1
|
Wang Y, Wang S, Wang Y, Wang C, Tang Y, Zhang C, Hou S, Yu D, Lin N. Glucose regulates the HMGB1 signaling pathway through SIRT1 in glioma. Cell Signal 2024; 118:111137. [PMID: 38467242 DOI: 10.1016/j.cellsig.2024.111137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Glucose is a fundamental substance for numerous cancers, including glioma. However, its influence on tumor cells regulatory mechanisms remains uncertain. SIRT1 is a regulator of deacetylation and a key player in the progression of malignant tumors. The objective of this study was to examine the role of glucose and SIRT1 in glioma. METHODS This study investigated the association of SIRT1 expression with clinicopathological features and prognosis in glioma patients using the TCGA database. The Western blotting technique was used to identify the expression of SIRT1 protein in glioma cells. The study also examined the impact of differing glucose concentrations on the biological functions of glioma cells. The study investigated the expression of SIRT1 and HMGB1 signaling pathways in glioma. Additionally, resilience experiments were conducted utilizing SRT1720. RESULTS SIRT1 is a gene that suppresses tumors and is low expressed in gliomas. Low expression of this gene is strongly linked to a poor prognosis in patients with glioma. High concentrations of glucose can promote the proliferation, migration, and invasion of glioma cells, while also inhibiting apoptosis. The findings of this mechanistic study provide evidence that glucose can down-regulate SIRT1 expression, leading to increased levels of acetylated HMGB1. This in turn promotes the ex-nuclear activation of HMGB1 and associated signaling pathways, ultimately driving glioma malignancy. CONCLUSION Glucose has the ability to regulate the HMGB1 associated signaling pathway through SIRT1, thus promoting glioma progression. This holds significant research value.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou 239000, China
| | - Shuai Wang
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou 239000, China
| | - Yuhao Wang
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou 239000, China
| | - Chengcheng Wang
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou 239000, China
| | - Yuhang Tang
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou 239000, China
| | - Chao Zhang
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou 239000, China
| | - Shiqiang Hou
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou 239000, China
| | - Dong Yu
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou 239000, China.
| | - Ning Lin
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou 239000, China.
| |
Collapse
|
2
|
Tamas C, Tamas F, Kovecsi A, Cehan A, Balasa A. Metabolic Contrasts: Fatty Acid Oxidation and Ketone Bodies in Healthy Brains vs. Glioblastoma Multiforme. Int J Mol Sci 2024; 25:5482. [PMID: 38791520 PMCID: PMC11122426 DOI: 10.3390/ijms25105482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The metabolism of glucose and lipids plays a crucial role in the normal homeostasis of the body. Although glucose is the main energy substrate, in its absence, lipid metabolism becomes the primary source of energy. The main means of fatty acid oxidation (FAO) takes place in the mitochondrial matrix through β-oxidation. Glioblastoma (GBM) is the most common form of primary malignant brain tumor (45.6%), with an incidence of 3.1 per 100,000. The metabolic changes found in GBM cells and in the surrounding microenvironment are associated with proliferation, migration, and resistance to treatment. Tumor cells show a remodeling of metabolism with the use of glycolysis at the expense of oxidative phosphorylation (OXPHOS), known as the Warburg effect. Specialized fatty acids (FAs) transporters such as FAT, FABP, or FATP from the tumor microenvironment are overexpressed in GBM and contribute to the absorption and storage of an increased amount of lipids that will provide sufficient energy used for tumor growth and invasion. This review provides an overview of the key enzymes, transporters, and main regulatory pathways of FAs and ketone bodies (KBs) in normal versus GBM cells, highlighting the need to develop new therapeutic strategies to improve treatment efficacy in patients with GBM.
