adipose tissue. Chronobiol Int 2014; 32:211-24. [DOI: 10.3109/07420528.2014.963198] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
30
|
Seo MJ, Choi HS, Jeon HJ, Woo MS, Lee BY. Baicalein inhibits lipid accumulation by regulating early adipogenesis and m-TOR signaling. Food Chem Toxicol 2014; 67:57-64. [PMID: 24560969 DOI: 10.1016/j.fct.2014.02.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/06/2014] [Accepted: 02/09/2014] [Indexed: 10/25/2022]
Abstract
Baicalein is a type of flavonoid that originates from Scutellaria baicalensis. In this study, we examined how baicalein inhibits lipid accumulation during adipogenesis in 3T3-L1 cells. Our data show that baicalein inhibited lipid accumulation during adipogenesis in a dose-dependent manner. Baicalein inhibition was limited to the early adipogenic stage. Cell cycle analysis showed that baicalein induced cell cycle arrest in the G0/G1 phase through cyclin downregulation. In addition, baicalein suppressed the mRNA expression of early adipogenic factors leading to downregulation of late adipogenic factors at mRNA and protein levels. Inhibition of adipogenic factors by baicalein was correlated with downregulation of lipid synthetic enzymes. Additionally, baicalein negatively regulated the m-TOR signaling pathway involved in lipid accumulation during adipogenesis, thus inhibiting phosphorylation of m-TOR and p70S6K. In a zebrafish study, baicalein significantly reduced lipid accumulation in Nile Red staining. Consistent with a report using cell lines, mRNA expression of adipogenic factors was decreased in a dose-dependent manner by baicalein. This result reflects a reduction in total triglyceride levels based on a triglyceride assay. Our data suggest that baicalein inhibits lipid accumulation by controlling the cell cycle and m-TOR signaling in 3T3-L1 cells, and its anti-adipogenic effect was found in a zebrafish model.
Collapse
Affiliation(s)
- Min-Jung Seo
- Department of Food Science and Biotechnology, CHA University, Kyonggi 463-836, South Korea
| | - Hyeon-Son Choi
- Department of Food Science and Biotechnology, CHA University, Kyonggi 463-836, South Korea
| | - Hui-Jeon Jeon
- Department of Food Science and Biotechnology, CHA University, Kyonggi 463-836, South Korea
| | - Mi-Seon Woo
- Department of Food Science and Biotechnology, CHA University, Kyonggi 463-836, South Korea
| | - Boo-Yong Lee
- Department of Food Science and Biotechnology, CHA University, Kyonggi 463-836, South Korea.
| |
Collapse
|
31
|
Brenmoehl J, Walz C, Renne U, Ponsuksili S, Wolf C, Langhammer M, Schwerin M, Hoeflich A. Metabolic adaptations in the liver of born long-distance running mice. Med Sci Sports Exerc 2014; 45:841-50. [PMID: 23247708 DOI: 10.1249/mss.0b013e31827e0fca] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Long-distance runners have increased needs of energy supply. To unravel genetically based mechanisms required for efficient energy supply, we have analyzed hepatic metabolism of mice characterized by the inborn capacity to perform as long-distance runners. METHODS The mouse model had been established by phenotypic selection for high treadmill performance for 90 generations and was characterized by approximately 3.8-fold higher running capacities (Dummerstorf high Treadmill Performance mouse line [DUhTP]) compared with unselected and also untrained controls (Dummerstorf Control mouse line [DUC]). From 7-wk-old male mice, serum and liver samples were collected and analyzed for messenger RNA, protein, and metabolite levels, respectively. RESULTS In livers from DUhTP mice, we identified significantly higher messenger RNA transcript levels of peroxisome proliferator-activated receptor delta and higher protein levels of sirtuin-1, acetyl-CoA-synthetase, acetyl-CoA-carboxylase, phosphoenolpyruvate carboxykinase, and glutamate-dehydrogenase, suggesting higher gluconeogenesis and lipogenesis in DUhTP mice. In fact, higher hepatic levels of glycogen and triglycerides as well as higher concentrations of carbohydrate, fatty acid, and cholesterol metabolites were found in DUhTP mice. In parallel, in DUhTP mice, which did not have access to running wheels, a marked hyperlipidemia (cholesterol = 160% ± 8%, triglycerides = 174% ± 14% of controls, respectively), and abdominal obesity (DUhTP = 0.396 ± 0.019 g, DUC = 0.291 ± 0.019 g) were found. CONCLUSIONS From our data, we conclude that the physiological basis of genetically fixed higher endurance-running performance in DUhTP marathon mouse is related to increased hepatic gluconeogenesis and lipogenesis. Expression of sirtuin 1 as well as of gluconeogenic and lipogenic key enzymes may be related to peroxisome proliferator-activated receptor delta. Metabolic adaptations presented in our study represent inborn features of superior endurance-running performance.
