1
|
Rouland A, Masson D, Lagrost L, Vergès B, Gautier T, Bouillet B. Role of apolipoprotein C1 in lipoprotein metabolism, atherosclerosis and diabetes: a systematic review. Cardiovasc Diabetol 2022; 21:272. [PMID: 36471375 PMCID: PMC9724408 DOI: 10.1186/s12933-022-01703-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Apolipoprotein C1 (apoC1) is a small size apolipoprotein whose exact role is not totally clarified but which seems to modulate significantly the metabolism of lipoproteins. ApoC1 is involved in the metabolism of triglyceride-rich lipoproteins by inhibiting the binding of very low density lipoproteins (VLDL) to VLDL-receptor (VLDL-R), to low density lipoprotein receptor (LDL-R) and to LDL receptor related protein (LRP), by reducing the activity of lipoprotein lipase (LPL) and by stimulating VLDL production, all these effects leading to increase plasma triglycerides. ApoC1 takes also part in the metabolism of high density lipoproteins (HDL) by inhibiting Cholesterol Ester Transfer Protein (CETP). The functionality of apoC1 on CETP activity is impaired in diabetes that might account, at least in part, for the increased plasma CETP activity observed in patients with diabetes. Its different effects on lipoprotein metabolism with a possible role in the modulation of inflammation makes the net impact of apoC1 on cardiometabolic risk difficult to figure out and apoC1 might be considered as pro-atherogenic or anti-atherogenic depending on the overall metabolic context. Making the link between total plasma apoC1 levels and the risk of cardio-metabolic diseases is difficult due to the high exchangeability of this small protein whose biological effects might depend essentially on its association with VLDL or HDL. The role of apoC1 in humans is not entirely elucidated and further studies are needed to determine its precise role in lipid metabolism and its possible pleiotropic effects on inflammation and vascular wall biology. In this review, we will present data on apoC1 structure and distribution among lipoproteins, on the effects of apoC1 on VLDL metabolism and HDL metabolism and we will discuss the possible links between apoC1, atherosclerosis and diabetes.
Collapse
Affiliation(s)
- Alexia Rouland
- grid.31151.37Endocrinology and Diabetology Unit, University Hospital, Dijon, France ,grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France
| | - David Masson
- grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France ,LipSTIC LabEx, UFR Sciences de Santé, Dijon, France
| | - Laurent Lagrost
- grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France ,LipSTIC LabEx, UFR Sciences de Santé, Dijon, France
| | - Bruno Vergès
- grid.31151.37Endocrinology and Diabetology Unit, University Hospital, Dijon, France ,grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France
| | - Thomas Gautier
- grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France ,LipSTIC LabEx, UFR Sciences de Santé, Dijon, France
| | - Benjamin Bouillet
- grid.31151.37Endocrinology and Diabetology Unit, University Hospital, Dijon, France ,grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France ,grid.31151.37Service Endocrinologie, Diabétologie et Maladies Métaboliques, Hôpital François Mitterrand, CHU Dijon, BP 77908, 21079 Dijon, France
| |
Collapse
|
2
|
Koska J, Furtado J, Hu Y, Sinari S, Budoff MJ, Billheimer D, Nedelkov D, McClelland RL, Reaven PD. Plasma proteoforms of apolipoproteins C-I and C-II are associated with plasma lipids in the Multi-Ethnic Study of Atherosclerosis. J Lipid Res 2022; 63:100263. [PMID: 35952903 PMCID: PMC9494236 DOI: 10.1016/j.jlr.2022.100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/23/2022] [Accepted: 07/09/2022] [Indexed: 11/23/2022] Open
Abstract
Apolipoproteins (apo) C-I and C-II are key regulators of triglyceride and HDL metabolism. Both exist as full-size native and truncated (apoC-I'; apoC-II') posttranslational proteoforms. However, the determinants and the role of these proteoforms in lipid metabolism are unknown. Here, we measured apoC-I and apoC-II proteoforms by mass spectrometry immunoassay in baseline and 10-year follow-up plasma samples from the Multi-Ethnic Study of Atherosclerosis. We found that baseline total apoC-I (mean = 9.2 mg/dl) was lower in African Americans (AA), Chinese Americans (CA), and Hispanics (by 1.8; 1.0; 1.0 mg/dl vs. whites), higher in women (by 1.2 mg/dl), and positively associated with plasma triglycerides and HDL. Furthermore, we observed that the truncated-to-native apoC-I ratio (apoC-I'/C-I) was lower in CA, negatively associated with triglycerides, and positively associated with HDL. We determined that total apoC-II (8.8 mg/dl) was lower in AA (by 0.8 mg/dl) and higher in CA and Hispanics (by 0.5 and 0.4 mg/dl), positively associated with triglycerides, and negatively associated with HDL. In addition, apoC-II'/C-II was higher in AA and women, negatively associated with triglycerides, and positively associated with HDL. We showed that the change in triglycerides was positively associated with changes in total apoC-I and apoC-II and negatively associated with changes in apoC-I'/C-I and apoC-II'/C-II, whereas the change in HDL was positively associated with changes in total apoC-I and apoC-II'/C-II and negatively associated with change in total apoC-II. This study documents racial/ethnic variation in apoC-I and apoC-II plasma levels and highlights apolipoprotein posttranslational modification as a potential regulator of plasma lipids.