Collapse
Affiliation(s)
- Corina Tamas
- Doctoral School of Medicine and Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Targu Mures, Romania;
- Department of Neurosurgery, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Flaviu Tamas
- Doctoral School of Medicine and Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Targu Mures, Romania;
- Department of Neurosurgery, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Attila Kovecsi
- Department of Morphopathology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
- Department of Morphopathology, Emergency Clinical County Hospital, 540136 Targu Mures, Romania
| | - Alina Cehan
- Department of Plastic, Esthetics and Reconstructive Surgery, Emergency Clinical County Hospital, 540136 Targu Mures, Romania;
| | - Adrian Balasa
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Targu Mures, Romania;
- Department of Neurosurgery, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| |
Collapse
|
3
|
Tsuruta H, Yamahara K, Yasuda-Yamahara M, Kume S. Emerging Pathophysiological Roles of Ketone Bodies. Physiology (Bethesda) 2024; 39:0. [PMID: 38260943 DOI: 10.1152/physiol.00031.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/24/2024] Open
Abstract
The discovery of insulin approximately a century ago greatly improved the management of diabetes, including many of its life-threatening acute complications like ketoacidosis. This breakthrough saved many lives and extended the healthy lifespan of many patients with diabetes. However, there is still a negative perception of ketone bodies stemming from ketoacidosis. Originally, ketone bodies were thought of as a vital source of energy during fasting and exercise. Furthermore, in recent years, research on calorie restriction and its potential impact on extending healthy lifespans, as well as studies on ketone bodies, have gradually led to a reevaluation of the significance of ketone bodies in promoting longevity. Thus, in this review, we discuss the emerging and hidden roles of ketone bodies in various organs, including the heart, kidneys, skeletal muscles, and brain, as well as their potential impact on malignancies and lifespan.
Collapse
Affiliation(s)
- Hiroaki Tsuruta
- Department of Medicine, Shiga University of Medical Science, Seta, Otsu, Shiga, Japan
| | - Kosuke Yamahara
- Department of Medicine, Shiga University of Medical Science, Seta, Otsu, Shiga, Japan
| | - Mako Yasuda-Yamahara
- Department of Medicine, Shiga University of Medical Science, Seta, Otsu, Shiga, Japan
| | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Seta, Otsu, Shiga, Japan
| |
Collapse
|
4
|
Ciernikova S, Sevcikova A, Stevurkova V, Mego M. Diet-driven microbiome changes and physical activity in cancer patients. Front Nutr 2023; 10:1285516. [PMID: 38075222 PMCID: PMC10704146 DOI: 10.3389/fnut.2023.1285516] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/13/2023] [Indexed: 04/13/2024] Open
Abstract
Exploring the role of the gut microbiome in oncology is gaining more attention, mainly due to its ability to shape the immune system in cancer patients. A well-balanced microbial composition forms a symbiotic relationship with the host organism. Mounting evidence supports the potential of modifiable lifestyle factors, such as diet and physical activity, in restoring intestinal dysbiosis related to cancer development and treatment. In this Minireview, we describe the host-microbiome interplay following different dietary patterns, including a high-fat diet, fiber-rich diet, diet rich in rice and beans, Mediterranean diet, ketogenic diet, and physical activity in preclinical findings and clinical settings. According to the results, nutrition is a critical factor influencing the composition of gut microbial communities. Therefore, knowledge about the patient's nutritional status in pre-treatment and treatment becomes crucial for further management. A combination of individualized dietary habits and professional training plans might help to maintain gut homeostasis, potentially improving the response to anti-cancer therapy and the quality of life in cancer survivors. However, a deep understanding of underlying mechanisms and large clinical trials are needed to uncover clinically relevant correlations for personalized treatment approaches leading to better outcomes for cancer patients.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viola Stevurkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Bratislava and National Cancer Institute, Comenius University, Bratislava, Slovakia
| |
Collapse
|
5
|
Yalamarty SSK, Filipczak N, Li X, Subhan MA, Parveen F, Ataide JA, Rajmalani BA, Torchilin VP. Mechanisms of Resistance and Current Treatment Options for Glioblastoma Multiforme (GBM). Cancers (Basel) 2023; 15:cancers15072116. [PMID: 37046777 PMCID: PMC10093719 DOI: 10.3390/cancers15072116] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive form of brain cancer that is difficult to treat due to its resistance to both radiation and chemotherapy. This resistance is largely due to the unique biology of GBM cells, which can evade the effects of conventional treatments through mechanisms such as increased resistance to cell death and rapid regeneration of cancerous cells. Additionally, the blood–brain barrier makes it difficult for chemotherapy drugs to reach GBM cells, leading to reduced effectiveness. Despite these challenges, there are several treatment options available for GBM. The standard of care for newly diagnosed GBM patients involves surgical resection followed by concurrent chemoradiotherapy and adjuvant chemotherapy. Emerging treatments include immunotherapy, such as checkpoint inhibitors, and targeted therapies, such as bevacizumab, that attempt to attack specific vulnerabilities in GBM cells. Another promising approach is the use of tumor-treating fields, a type of electric field therapy that has been shown to slow the growth of GBM cells. Clinical trials are ongoing to evaluate the safety and efficacy of these and other innovative treatments for GBM, intending to improve with outcomes for patients.