Collapse
Affiliation(s)
- Julia Brenmoehl
- Research Unit of Genetics and Biometry, Leibniz-Institute for Farm Animal Biology, Dummerstorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Boucher JG, Boudreau A, Atlas E. Bisphenol A induces differentiation of human preadipocytes in the absence of glucocorticoid and is inhibited by an estrogen-receptor antagonist. Nutr Diabetes 2014; 4:e102. [PMID: 24418828 PMCID: PMC3904083 DOI: 10.1038/nutd.2013.43] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/08/2013] [Indexed: 11/30/2022] Open
Abstract
Background: Obesity is a major health concern in the developed world, and increasing evidence suggests that exposures to common environmental substances may enhance the risk for the development of this disease. Objectives: The current study examines the effect of the ubiquitous plastic monomer bisphenol A (BPA) on the differentiation of primary human preadipocytes in vitro and the role of the estrogen and glucocorticoid receptors. Methods: In this study, the mechanism of BPA-induced adipogenesis in preadipocytes from donors with healthy body mass index in the absence of exogenous glucocorticoid was evaluated. The effects of estradiol, the estrogen-receptor (ER) antagonist ICI and the glucocorticoid receptor (GR) antagonist RU486 on BPA-induced adipogenesis were examined. The expression levels of key adipogenic factors were assessed. Results: Treatment of preadipocytes with 1–50 μM BPA induced a dose-dependent increase in differentiation and lipid accumulation as determined by lipid staining and triacylglyceride quantification. BPA also induced expression of the adipogenic markers aP2, adipsin, peroxisome proliferator-activated receptor γ and the CCAAT-enhancer-binding proteins α and β. Co-treatment of cells with ICI inhibited the BPA-induced increase in aP2 levels, while treatment with ICI or estradiol alone had no effect. Treatment of cells with the GR antagonist RU486 had no effect on BPA-induced differentiation as evaluated by aP2 levels. Conclusions: This study is one of the first to show that BPA induces human adipocyte differentiation in the absence of exogenous glucocorticoid through a non-classical ER pathway rather than through GR activation. These studies add to the growing evidence that endocrine-disrupting chemicals such as BPA have the potential to modulate adipogenesis and impact human biology.
Collapse
Affiliation(s)
- J G Boucher
- In Vitro Molecular Toxicology Laboratory, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - A Boudreau
- In Vitro Molecular Toxicology Laboratory, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - E Atlas
- In Vitro Molecular Toxicology Laboratory, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
33
|
Csaki LS, Dwyer JR, Li X, Nguyen MHK, Dewald J, Brindley DN, Lusis AJ, Yoshinaga Y, de Jong P, Fong L, Young SG, Reue K. Lipin-1 and lipin-3 together determine adiposity in vivo. Mol Metab 2013; 3:145-54. [PMID: 24634820 DOI: 10.1016/j.molmet.2013.11.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/17/2013] [Accepted: 11/21/2013] [Indexed: 12/17/2022] Open
Abstract
The lipin protein family of phosphatidate phosphatases has an established role in triacylglycerol synthesis and storage. Physiological roles for lipin-1 and lipin-2 have been identified, but the role of lipin-3 has remained mysterious. Using lipin single- and double-knockout models we identified a cooperative relationship between lipin-3 and lipin-1 that influences adipogenesis in vitro and adiposity in vivo. Furthermore, natural genetic variations in Lpin1 and Lpin3 expression levels across 100 mouse strains correlate with adiposity. Analysis of PAP activity in additional metabolic tissues from lipin single- and double-knockout mice also revealed roles for lipin-1 and lipin-3 in spleen, kidney, and liver, for lipin-1 alone in heart and skeletal muscle, and for lipin-1 and lipin-2 in lung and brain. Our findings establish that lipin-1 and lipin-3 cooperate in vivo to determine adipose tissue PAP activity and adiposity, and may have implications in understanding the protection of lipin-1-deficient humans from overt lipodystrophy.