Collapse
Affiliation(s)
- Juraj Koska
- Phoenix VA Health Care System, Phoenix, AZ, USA.
| | - Jeremy Furtado
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Shripad Sinari
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | | | - Dean Billheimer
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | | | | | - Peter D Reaven
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| |
Collapse
|
3
|
Cyr Y, Lamantia V, Bissonnette S, Burnette M, Besse-Patin A, Demers A, Wabitsch M, Chrétien M, Mayer G, Estall JL, Saleh M, Faraj M. Lower plasma PCSK9 in normocholesterolemic subjects is associated with upregulated adipose tissue surface-expression of LDLR and CD36 and NLRP3 inflammasome. Physiol Rep 2021; 9:e14721. [PMID: 33527668 PMCID: PMC7851436 DOI: 10.14814/phy2.14721] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
Background LDL‐cholesterol lowering variants that upregulate receptor uptake of LDL, such as in PCSK9 and HMGCR, are associated with diabetes via unclear mechanisms. Activation of the NLRP3 inflammasome/interleukin‐1 beta (IL‐1β) pathway promotes white adipose tissue (WAT) dysfunction and type 2 diabetes (T2D) and is regulated by LDL receptors (LDLR and CD36). We hypothesized that: (a) normocholesterolemic subjects with lower plasma PCSK9, identifying those with higher WAT surface‐expression of LDLR and CD36, have higher activation of WAT NLRP3 inflammasome and T2D risk factors, and; (b) LDL upregulate adipocyte NLRP3 inflammasome and inhibit adipocyte function. Methodology Post hoc analysis was conducted in 27 overweight/ obese subjects with normal plasma LDL‐C and measures of disposition index (DI during Botnia clamps) and postprandial fat metabolism. WAT was assessed for surface‐expression of LDLR and CD36 (immunohistochemistry), protein expression (immunoblot), IL‐1β secretion (AlphaLISA), and function (3H‐triolein storage). Results Compared to subjects with higher than median plasma PCSK9, subjects with lower PCSK9 had higher WAT surface‐expression of LDLR (+81%) and CD36 (+36%), WAT IL‐1β secretion (+284%), plasma IL‐1 receptor‐antagonist (+85%), and postprandial hypertriglyceridemia, and lower WAT pro‐IL‐1β protein (−66%), WAT function (−62%), and DI (−28%), without group‐differences in body composition, energy intake or expenditure. Adjusting for WAT LDLR or CD36 eliminated group‐differences in WAT function, DI, and postprandial hypertriglyceridemia. Native LDL inhibited Simpson‐Golabi Behmel‐syndrome (SGBS) adipocyte differentiation and function and increased inflammation. Conclusion Normocholesterolemic subjects with lower plasma PCSK9 and higher WAT surface‐expression of LDLR and CD36 have higher WAT NLRP3 inflammasome activation and T2D risk factors. This may be due to LDL‐induced inhibition of adipocyte function.