Collapse
Affiliation(s)
- Satya Siva Kishan Yalamarty
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Xiang Li
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Md Abdus Subhan
- Department of Chemistry, ShahJalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Farzana Parveen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Department of Pharmacy Services, DHQ Hospital, Jhang 35200, Pakistan
| | - Janaína Artem Ataide
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, Brazil
| | - Bharat Ashok Rajmalani
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Vladimir P. Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
6
|
Kerezoudis P, Kerezoudi EN, Choudhry A, Himes BT, Parney IF. Complementary and Alternative Medicine for Gliomas: Systematic Review and Critical Appraisal of Current Literature. Neurosurgery 2023; 92:464-471. [PMID: 36650046 DOI: 10.1227/neu.0000000000002236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/14/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Many patients with glioma and their caregivers seek complementary and alternative medicine (CAM) methods to comfort themselves, cope with cancer medication side effects, and feel they are taking control of their disease. OBJECTIVE To summarize existing evidence on safety and efficacy of CAM treatments for gliomas. METHODS We performed an exhaustive electronic literature search for in vitro, animal, and clinical studies (English language, all years available) on CAM modalities for gliomas. RESULTS A total of 378 studies (315 unique articles) were analyzed. Distribution was as follows: in vitro-274 (73%), animal-77 (20%), and clinical-26 (7%, 2491 patients). Most studies were conducted in China (n = 135, 43%), followed by the United States (n = 62, 20%) and Spain (n = 17, 5%-6%). Resveratrol was the most commonly investigated CAM therapy in the in vitro (n = 62) and in vivo (n = 17) setting. Safety/toxicity was examined in 21% of in vitro (cytotoxic at same dose in 48%), 39% of in vivo (no evidence of organ toxicity), and 50% of clinical studies (adverse events reported in 6). Cytotoxicity was the most frequent end point among in vitro (60%) and animal studies (56%), followed by synergistic action with chemotherapy and inhibition of invasiveness and migration. Finally, 7 of 26 studies found no clinical effect, whereas 5 reported possible impact on progression-free or overall survival, 3 demonstrated decrease or arrest of tumor progression, and 2 showed positive impact on symptoms and quality of life. CONCLUSION These findings will hopefully educate providers and patients and stimulate further research in the field of CAM therapy for gliomas.
Collapse
Affiliation(s)
- Panagiotis Kerezoudis
- Department of Neurologic Surgery, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Evangelia N Kerezoudi
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Benjamin T Himes
- Department of Neurologic Surgery, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Ian F Parney
- Department of Neurologic Surgery, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
7
|
Parik S, Fernández-García J, Lodi F, De Vlaminck K, Derweduwe M, De Vleeschouwer S, Sciot R, Geens W, Weng L, Bosisio FM, Bergers G, Duerinck J, De Smet F, Lambrechts D, Van Ginderachter JA, Fendt SM. GBM tumors are heterogeneous in their fatty acid metabolism and modulating fatty acid metabolism sensitizes cancer cells derived from recurring GBM tumors to temozolomide. Front Oncol 2022; 12:988872. [PMID: 36338708 PMCID: PMC9635944 DOI: 10.3389/fonc.2022.988872] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/16/2022] [Indexed: 07/30/2023] Open
Abstract
Glioblastoma is a highly lethal grade of astrocytoma with very low median survival. Despite extensive efforts, there is still a lack of alternatives that might improve these prospects. We uncovered that the chemotherapeutic agent temozolomide impinges on fatty acid synthesis and desaturation in newly diagnosed glioblastoma. This response is, however, blunted in recurring glioblastoma from the same patient. Further, we describe that disrupting cellular fatty acid homeostasis in favor of accumulation of saturated fatty acids such as palmitate synergizes with temozolomide treatment. Pharmacological inhibition of SCD and/or FADS2 allows palmitate accumulation and thus greatly augments temozolomide efficacy. This effect was independent of common GBM prognostic factors and was effective against cancer cells from recurring glioblastoma. In summary, we provide evidence that intracellular accumulation of saturated fatty acids in conjunction with temozolomide based chemotherapy induces death in glioblastoma cells derived from patients.