Collapse
Affiliation(s)
- Lauren S Csaki
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jennifer R Dwyer
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Xia Li
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Michael H K Nguyen
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jay Dewald
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Alberta, Canada
| | - David N Brindley
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Alberta, Canada
| | - Aldons J Lusis
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA ; Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA ; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Yuko Yoshinaga
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA ; Current address: Department of Energy (DOE) Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Pieter de Jong
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Loren Fong
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Stephen G Young
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA ; Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA ; Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA ; Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA ; Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
34
|
Lipins, lipinopathies, and the modulation of cellular lipid storage and signaling. Prog Lipid Res 2013; 52:305-16. [PMID: 23603613 DOI: 10.1016/j.plipres.2013.04.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/29/2013] [Accepted: 04/04/2013] [Indexed: 01/13/2023]
Abstract
Members of the lipin protein family are phosphatidate phosphatase (PAP) enzymes, which catalyze the dephosphorylation of phosphatidic acid to diacylglycerol, the penultimate step in TAG synthesis. Lipins are unique among the glycerolipid biosynthetic enzymes in that they also promote fatty acid oxidation through their activity as co-regulators of gene expression by DNA-bound transcription factors. Lipin function has been evolutionarily conserved from a single ortholog in yeast to the mammalian family of three lipin proteins-lipin-1, lipin-2, and lipin-3. In mice and humans, the levels of lipin activity are a determinant of TAG storage in diverse cell types, and humans with deficiency in lipin-1 or lipin-2 have severe metabolic diseases. Recent work has highlighted the complex physiological interactions between members of the lipin protein family, which exhibit both overlapping and unique functions in specific tissues. The analysis of "lipinopathies" in mouse models and in humans has revealed an important role for lipin activity in the regulation of lipid intermediates (phosphatidate and diacylglycerol), which influence fundamental cellular processes including adipocyte and nerve cell differentiation, adipocyte lipolysis, and hepatic insulin signaling. The elucidation of lipin molecular and physiological functions could lead to novel approaches to modulate cellular lipid storage and metabolic disease.
Collapse
|
35
|
Kok BPC, Dyck JRB, Harris TE, Brindley DN. Differential regulation of the expressions of the PGC-1α splice variants, lipins, and PPARα in heart compared to liver. J Lipid Res 2013; 54:1662-1677. [PMID: 23505321 DOI: 10.1194/jlr.m036624] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Peroxisome proliferator-activated receptor α (PPARα) and PPARγ coactivator 1α (PGC-1α) are crucial transcriptional regulators for genes involved in FA oxidation. Lipin-1 is essential for this increased capacity for β-oxidation in fasted livers, and it is also a phosphatidate phosphatase involved in triacylglycerol and phospholipid synthesis. Little is known about the regulation of these proteins in the heart during fasting, where there is increased FA esterification and oxidation. Lipin-1, lipin-2, lipin-3, carnitine palmitoyltransferase-1b (Cpt1b), and PGC-1α-b mRNA were increased by glucocorticoids and cAMP in neonatal rat cardiomyocytes. However, Cpt1b upregulation was caused by increased PPARα activation rather than expression. By contrast, the effects of PPARα in fasted livers are mediated through increased expression. During fasting, the expressions of PGC-1α-b and PGC-1α-c are increased in mouse hearts, and this is explained by increased cAMP-dependent signaling. By contrast, PGC-1α-a expression is increased in liver. Contrary to our expectations, lipin-1 expression was decreased and lipin-2 remained unchanged in hearts compared with increases in fasted livers. Our results identify novel differences in the regulation of lipins, PPARα, and PGC-1α splice variants during fasting in heart versus liver, even though the ultimate outcome in both tissues is to increase FA turnover and oxidation.
Collapse
Affiliation(s)
- Bernard P C Kok
- Signal Transduction Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R B Dyck
- Department of Biochemistry, and Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - David N Brindley
- Signal Transduction Research Group, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
36
|
Takahashi N, Yoshizaki T, Hiranaka N, Suzuki T, Yui T, Akanuma M, Kanazawa K, Yoshida M, Naito S, Fujiya M, Kohgo Y, Ieko M. Endoplasmic reticulum stress suppresses lipin-1 expression in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2013; 431:25-30. [PMID: 23291236 DOI: 10.1016/j.bbrc.2012.12.112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 12/14/2012] [Indexed: 01/04/2023]
Abstract
Lipin-1 plays crucial roles in the regulation of lipid metabolism and cell differentiation in adipocytes. In obesity, adipose lipin-1 mRNA expression is decreased and positively correlated with systemic insulin sensitivity. Amelioration of the lipin-1 depletion might be improved dysmetabolism. Although some cytokines such as TNF-α and interleukin-1β reduces adipose lipin-1 expression, the mechanism of decreased adipose lipin-1 expression in obesity remains unclear. Recently, endoplasmic reticulum (ER) stress is implicated in the pathogenesis of obesity. Here we investigated the role of ER stress on the lipin-1 expression in 3T3-L1 adipocytes. We demonstrated that lipin-1 expression was suppressed by the treatment with ER stress inducers (tunicamycin and thapsigargin) at transcriptional level. We also showed that constitutive lipin-1 expression could be maintained by peroxisome proliferator-activated receptor-γ in 3T3-L1 adipocytes. Activation of peroxisome proliferator-activated receptor-γ recovered the ER stress-induced lipin-1 suppression. These results suggested that ER stress might be involved in the pathogenesis of obesity through lipin-1 depletion.