Collapse
Affiliation(s)
- Yannick Cyr
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada.,Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Montreal Diabetes Research Center (MDRC), Montréal, QC, Canada
| | - Valérie Lamantia
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada.,Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Montreal Diabetes Research Center (MDRC), Montréal, QC, Canada
| | - Simon Bissonnette
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada.,Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Montreal Diabetes Research Center (MDRC), Montréal, QC, Canada
| | - Melanie Burnette
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada.,Montreal Diabetes Research Center (MDRC), Montréal, QC, Canada
| | - Aurèle Besse-Patin
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada.,Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Montreal Diabetes Research Center (MDRC), Montréal, QC, Canada
| | - Annie Demers
- Institut de cardiologie de Montréal (ICM), Montréal, QC, Canada
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine, Ulm University Hospital, Ulm, Germany
| | - Michel Chrétien
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada.,Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Ottawa Health Research Institute (OHRI), Ottawa, ON, Canada
| | - Gaétan Mayer
- Department of Pediatrics and Adolescent Medicine, Ulm University Hospital, Ulm, Germany.,Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
| | - Jennifer L Estall
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada.,Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Montreal Diabetes Research Center (MDRC), Montréal, QC, Canada
| | - Maya Saleh
- Department of Medicine, McGill University, Montréal, QC, Canada.,Department of Life Sciences and Health, The University of Bordeaux, Bordeaux, France
| | - May Faraj
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada.,Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Montreal Diabetes Research Center (MDRC), Montréal, QC, Canada
| |
Collapse
|
4
|
Lamantia V, Bissonnette S, Provost V, Devaux M, Cyr Y, Daneault C, Rosiers CD, Faraj M. The Association of Polyunsaturated Fatty Acid δ-5-Desaturase Activity with Risk Factors for Type 2 Diabetes Is Dependent on Plasma ApoB-Lipoproteins in Overweight and Obese Adults. J Nutr 2019; 149:57-67. [PMID: 30535058 PMCID: PMC6351138 DOI: 10.1093/jn/nxy238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/24/2018] [Indexed: 01/05/2023] Open
Abstract
Background δ-5 and δ-6 desaturases (D5D and D6D) catalyze the endogenous conversion of n-3 (ω-3) and n-6 (ω-6) polyunsaturated fatty acids (PUFAs). Their activities are negatively and positively associated with type 2 diabetes (T2D), respectively, by unclear mechanisms. Elevated plasma apoB-lipoproteins (measured as plasma apoB), which can be reduced by n-3 PUFA intake, promote T2D risk factors. Objective The aim of this study was to test the hypothesis that the association of D5D and D6D activities with T2D risk factors is dependent on plasma apoB. Methods This is a pooled analysis of 2 populations recruited for 2 different metabolic studies. It is a post hoc analysis of baseline data of these subjects [n = 98; 60% women (postmenopausal); mean ± SD body mass index (in kg/m2): 32.8 ± 4.7; mean ± SD age: 57.6 ± 6.3 y]. Glucose-induced insulin secretion (GIIS) and insulin sensitivity (IS) were measured using Botnia clamps. Plasma clearance of a high-fat meal (600 kcal/m2, 66% fat) and white adipose tissue (WAT) function (storage of 3H-triolein-labeled substrate) were assessed in a subpopulation (n = 47). Desaturase activities were estimated from plasma phospholipid fatty acids. Associations were examined using Pearson and partial correlations. Results While both desaturase activities were positively associated with percentage of eicosapentaenoic acid, only D5D was negatively associated with plasma apoB (r = -0.30, P = 0.003). Association of D5D activity with second-phase GIIS (r = -0.23, P = 0.029), IS (r = 0.33, P = 0.015, in women) and 6-h area-under-the-curve (AUC6h) of plasma chylomicrons (apoB48, r = -0.47, P = 0.020, in women) was independent of age and adiposity, but was eliminated after adjustment for plasma apoB. D6D activity was associated in the opposite direction with GIIS (r = 0.24, P = 0.049), IS (r = -0.36, P = 0.004) and AUC6h chylomicrons (r = 0.52, P = 0.004), independent of plasma apoB. Both desaturases were associated with plasma interleukin-1-receptor antagonist (D5D: r = -0.45, P < 0.001 in women; D6D: r = -0.33, P = 0.007) and WAT function (trend for D5D: r = 0.30, P = 0.05; D6D: r = 0.39, P = 0.027) independent of any adjustment. Conclusions Association of D5D activity with IS, lower GIIS, and plasma chylomicron clearance is dependent on plasma apoB in overweight and obese adults.