Collapse
Affiliation(s)
- Sweta Parik
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Juan Fernández-García
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Francesca Lodi
- Laboratory for Translational Genetics, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Karen De Vlaminck
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Marleen Derweduwe
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | | | - Raf Sciot
- Department of Pathology, University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Wietse Geens
- Department of Neurosurgery, UZ Brussel, Jette, Belgium
| | - Linqian Weng
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
| | - Francesca Maria Bosisio
- Department of Pathology, University Hospital Leuven, KU Leuven, Leuven, Belgium
- Laboratory of Translational Cell & Tissue Research Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Neurological Surgery, UCSF Comprehensive Cancer Center, University of California San Francisco (UCSF), San Francisco, CA, United States
| | | | - Frederick De Smet
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Jo A. Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| |
Collapse
|
8
|
Ketogenic Diet in the Treatment of Gliomas and Glioblastomas. Nutrients 2022; 14:nu14183851. [PMID: 36145228 PMCID: PMC9504425 DOI: 10.3390/nu14183851] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
In recent years, scientific interest in the use of the ketogenic diet (KD) as a complementary approach to the standard cancer therapy has grown, in particular against those of the central nervous system (CNS). In metabolic terms, there are the following differences between healthy and neoplastic cells: neoplastic cells divert their metabolism to anaerobic glycolysis (Warburg effect), they alter the normal mitochondrial functioning, and they use mainly certain amino acids for their own metabolic needs, to gain an advantage over healthy cells and to lead to a pro-oncogenetic effect. Several works in literature speculate which are the molecular targets of KD used against cancer. The following different mechanisms of action will be explored in this review: metabolic, inflammatory, oncogenic and oncosuppressive, ROS, and epigenetic modulation. Preclinical and clinical studies on the use of KD in CNS tumors have also increased in recent years. An interesting hypothesis emerged from the studies about the possible use of a ketogenic diet as a combination therapy along with chemotherapy (CT) and radiotherapy (RT) for the treatment of cancer. Currently, however, clinical data are still very limited but encouraging, so we need further studies to definitively validate or disprove the role of KD in fighting against cancer.
Collapse
|
9
|
Zhong C, Peng L, Tao B, Yin S, Lyu L, Ding H, Yang X, Peng T, He H, Zhou P. TDO2 and tryptophan metabolites promote kynurenine/AhR signals to facilitate glioma progression and immunosuppression. Am J Cancer Res 2022; 12:2558-2575. [PMID: 35812057 PMCID: PMC9251687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/23/2022] [Indexed: 06/15/2023] Open
Abstract
Tumor cells exhibit enhanced uptake and processing of nutrients to fulfill the demands of rapid growth of tumor tissues. Tryptophan metabolizing dioxygenases are frequently up-regulated in several tumor types, which has been recognized as a crucial determinant in accelerated tumor progression. In our study, we explored the specific role of tryptophan 2,3-dioxygenase 2 (TDO2) in glioma progression. Analysis of mRNA profiles in 325 glioma patients based on the rich set of CCGA database was performed, which revealed that high TDO2 expression was tightly correlated with poor prognosis in glioma patients. TDO2 increased intracellular levels of tryptophan metabolism in the kynurenine (Kyn) pathway in vitro and in vivo, resulting in sustained glioma cell proliferation. Mechanistically, overexpression of TDO2 promoted the secretion of Kyn, which in turn stimulated the activation of the aryl hydrocarbon receptor (AhR)/AKT signaling pathway, resulting in heightened proliferative properties and tumorigenic potential in glioma cells. Meanwhile, Kyn produced by tumor cells further suppressed the proliferation of functional T cells, thereby resulting in immunosuppression and enhanced tumor growth in glioma. Our study showed that TDO2-induced increase in tryptophan metabolite Kyn played a pivotal role in glioma development via the AhR/AKT pro-survival signals and immunosuppressive effects, suggesting that the use of TDO2 inhibitors in combination with chemotherapy may be a novel strategy to effectively and synergistically eliminate glioma cells.