Collapse
Affiliation(s)
- Nobuhiko Takahashi
- Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chen Z, Gropler MC, Mitra MS, Finck BN. Complex interplay between the lipin 1 and the hepatocyte nuclear factor 4 α (HNF4α) pathways to regulate liver lipid metabolism. PLoS One 2012; 7:e51320. [PMID: 23236470 PMCID: PMC3517414 DOI: 10.1371/journal.pone.0051320] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/31/2012] [Indexed: 01/18/2023] Open
Abstract
Lipin 1 is a bifunctional protein that serves as a metabolic enzyme in the triglyceride synthesis pathway and regulates gene expression through direct protein-protein interactions with DNA-bound transcription factors in liver. Herein, we demonstrate that lipin 1 is a target gene of the hepatocyte nuclear factor 4α (HNF4α), which induces lipin 1 gene expression in cooperation with peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) through a nuclear receptor response element in the first intron of the lipin 1 gene. The results of a series of gain-of-function and loss-of-function studies demonstrate that lipin 1 coactivates HNF4α to activate the expression of a variety of genes encoding enzymes involved in fatty acid catabolism. In contrast, lipin 1 reduces the ability of HNF4α to induce the expression of genes encoding apoproteins A4 and C3. Although the ability of lipin to diminish HNF4α activity on these promoters required a direct physical interaction between the two proteins, lipin 1 did not occupy the promoters of the repressed genes and enhances the intrinsic activity of HNF4α in a promoter-independent context. Thus, the induction of lipin 1 by HNF4α may serve as a mechanism to affect promoter selection to direct HNF4α to promoters of genes encoding fatty acid oxidation enzymes.
Collapse
Affiliation(s)
- Zhouji Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Matthew C. Gropler
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mayurranjan S. Mitra
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Brian N. Finck
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
38
|
Tang SQ, Jiang QY, Yang CF, Zou XT, Dong XY. [Research and development of Lipin family.]. YI CHUAN = HEREDITAS 2012; 32:981-93. [PMID: 20943485 DOI: 10.3724/sp.j.1005.2010.00981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Lipin family including at least three members Lipin 1, Lipin 2, and Lipin 3 is a critical regulatory enzyme identified recently, which plays dual roles in lipid metabolisms. Lipin family has physiological effects not only on regulating lipid metabolism, but also on maintaining normal peripheral nervous functions, liver lipoprotein secretion, cell morphous, reproductive functions, and energy homeostasis. Since mutations in Lipin gene express may be associated with AIDS, insulin resistance, obesity, diabetes mellitus, and the other diseases of metabolic syndrome, Lipin may be a new useful target in treatment of above-mentioned clinical-related diseases. In this article, we focused on discovery, construction features, expression, regulatory mechanism, and biological functions of Lipin, as well as its correlation research with clinical-related diseases.
Collapse
|
39
|
Hu P, Chen X, Whitener RJ, Boder ET, Jones JO, Porollo A, Chen J, Zhao L. Effects of parabens on adipocyte differentiation. Toxicol Sci 2012; 131:56-70. [PMID: 22956630 DOI: 10.1093/toxsci/kfs262] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Parabens are a group of alkyl esters of p-hydroxybenzoic acid that include methylparaben, ethylparaben, propylparaben, butylparaben, and benzylparaben. Paraben esters and their salts are widely used as preservatives in cosmetics, toiletries, food, and pharmaceuticals. Humans are exposed to parabens through the use of such products from dermal contact, ingestion, and inhalation. However, research on the effects of parabens on health is limited, and the effects of parabens on adipogenesis have not been systematically studied. Here, we report that (1) parabens promote adipogenesis (or adipocyte differentiation) in murine 3T3-L1 cells, as revealed by adipocyte morphology, lipid accumulation, and mRNA expression of adipocyte-specific markers; (2) the adipogenic potency of parabens is increased with increasing length of the linear alkyl chain in the following potency ranking order: methyl- < ethyl- < propyl- < butylparaben. The extension of the linear alkyl chain with an aromatic ring in benzylparaben further augments the adipogenic ability, whereas 4-hydroxybenzoic acid, the common metabolite of all parabens, and the structurally related benzoic acid (without the OH group) are inactive in promoting 3T3-L1 adipocyte differentiation; (3) parabens activate glucocorticoid receptor and/or peroxisome proliferator-activated receptor γ in 3T3-L1 preadipocytes; however, no direct binding to, or modulation of, the ligand binding domain of the glucocorticoid receptor by parabens was detected by glucocorticoid receptor competitor assays; and lastly, (4) parabens, butyl- and benzylparaben in particular, also promote adipose conversion of human adipose-derived multipotent stromal cells. Our results suggest that parabens may contribute to obesity epidemic, and the role of parabens in adipogenesis in vivo needs to be examined further.