Collapse
Affiliation(s)
- Valérie Lamantia
- Faculty of Medicine, Université de Montréal, Montréal, Québec,Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec
| | - Simon Bissonnette
- Faculty of Medicine, Université de Montréal, Montréal, Québec,Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec
| | - Viviane Provost
- Faculty of Medicine, Université de Montréal, Montréal, Québec,Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec
| | - Marie Devaux
- Faculty of Medicine, Université de Montréal, Montréal, Québec,Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec
| | - Yannick Cyr
- Faculty of Medicine, Université de Montréal, Montréal, Québec,Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec
| | | | - Christine Des Rosiers
- Faculty of Medicine, Université de Montréal, Montréal, Québec,Institut de Cardiologie de Montréal (ICM), Montréal, Québec
| | - May Faraj
- Faculty of Medicine, Université de Montréal, Montréal, Québec,Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec,Montreal Diabetes Research Center (MDRC), Montréal, Québec,Address correspondence to MF (e-mail: )
| |
Collapse
|
5
|
Bissonnette S, Saint-Pierre N, Lamantia V, Leroux C, Provost V, Cyr Y, Rabasa-Lhoret R, Faraj M. High plasma apolipoprotein B identifies obese subjects who best ameliorate white adipose tissue dysfunction and glucose-induced hyperinsulinemia after a hypocaloric diet. Am J Clin Nutr 2018; 108:62-76. [PMID: 29917037 DOI: 10.1093/ajcn/nqy070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 03/21/2018] [Indexed: 11/14/2022] Open
Abstract
Background To optimize the prevention of type 2 diabetes (T2D), high-risk obese subjects with the best metabolic recovery after a hypocaloric diet should be targeted. Apolipoprotein B lipoproteins (apoB lipoproteins) induce white adipose tissue (WAT) dysfunction, which in turn promotes postprandial hypertriglyceridemia, insulin resistance (IR), and hyperinsulinemia. Objective The aim of this study was to explore whether high plasma apoB, or number of plasma apoB lipoproteins, identifies subjects who best ameliorate WAT dysfunction and related risk factors after a hypocaloric diet. Design Fifty-nine men and postmenopausal women [mean ± SD age: 58 ± 6 y; body mass index (kg/m2): 32.6 ± 4.6] completed a prospective study with a 6-mo hypocaloric diet (-500 kcal/d). Glucose-induced insulin secretion (GIIS) and insulin sensitivity (IS) were measured by 1-h intravenous glucose-tolerance test (IVGTT) followed by a 3-h hyperinsulinemic-euglycemic clamp, respectively. Ex vivo gynoid WAT function (i.e., hydrolysis and storage of 3H-triolein-labeled triglyceride-rich lipoproteins) and 6-h postprandial plasma clearance of a 13C-triolein-labeled high-fat meal were measured in a subsample (n = 25). Results Postintervention first-phase GIISIVGTT and total C-peptide secretion decreased in both sexes, whereas second-phase and total GIISIVGTT and clamp IS were ameliorated in men (P < 0.05). Baseline plasma apoB was associated with a postintervention increase in WAT function (r = 0.61) and IS (glucose infusion rate divided by steady state insulin (M/Iclamp) r = 0.30) and a decrease in first-phase, second-phase, and total GIISIVGTT (r = -0.30 to -0.35) without sex differences. The association with postintervention amelioration in WAT function and GIISIVGTT was independent of plasma cholesterol (total, LDL, and HDL), sex, and changes in body composition. Subjects with high baseline plasma apoB (1.2 ± 0.2 g/L) showed a significant increase in WAT function (+105%; P = 0.012) and a decrease in total GIISIVGTT (-34%; P ≤ 0.001), whereas sex-matched subjects with low plasma apoB (0.7 ± 0.1 g/L) did not, despite equivalent changes in body composition and energy intake and expenditure. Conclusions High plasma apoB identifies obese subjects who best ameliorate WAT dysfunction and glucose-induced hyperinsulinemia, independent of changes in adiposity after consumption of a hypocaloric diet. We propose that subjects with high plasma apoB represent an optimal target group for the primary prevention of T2D by hypocaloric diets. This trial was registered at BioMed Central as ISRCTN14476404.