Collapse
Affiliation(s)
- Chuanhong Zhong
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
- Sichuan Clinic Research Center for NeurosurgeryLuzhou, China
| | - Lilei Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
- Sichuan Clinic Research Center for NeurosurgeryLuzhou, China
| | - Bei Tao
- Department of Rheumatism, Affiliated Hospital of Southwest Medical UniversityLuzhou, Sichuan, China
| | - Senlin Yin
- Department of Neurosurgery, West China Hospital of Sichuan UniversityChengdu, Sichuan, China
| | - Liang Lyu
- Department of Neurosurgery, West China Hospital of Sichuan UniversityChengdu, Sichuan, China
| | - Hao Ding
- Neurosurgery Department of The Fourth People’s Hospital of ZigongZigong, Sichuan, China
| | - Xiaobo Yang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
- Sichuan Clinic Research Center for NeurosurgeryLuzhou, China
| | - Tangming Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
- Sichuan Clinic Research Center for NeurosurgeryLuzhou, China
| | - Haiping He
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
- Sichuan Clinic Research Center for NeurosurgeryLuzhou, China
| | - Peizhi Zhou
- Department of Neurosurgery, West China Hospital of Sichuan UniversityChengdu, Sichuan, China
| |
Collapse
|
10
|
Sargaço B, Oliveira PA, Antunes ML, Moreira AC. Effects of the Ketogenic Diet in the Treatment of Gliomas: A Systematic Review. Nutrients 2022; 14:1007. [PMID: 35267981 PMCID: PMC8912802 DOI: 10.3390/nu14051007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
The ketogenic diet (KD) is a restrictive therapeutic diet, distinguished by being hyperlipidic, normoproteic, and hypoglucidic. This diet simulates biochemical changes related to fasting periods to achieve systemic ketosis. The metabolic particularities of glioma tumors motivated the rise in investigations and nutritional strategies, such as KD, to modulate the glycemic response as a treatment. This systematic review followed the PRISMA recommendations and was published in PROSPERO, with the identification CRD42021264173. The databases used were EMBASE, PubMed/Medline, Scopus, and Web of Science, and the studies were analyzed using the web-based application Rayyan. To analyze the risk of bias, Cochrane RevMan 5 software was used. For the analysis and treatment of statistical data, Microsoft® Excel® was used. A total of nine original articles were included. Data on survival, symptomology, and quality of life were collected. Mean overall survival was 15.9 months. Constipation and fatigue were the most reported symptoms. In 44.4% of the studies, an improvement in the quality of life was found. The KD is supported by most published studies as an effective therapy in the treatment of malignant gliomas due to its positive effects on patient survival. It was not possible to conclude the effectiveness of KD on quality of life.
Collapse
Affiliation(s)
- Beatriz Sargaço
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- ESTeSL-Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; (P.A.O.); (M.L.A.); (A.C.M.)
| | - Patrícia Almeida Oliveira
- ESTeSL-Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; (P.A.O.); (M.L.A.); (A.C.M.)
| | - Maria Luz Antunes
- ESTeSL-Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; (P.A.O.); (M.L.A.); (A.C.M.)
- APPsyCI–Applied Psychology Research Center Capabilities & Inclusion, ISPA–Instituto Universitário, 1149-041 Lisboa, Portugal
| | - Ana Catarina Moreira
- ESTeSL-Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; (P.A.O.); (M.L.A.); (A.C.M.)
- H&TRC-Health & Technology Research Center, 1990-096 Lisboa, Portugal
| |
Collapse
|
11
|
Xu J, Guo Y, Ning W, Wang X, Li S, Chen Y, Ma L, Qu Y, Song Y, Zhang H. Comprehensive Analyses of Glucose Metabolism in Glioma Reveal the Glioma-Promoting Effect of GALM. Front Cell Dev Biol 2022; 9:717182. [PMID: 35127693 PMCID: PMC8811465 DOI: 10.3389/fcell.2021.717182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/14/2021] [Indexed: 01/17/2023] Open
Abstract
Glioma is the most common tumor with the worst prognosis in the central nervous system. Current studies showed that glucose metabolism could affect the malignant progression of tumors. However, the study on the dysregulation of glucose metabolism in glioma is still limited. Herein, we firstly screened 48 differentially expressed glucose metabolism-related genes (DE-GMGs) by comparing glioblastomas to low-grade gliomas. Then a glucose metabolism-related gene (GMG)-based model (PC, lactate dehydrogenase A (LDHA), glucuronidase beta (GUSB), galactosidase beta 1 (GLB1), galactose mutarotase (GALM), or fructose-bisphosphatase 1 (FBP1)) was constructed by a protein-protein interaction (PPI) network and Lasso regression. Thereinto, the high-risk group encountered a worse prognosis than the low-risk group, and the M2 macrophage was positively relevant to the risk score. Various classical tumor-related functions were enriched by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Since protein GALM was rarely studied in glioma, we detected high expression of GALM by western blot and immunohistochemistry in glioma tissues. And experiments in vitro showed that GALM could promote the epithelial-to-mesenchymal transition (EMT) process of glioma cells and could be regulated by TNFAIP3 in glioma cells. Overall, our study revealed the critical role of glucose metabolism in the prognosis of patients with glioma. Furthermore, we demonstrated that GALM was significantly related to the malignancy of glioma and could promote glioma cells' EMT process.