Collapse
Affiliation(s)
- Pan Hu
- Department of Nutrition, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Mouse lipin-1 and lipin-2 cooperate to maintain glycerolipid homeostasis in liver and aging cerebellum. Proc Natl Acad Sci U S A 2012; 109:E2486-95. [PMID: 22908270 DOI: 10.1073/pnas.1205221109] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The three lipin phosphatidate phosphatase (PAP) enzymes catalyze a step in glycerolipid biosynthesis, the conversion of phosphatidate to diacylglycerol. Lipin-1 is critical for lipid synthesis and homeostasis in adipose tissue, liver, muscle, and peripheral nerves. Little is known about the physiological role of lipin-2, the predominant lipin protein present in liver and the deficient gene product in the rare disorder Majeed syndrome. By using lipin-2-deficient mice, we uncovered a functional relationship between lipin-1 and lipin-2 that operates in a tissue-specific and age-dependent manner. In liver, lipin-2 deficiency led to a compensatory increase in hepatic lipin-1 protein and elevated PAP activity, which maintained lipid homeostasis under basal conditions, but led to diet-induced hepatic triglyceride accumulation. As lipin-2-deficient mice aged, they developed ataxia and impaired balance. This was associated with the combination of lipin-2 deficiency and an age-dependent reduction in cerebellar lipin-1 levels, resulting in altered cerebellar phospholipid composition. Similar to patients with Majeed syndrome, lipin-2-deficient mice developed anemia, but did not show evidence of osteomyelitis, suggesting that additional environmental or genetic components contribute to the bone abnormalities observed in patients. Combined lipin-1 and lipin-2 deficiency caused embryonic lethality. Our results reveal functional interactions between members of the lipin family in vivo, and a unique role for lipin-2 in central nervous system biology that may be particularly important with advancing age. Additionally, as has been observed in mice and humans with lipin-1 deficiency, the pathophysiology in lipin-2 deficiency is associated with dysregulation of lipid intermediates.
Collapse
|
41
|
Pascual F, Carman GM. Phosphatidate phosphatase, a key regulator of lipid homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:514-22. [PMID: 22910056 DOI: 10.1016/j.bbalip.2012.08.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 08/03/2012] [Accepted: 08/06/2012] [Indexed: 10/28/2022]
Abstract
Yeast Pah1p phosphatidate phosphatase (PAP) catalyzes the penultimate step in the synthesis of triacylglycerol. PAP plays a crucial role in lipid homeostasis by controlling the relative proportions of its substrate phosphatidate and its product diacylglycerol. The cellular amounts of these lipid intermediates influence the synthesis of triacylglycerol and the pathways by which membrane phospholipids are synthesized. Physiological functions affected by PAP activity include phospholipid synthesis gene expression, nuclear/endoplasmic reticulum membrane growth, lipid droplet formation, and vacuole homeostasis and fusion. Yeast lacking Pah1p PAP activity are acutely sensitive to fatty acid-induced toxicity and exhibit respiratory deficiency. PAP is distinguished in its cellular location, catalytic mechanism, and physiological functions from Dpp1p and Lpp1p lipid phosphate phosphatases that utilize a variety of substrates that include phosphatidate. Phosphorylation/dephosphorylation is a major mechanism by which Pah1p PAP activity is regulated. Pah1p is phosphorylated by cytosolic-associated Pho85p-Pho80p, Cdc28p-cyclin B, and protein kinase A and is dephosphorylated by the endoplasmic reticulum-associated Nem1p-Spo7p phosphatase. The dephosphorylation of Pah1p stimulates PAP activity and facilitates the association with the membrane/phosphatidate allowing for its reaction and triacylglycerol synthesis. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
Affiliation(s)
- Florencia Pascual
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA.
| | | |
Collapse
|
42
|
Kok BPC, Brindley DN. Myocardial fatty acid metabolism and lipotoxicity in the setting of insulin resistance. Heart Fail Clin 2012; 8:643-61. [PMID: 22999246 DOI: 10.1016/j.hfc.2012.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Management of diabetes and insulin resistance in the setting of cardiovascular disease has become an important issue in an increasingly obese society. Besides the development of hypertension and buildup of atherosclerotic plaques, the derangement of fatty acid and lipid metabolism in the heart plays an important role in promoting cardiac dysfunction and oxidative stress. This review discusses the mechanisms by which metabolic inflexibility in the use of fatty acids as the preferred cardiac substrate in diabetes produces detrimental effects on mechanical efficiency, mitochondrial function, and recovery from ischemia. Lipid accumulation and the consequences of toxic lipid metabolites are also discussed.