Collapse
Affiliation(s)
- Simon Bissonnette
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Montreal Diabetes Research Center, Montreal (MDRC), Quebec, Canada
| | | | - Valerie Lamantia
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Montreal Diabetes Research Center, Montreal (MDRC), Quebec, Canada
| | - Catherine Leroux
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada
| | - Viviane Provost
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Montreal Diabetes Research Center, Montreal (MDRC), Quebec, Canada
| | - Yannick Cyr
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Montreal Diabetes Research Center, Montreal (MDRC), Quebec, Canada
| | - Remi Rabasa-Lhoret
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Montreal Diabetes Research Center, Montreal (MDRC), Quebec, Canada
| | - May Faraj
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Montreal Diabetes Research Center, Montreal (MDRC), Quebec, Canada
| |
Collapse
|
6
|
He PP, Jiang T, OuYang XP, Liang YQ, Zou JQ, Wang Y, Shen QQ, Liao L, Zheng XL. Lipoprotein lipase: Biosynthesis, regulatory factors, and its role in atherosclerosis and other diseases. Clin Chim Acta 2018; 480:126-137. [PMID: 29453968 DOI: 10.1016/j.cca.2018.02.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 01/20/2023]
Abstract
Lipoprotein lipase (LPL) is a rate-limiting enzyme that catalyzes hydrolysis of the triglyceride (TG) core of circulating TG-rich lipoproteins including chylomicrons (CM), low-density lipoproteins (LDL) and very low-density lipoproteins (VLDL). A variety of parenchymal cells can synthesize and secrete LPL. Recent studies have demonstrated that complicated processes are involved in LPL biosynthesis, secretion and transport. The enzyme activity of LPL is regulated by many factors, such as apolipoproteins, angiopoietins, hormones and miRNAs. In this article, we also reviewed the roles of LPL in atherosclerosis, coronary heart disease, cerebrovascular accident, Alzheimer disease and chronic lymphocytic leukemia. LPL in different tissues exerts differential physiological functions. The role of LPL in atherosclerosis is still controversial as reported in the literature. Here, we focused on the properties of LPL derived from macrophages, endothelial cells and smooth muscle cells in the vascular wall. We also explore the existence of crosstalk between LPL and those cells when the molecule mainly plays a proatherogenic role. This review will provide insightful knowledge of LPL and open new therapeutic perspectives.
Collapse
Affiliation(s)
- Ping-Ping He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, 28 West Changsheng Road, Hengyang 421001, Hunan, China; Nursing School, University of South China, Hengyang 421001, Hunan, China; Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Health Sciences Center, 3330 Hospital Dr. NW, Calgary, Alberta T2N 4N1, Canada
| | - Ting Jiang
- Department of Practice Educational, Office of Academic Affairs, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Xin-Ping OuYang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, 28 West Changsheng Road, Hengyang 421001, Hunan, China; Department of Physiology, The Neuroscience Institute, Medical College, University of South China, Hengyang, Hunan 421001, China; Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Health Sciences Center, 3330 Hospital Dr. NW, Calgary, Alberta T2N 4N1, Canada
| | - Ya-Qin Liang
- Nursing School, University of South China, Hengyang 421001, Hunan, China
| | - Jie-Qiong Zou
- Nursing School, University of South China, Hengyang 421001, Hunan, China; The Affiliated First Hospital, Hengyang 421001, Hunan, China
| | - Yan Wang
- Nursing School, University of South China, Hengyang 421001, Hunan, China; The Affiliated First Hospital, Hengyang 421001, Hunan, China
| | - Qian-Qian Shen
- Nursing School, University of South China, Hengyang 421001, Hunan, China
| | - Li Liao
- Nursing School, University of South China, Hengyang 421001, Hunan, China.
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Health Sciences Center, 3330 Hospital Dr. NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
7
|
Abstract
Premature atherosclerosis in diabetes accounts for much of the decreased life span. New treatments have reduced this risk considerably. This review explores the relationship among the disturbances in glucose, lipid, and bile salt metabolic pathways that occur in diabetes. In particular, excess nutrient intake and starvation have major metabolic effects, which have allowed us new insights into the disturbance that occurs in diabetes. Metabolic regulators such as the forkhead transcription factors, the farnesyl X transcription factors, and the fibroblast growth factors have become important players in our understanding of the dysregulation of metabolism in diabetes and overnutrition. The disturbed regulation of lipoprotein metabolism in both the intestine and the liver has been more clearly defined over the past few years, and the atherogenicity of the triglyceride-rich lipoproteins, and - in tandem - low levels of high-density lipoproteins, is seen now as very important. New information on the apolipoproteins that control lipoprotein lipase activity has been obtained. This is an exciting time in the battle to defeat diabetic atherosclerosis.
Collapse
Affiliation(s)
- GH Tomkin
- Diabetes Institute of Ireland, Beacon Hospital
- Trinity College, University of Dublin, Dublin, Ireland
- Correspondence: GH Tomkin, Diabetes Institute of Ireland, Beacon Hospital, Clontra, Quinns Road, Shankill, Dublin 18, Ireland, Email
| | - D Owens
- Diabetes Institute of Ireland, Beacon Hospital
- Trinity College, University of Dublin, Dublin, Ireland
| |
Collapse
|
8
|
ApoB-lipoproteins and dysfunctional white adipose tissue: Relation to risk factors for type 2 diabetes in humans. J Clin Lipidol 2017; 11:34-45.e2. [DOI: 10.1016/j.jacl.2016.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/11/2016] [Accepted: 09/26/2016] [Indexed: 01/14/2023]
|