Collapse
Affiliation(s)
- Jiacheng Xu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuduo Guo
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Weihai Ning
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xiang Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Shenglun Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yujia Chen
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Lixin Ma
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yanming Qu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongwei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Wang J, Li J, Duan P, Dang Y, Shi T. Circ_0001588 Upregulates ERBB4 to Promote Glioma Malignant Progression Through Sponging miR-1281. Neurotox Res 2022; 40:89-102. [PMID: 34982356 DOI: 10.1007/s12640-021-00464-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022]
Abstract
Circular RNA (circRNA) plays a crucial part in glioma progression. However, the function of circ_0001588 in glioma development is still unknown. The study aims to reveal the role of circ_0001588 in glioma malignant progression and the inner molecular mechanism. The RNA expressions of circ_0001588, microRNA-1281 (miR-1281), and erb-b2 receptor tyrosine kinase 4 (ERBB4) were detected by qRT-PCR. Protein expression was checked by western blot analysis or immunohistochemistry assay. Cell proliferation was investigated by cell counting kit-8 and colony formation assays. Flow cytometry, transwell, and tube formation assays were used to detect cell apoptosis, cell migration, and invasion as well as angiogenesis, respectively. The binding relationship between miR-1281 and circ_0001588 or ERBB4 was identified by dual-luciferase reporter and RNA immunoprecipitation assays. Mouse model assay was performed to confirm the effect of circ_0001588 knockdown on tumor formation in vivo. Circ_0001588 and ERBB4 expressions were significantly upregulated, while miR-1281 was downregulated in glioma tissues and cells compared with control groups. Circ_0001588 expression was closely related to tumor size and WHO grade of glioma. Decreased expression of circ_0001588 in glioma cells led to significant decreases of cell proliferation, migration, invasion, and tube formation and an increase of cell apoptosis. Additionally, downregulation of miR-1281, a target miRNA of circ_0001588, rescued circ_0001588 knockdown-mediated effects. MiR-1281 also inhibited glioma malignant progression by targeting ERBB4. Importantly, circ_0001588 regulated ERBB4 expression by interacting with miR-1281. Furthermore, circ_0001588 depletion suppressed tumor formation in vivo. Circ_0001588 acted as an oncogene in glioma malignant progression by miR-1281/ERBB4 pathway, suggesting the potential of circ_0001588 as a therapeutic target for glioma.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurosurgery, Fancheng District, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No. 6 Chaoyang Road, Xiangyang City, Hubei Province, 441000, China
| | - Juan Li
- Department of Neurosurgery, Fancheng District, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No. 6 Chaoyang Road, Xiangyang City, Hubei Province, 441000, China
| | - Peng Duan
- Department of Obstetrics and Gynaecology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang City, Hubei Province, China
| | - Yanwei Dang
- Department of Neurosurgery, Fancheng District, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No. 6 Chaoyang Road, Xiangyang City, Hubei Province, 441000, China.
| | - Tao Shi
- Department of Urology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang City, Hubei Province, China.
| |
Collapse
|
13
|
Kapoor D, Garg D, Sharma S. Emerging Role of the Ketogenic Dietary Therapies beyond Epilepsy in Child Neurology. Ann Indian Acad Neurol 2021; 24:470-480. [PMID: 34728937 PMCID: PMC8513984 DOI: 10.4103/aian.aian_20_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 01/18/2023] Open
Abstract
Ketogenic dietary therapies (KDTs) have been in use for refractory paediatric epilepsy for a century now. Over time, KDTs themselves have undergone various modifications to improve tolerability and clinical feasibility, including the Modified Atkins diet (MAD), medium chain triglyceride (MCT) diet and the low glycaemic index treatment (LGIT). Animal and observational studies indicate numerous benefits of KDTs in paediatric neurological conditions apart from their evident benefits in childhood intractable epilepsy, including neurodevelopmental disorders such as autism spectrum disorder, rarer neurogenetic conditions such as Rett syndrome, Fragile X syndrome and Kabuki syndrome, neurodegenerative conditions such as Pelizaeus-Merzbacher disease, and other conditions such as stroke and migraine. A large proportion of the evidence is derived from individual case reports, case series and some small clinical trials, emphasising the vast scope for research in this avenue. The term 'neuroketotherapeutics' has been coined recently to encompass the rapid strides in this field. In the 100th year of its use for paediatric epilepsy, this review covers the role of the KDTs in non-epilepsy neurological conditions among children.