Collapse
Affiliation(s)
- Bernard P C Kok
- Signal Transduction Research Group, Department of Biochemistry, School of Translational Medicine, University of Alberta, 11207 87th Avenue, Edmonton, Alberta, Canada
| | | |
Collapse
|
43
|
Kok BPC, Venkatraman G, Capatos D, Brindley DN. Unlike two peas in a pod: lipid phosphate phosphatases and phosphatidate phosphatases. Chem Rev 2012; 112:5121-46. [PMID: 22742522 DOI: 10.1021/cr200433m] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bernard P C Kok
- Signal Transduction Research Group, Department of Biochemistry, School of Translational Medicine, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | | | |
Collapse
|
44
|
Williams LK, Csaki LS, Cantor RM, Reue K, Lawson GW. Ulcerative dermatitis in C57BL/6 mice exhibits an oxidative stress response consistent with normal wound healing. Comp Med 2012; 62:166-171. [PMID: 22776048 PMCID: PMC3364703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/07/2011] [Accepted: 12/29/2011] [Indexed: 06/01/2023]
Abstract
Ulcerative dermatitis (UD) is a common syndrome of unknown etiology that results in profound morbidity in C57BL/6 mice and lines on a C57BL/6 background. The lesions are due to severe pruritus-induced self-trauma, progressing from superficial excoriations to deep ulcerations. UD may be behavioral in origin, with ulcerative lesions resulting from self-mutilating behavior in response to unresolved inflammation or compulsion. Alternatively, abnormal oxidative damage may be a mechanism underlying UD. To evaluate whether UD behaves similarly to normal wounds, consistent with a secondary self-inflicted lesion, or is a distinct disorder with abnormal wound response, we evaluated expression levels of genes representing various arms of the oxidative stress response pathway UD-affected and unwounded C57BL/6J mice. No evidence indicated that UD wounds have a defect in the oxidative stress response. Our findings are consistent with an understanding of C57BL/6 UD lesions as typical rather than atypical wounds.
Collapse
Affiliation(s)
- Lisa K Williams
- Division of Laboratory Animal Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA.
| | | | | | | | | |
Collapse
|
45
|
Wang JC, Gray NE, Kuo T, Harris CA. Regulation of triglyceride metabolism by glucocorticoid receptor. Cell Biosci 2012; 2:19. [PMID: 22640645 PMCID: PMC3419133 DOI: 10.1186/2045-3701-2-19] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/28/2012] [Indexed: 12/11/2022] Open
Abstract
Glucocorticoids are steroid hormones that play critical and complex roles in the regulation of triglyceride (TG) homeostasis. Depending on physiological states, glucocorticoids can modulate both TG synthesis and hydrolysis. More intriguingly, glucocorticoids can concurrently affect these two processes in adipocytes. The metabolic effects of glucocorticoids are conferred by intracellular glucocorticoid receptors (GR). GR is a transcription factor that, upon binding to glucocorticoids, regulates the transcriptional rate of specific genes. These GR primary target genes further initiate the physiological and pathological responses of glucocorticoids. In this article, we overview glucocorticoid-regulated genes, especially those potential GR primary target genes, involved in glucocorticoid-regulated TG metabolism. We also discuss transcriptional regulators that could act with GR to participate in these processes. This knowledge is not only important for the fundamental understanding of steroid hormone actions, but also are essential for future therapeutic interventions against metabolic diseases associated with aberrant glucocorticoid signaling, such as insulin resistance, dyslipidemia, central obesity and hepatic steatosis.
Collapse
Affiliation(s)
- Jen-Chywan Wang
- Department of Nutritional Science & Toxicology, University of California at Berkeley, Berkeley, CA, 94720, USA.