Collapse
Affiliation(s)
- Dipti Kapoor
- Department of Pediatrics (Neurology Division), Lady Hardinge Medical College and Kalawati Saran Children's Hospital, New Delhi, India
| | - Divyani Garg
- Department of Neurology, Lady Hardinge Medical College and Smt. Sucheta Kriplani Hospital, New Delhi, India
| | - Suvasini Sharma
- Department of Pediatrics (Neurology Division), Lady Hardinge Medical College and Kalawati Saran Children's Hospital, New Delhi, India
| |
Collapse
|
14
|
Montella L, Sarno F, Altucci L, Cioffi V, Sigona L, Di Colandrea S, De Simone S, Marinelli A, Facchini BA, De Vita F, Berretta M, de Falco R, Facchini G. A Root in Synapsis and the Other One in the Gut Microbiome-Brain Axis: Are the Two Poles of Ketogenic Diet Enough to Challenge Glioblastoma? Front Nutr 2021; 8:703392. [PMID: 34422883 PMCID: PMC8378133 DOI: 10.3389/fnut.2021.703392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/29/2021] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma is the most frequent and aggressive brain cancer in adults. While precision medicine in oncology has produced remarkable progress in several malignancies, treatment of glioblastoma has still limited available options and a dismal prognosis. After first-line treatment with surgery followed by radiochemotherapy based on the 2005 STUPP trial, no significant therapeutic advancements have been registered. While waiting that genomic characterization moves from a prognostic/predictive value into therapeutic applications, practical and easy-to-use approaches are eagerly awaited. Medical reports on the role of the ketogenic diet in adult neurological disorders and in glioblastoma suggest that nutritional interventions may condition outcomes and be associated with standard therapies. The acceptable macronutrient distribution of daily calories in a regular diet are 45-65% of daily calories from carbohydrates, 20-35% from fats, and 10-35% from protein. Basically, the ketogenic diet follows an approach based on low carbohydrates/high fat intake. In carbohydrates starvation, body energy derives from fat storage which is used to produce ketones and act as glucose surrogates. The ketogenic diet has several effects: metabolic interference with glucose and insulin and IGF-1 pathways, influence on neurotransmission, reduction of oxidative stress and inflammation, direct effect on gene expression through epigenetic mechanisms. Apart from these central effects working at the synapsis level, recent evidence also suggests a role for microbiome and gut-brain axis induced by a ketogenic diet. This review focuses on rationales supporting the ketogenic diet and clinical studies will be reported, looking at future possible perspectives.
Collapse
Affiliation(s)
- Liliana Montella
- Medical Oncology Complex Unit, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, Naples, Italy
| | - Federica Sarno
- Precision Medicine Department, “Luigi Vanvitelli” University of Campania, Naples, Italy
| | - Lucia Altucci
- Precision Medicine Department, “Luigi Vanvitelli” University of Campania, Naples, Italy
| | - Valentina Cioffi
- Neurosurgery Operative Complex Unit, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, Naples, Italy
| | - Luigi Sigona
- Neurosurgery Operative Complex Unit, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, Naples, Italy
| | - Salvatore Di Colandrea
- Department of Emergency and Critical Care, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, Naples, Italy
| | - Stefano De Simone
- Medical Oncology Complex Unit, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, Naples, Italy
| | - Alfredo Marinelli
- Operative Unit Neuroncology University Federico II, Naples, Italy
- Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Neuromed Istituto Neurologico Mediterraneo (INM), Isernia, Italy
| | - Bianca Arianna Facchini
- Division of Medical Oncology, Precision Medicine Department, “Luigi Vanvitelli” University of Campania, Naples, Italy
| | - Ferdinando De Vita
- Division of Medical Oncology, Precision Medicine Department, “Luigi Vanvitelli” University of Campania, Naples, Italy
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Raffaele de Falco
- Neurosurgery Operative Complex Unit, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, Naples, Italy
| | - Gaetano Facchini
- Medical Oncology Complex Unit, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, Naples, Italy
| |
Collapse
|
15
|
Sukkar SG, Muscaritoli M. A Clinical Perspective of Low Carbohydrate Ketogenic Diets: A Narrative Review. Front Nutr 2021; 8:642628. [PMID: 34322508 PMCID: PMC8310928 DOI: 10.3389/fnut.2021.642628] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/28/2021] [Indexed: 01/23/2023] Open
Abstract
Low carbohydrates diets (LCDs), which provide 20–120 g of carbohydrates per day, have long been used as therapeutic options in the treatment of severe obesity, type 2 diabetes mellitus and other morbid conditions, with good results in terms of weight loss and control of the main metabolic parameters, at least in the short and medium term. According to the caloric content and the macronutrient composition, we can classify LCDs in hypocaloric, normoproteic diets [such as the Very Low-Calorie Ketogenic Diet (VLCKD) or the protein-sparing modified fasting (PSMF)], hypocaloric, hyperproteic and hyperlipidic diets (e.g., Atkins, Paleo diets…) and normocaloric, normo-/hyperproteic diets (eucaloric KD), the latter mainly used in patients with brain tumors (gliomas) and refractory epilepsy. In addition to LCD diets, another interesting dietary approach which gained attention in the last few decades is fasting and its beneficial effects in terms of modulation of metabolic pathways, cellular processes and hormonal secretions. Due to the impossibility of using fasting regimens for long periods of time, several alternative strategies have been proposed that can mimic the effects, including calorie restriction, intermittent or alternating fasting, and the so-called fasting mimicking diets (FMDs). Recent preclinical studies have shown positive effects of FMDs in various experimental models of tumors, diabetes, Alzheimer Disease, and other morbid conditions, but to date, the scientific evidence in humans is limited to some opens studies and case reports. The purpose of our narrative review is to offer an overview of the characteristics of the main dietary regimens applied in the treatment of different clinical conditions as well as of the scientific evidence that justifies their use, focusing on low and zero-carb diets and on the different types of fasting.