| | | | | | | |
Collapse
|
46
|
Hu M, Wang F, Li X, Rogers CQ, Liang X, Finck BN, Mitra MS, Zhang R, Mitchell DA, You M. Regulation of hepatic lipin-1 by ethanol: role of AMP-activated protein kinase/sterol regulatory element-binding protein 1 signaling in mice. Hepatology 2012; 55:437-46. [PMID: 21953514 PMCID: PMC3253249 DOI: 10.1002/hep.24708] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 09/20/2011] [Indexed: 12/20/2022]
Abstract
UNLABELLED Lipin-1 is a protein that exhibits dual functions as a phosphatidic acid phosphohydrolase enzyme in the triglyceride synthesis pathways and a transcriptional coregulator. Our previous studies have shown that ethanol causes fatty liver by activation of sterol regulatory element-binding protein 1 (SREBP-1) and inhibition of hepatic AMP-activated protein kinase (AMPK) in mice. Here, we tested the hypothesis that AMPK-SREBP-1 signaling may be involved in ethanol-mediated up-regulation of lipin-1 gene expression. The effects of ethanol on lipin-1 were investigated in cultured hepatic cells and in the livers of chronic ethanol-fed mice. Ethanol exposure robustly induced activity of a mouse lipin-1 promoter, promoted cytoplasmic localization of lipin-1, and caused excess lipid accumulation, both in cultured hepatic cells and in mouse livers. Mechanistic studies showed that ethanol-mediated induction of lipin-1 gene expression was inhibited by a known activator of AMPK or overexpression of a constitutively active form of AMPK. Importantly, overexpression of the processed nuclear form of SREBP-1c abolished the ability of 5-aminoimidazole-4-carboxamide ribonucleoside to suppress ethanol-mediated induction of lipin-1 gene-expression level. Chromatin immunoprecipitation assays further revealed that ethanol exposure significantly increased the association of acetylated histone H3 at lysine 9 with the SRE-containing region in the promoter of the lipin-1 gene. CONCLUSION In conclusion, ethanol-induced up-regulation of lipin-1 gene expression is mediated through inhibition of AMPK and activation of SREBP-1.
Collapse
Affiliation(s)
- Ming Hu
- Department of Molecular Pharmacology and Physiology, University of South Florida Health Sciences Center, 12901 Bruce B. Downs Blvd. Tampa, FL 33612, USA
| | - Fengming Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida Health Sciences Center, 12901 Bruce B. Downs Blvd. Tampa, FL 33612, USA
| | - Xin Li
- Department of Molecular Pharmacology and Physiology, University of South Florida Health Sciences Center, 12901 Bruce B. Downs Blvd. Tampa, FL 33612, USA
| | - Christopher Q. Rogers
- Department of Molecular Pharmacology and Physiology, University of South Florida Health Sciences Center, 12901 Bruce B. Downs Blvd. Tampa, FL 33612, USA
| | - Xiaomei Liang
- Department of Molecular Pharmacology and Physiology, University of South Florida Health Sciences Center, 12901 Bruce B. Downs Blvd. Tampa, FL 33612, USA
| | - Brian N. Finck
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Mayurranjan S. Mitra
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Ray Zhang
- Department of Molecular Pharmacology and Physiology, University of South Florida Health Sciences Center, 12901 Bruce B. Downs Blvd. Tampa, FL 33612, USA
| | - Dave A. Mitchell
- Department of Molecular Medicine, University of South Florida Health Sciences Center, 12901 Bruce B. Downs Blvd. Tampa, FL 33612, USA
| | - Min You
- Department of Molecular Pharmacology and Physiology, University of South Florida Health Sciences Center, 12901 Bruce B. Downs Blvd. Tampa, FL 33612, USA
| |
Collapse
|
47
|
Zhang P, Takeuchi K, Csaki LS, Reue K. Lipin-1 phosphatidic phosphatase activity modulates phosphatidate levels to promote peroxisome proliferator-activated receptor γ (PPARγ) gene expression during adipogenesis. J Biol Chem 2011; 287:3485-94. [PMID: 22157014 DOI: 10.1074/jbc.m111.296681] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adipose tissue plays a key role in metabolic homeostasis. Disruption of the Lpin1 gene encoding lipin-1 causes impaired adipose tissue development and function in rodents. Lipin-1 functions as a phosphatidate phosphatase (PAP) enzyme in the glycerol 3-phosphate pathway for triglyceride storage and as a transcriptional coactivator/corepressor for metabolic nuclear receptors. Previous studies established that lipin-1 is required at an early step in adipocyte differentiation for induction of the adipogenic gene transcription program, including the key regulator peroxisome proliferator-activated receptor γ (PPARγ). Here, we investigate the requirement of lipin-1 PAP versus coactivator function in the establishment of Pparg expression during adipocyte differentiation. We demonstrate that PAP activity supplied by lipin-1, lipin-2, or lipin-3, but not lipin-1 coactivator activity, can rescue Pparg gene expression and lipogenesis during adipogenesis in lipin-1-deficient preadipocytes. In adipose tissue from lipin-1-deficient mice, there is an accumulation of phosphatidate species containing a range of medium chain fatty acids and an activation of the MAPK/extracellular signal-related kinase (ERK) signaling pathway. Phosphatidate inhibits differentiation of cultured adipocytes, and this can be rescued by the expression of lipin-1 PAP activity or by inhibition of ERK signaling. These results emphasize the importance of lipid intermediates as choreographers of gene regulation during adipogenesis, and the results highlight a specific role for lipins as determinants of levels of a phosphatidic acid pool that influences Pparg expression.
Collapse
Affiliation(s)
- Peixiang Zhang
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
48
|
Kok BPC, Kienesberger PC, Dyck JRB, Brindley DN. Relationship of glucose and oleate metabolism to cardiac function in lipin-1 deficient (fld) mice. J Lipid Res 2011; 53:105-18. [PMID: 22058427 DOI: 10.1194/jlr.m019430] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lipin-1 is the major phosphatidate phosphatase (PAP) in the heart and a transcriptional coactivator that regulates fatty acid (FA) oxidation in the liver. As the control of FA metabolism is essential for maintaining cardiac function, we investigated whether lipin-1 deficiency affects cardiac metabolism and performance. Cardiac PAP activity in lipin-1 deficient [fatty liver dystrophy (fld)] mice was decreased by >80% compared with controls. Surprisingly, oleate oxidation and incorporation in triacylglycerol (TG), as well as glucose oxidation, were not significantly different in perfused working fld hearts. Despite this, [³H]oleate accumulation in phosphatidate and phosphatidylinositol was increased in fld hearts, reflecting the decreased PAP activity. Phosphatidate accumulation was linked to increased cardiac mammalian target of rapamycin complex 1 (mTORC1) signaling and endoplasmic reticulum (ER) stress. Transthoracic echocardiography showed decreased cardiac function in fld mice; however, cardiac dysfunction was not observed in ex vivo perfused working fld hearts. This showed that changes in systemic factors due to the global absence of lipin-1 could contribute to the decreased cardiac function in vivo. Collectively, this study shows that fld hearts exhibit unchanged oleate esterification, as well as oleate and glucose oxidation, despite the absence of lipin-1. However, lipin-1 deficiency increases the accumulation of newly synthesized phosphatidate and induces aberrant cell signaling.
Collapse
Affiliation(s)
- Bernard P C Kok
- Signal Transduction Research Group, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
49
|
Coleman RA, Mashek DG. Mammalian triacylglycerol metabolism: synthesis, lipolysis, and signaling. Chem Rev 2011; 111:6359-86. [PMID: 21627334 PMCID: PMC3181269 DOI: 10.1021/cr100404w] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rosalind A Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
50
|
Kim DK, Kim JR, Koh M, Kim YD, Lee JM, Chanda D, Park SB, Min JJ, Lee CH, Park TS, Choi HS. Estrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of phosphatidic acid phosphatase, LIPIN1, and inhibits hepatic insulin signaling. J Biol Chem 2011; 286:38035-38042. [PMID: 21911493 DOI: 10.1074/jbc.m111.250613] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
LIPINs have been reported to perform important roles in the regulation of intracellular lipid levels. Their mutations induce lipodystrophy, myoglobinuria, and inflammatory disorders. Recently, the phosphatidic acid phosphatase function of LIPINs has been associated with the perturbation of hepatic insulin receptor signaling via the diacylglycerol-mediated stimulation of PKCε activity. Here, we report that nuclear estrogen-related receptor (ERR) γ is a novel transcriptional regulator of LIPIN1. Overexpression of ERRγ significantly increased LIPIN1 expression in primary hepatocytes, whereas the abolition of ERRγ gene expression attenuated the expression of LIPIN1. Deletion and mutation analyses of the LIPIN1 promoter showed that ERRγ exerts its effect on the transcriptional regulation of LIPIN1 via ERRE1 of the LIPIN1 promoter, as confirmed by ChIP assay. We also determined that the gene transcription of LIPIN1 by ERRγ is controlled by the competition between PGC-1α and small heterodimer partner. Additionally, ERRγ leads to the induction of hepatic LIPIN1 expression and diacylglycerol production in vivo. Finally, an inverse agonist of ERRγ, GSK5182, restores the impaired insulin signaling induced by LIPIN1-mediated PKCε activation. Our findings indicate that the selective control of ERRγ transcriptional activity by its specific inverse agonist could provide a novel therapeutic approach to the amelioration of impaired hepatic insulin signaling induced by LIPIN1-mediated PKCε activation.
Collapse
Affiliation(s)
- Don-Kyu Kim
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Jung Ran Kim
- Lee Gil Ya Cancer and Diabetes Institute, Department of Medicine, Gachon University of Medicine and Science, Incheon 406-840, Republic of Korea
| | - Minseob Koh
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Yong Deuk Kim
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Ji-Min Lee
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Dipanjan Chanda
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Seung Bum Park
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea; Department of Biophysics and Chemical Biology, College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Jung-Joon Min
- Departments of Nuclear Medicine and Microbiology, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea; Bioimaging Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Chul-Ho Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Tae-Sik Park
- Lee Gil Ya Cancer and Diabetes Institute, Department of Medicine, Gachon University of Medicine and Science, Incheon 406-840, Republic of Korea
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea; Research Institute of Medical Sciences, Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea.
| |
Collapse
|