Collapse
Affiliation(s)
- Samir Giuseppe Sukkar
- Unità Operativa Dipartimentale Dietetica e Nutrizione Clinica, Dipartimento Medicina Interna, Policlinico San Martino di Genova Istituto di Ricovero e Cura a Carattere Scientifico per l'Oncologia e la Neurologia, Genova, Italy
| | - Maurizio Muscaritoli
- Unità Operativa Complessa di Medicina Interna e Nutrizione Clinica, Dipartimento ad Attività Integrata di Medicina Interna Scienze Endocrino-Metaboliche e Malattie Infettive, Azienda Ospedaliera Universitaria Policlinico Umberto I, Rome, Italy
| |
Collapse
|
16
|
Talib WH, Mahmod AI, Kamal A, Rashid HM, Alashqar AMD, Khater S, Jamal D, Waly M. Ketogenic Diet in Cancer Prevention and Therapy: Molecular Targets and Therapeutic Opportunities. Curr Issues Mol Biol 2021; 43:558-589. [PMID: 34287243 PMCID: PMC8928964 DOI: 10.3390/cimb43020042] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Although cancer is still one of the most significant global challenges facing public health, the world still lacks complementary approaches that would significantly enhance the efficacy of standard anticancer therapies. One of the essential strategies during cancer treatment is following a healthy diet program. The ketogenic diet (KD) has recently emerged as a metabolic therapy in cancer treatment, targeting cancer cell metabolism rather than a conventional dietary approach. The ketogenic diet (KD), a high-fat and very-low-carbohydrate with adequate amounts of protein, has shown antitumor effects by reducing energy supplies to cells. This low energy supply inhibits tumor growth, explaining the ketogenic diet's therapeutic mechanisms in cancer treatment. This review highlights the crucial mechanisms that explain the ketogenic diet's potential antitumor effects, which probably produces an unfavorable metabolic environment for cancer cells and can be used as a promising adjuvant in cancer therapy. Studies discussed in this review provide a solid background for researchers and physicians to design new combination therapies based on KD and conventional therapies.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Ayah Kamal
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Hasan M. Rashid
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Aya M. D. Alashqar
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Samar Khater
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Duaa Jamal
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Mostafa Waly
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 34-123, Oman;
| |
Collapse
|
17
|
Cruz Da Silva E, Mercier MC, Etienne-Selloum N, Dontenwill M, Choulier L. A Systematic Review of Glioblastoma-Targeted Therapies in Phases II, III, IV Clinical Trials. Cancers (Basel) 2021; 13:1795. [PMID: 33918704 PMCID: PMC8069979 DOI: 10.3390/cancers13081795] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM), the most frequent and aggressive glial tumor, is currently treated as first line by the Stupp protocol, which combines, after surgery, radiotherapy and chemotherapy. For recurrent GBM, in absence of standard treatment or available clinical trials, various protocols including cytotoxic drugs and/or bevacizumab are currently applied. Despite these heavy treatments, the mean overall survival of patients is under 18 months. Many clinical studies are underway. Based on clinicaltrials.org and conducted up to 1 April 2020, this review lists, not only main, but all targeted therapies in phases II-IV of 257 clinical trials on adults with newly diagnosed or recurrent GBMs for the last twenty years. It does not involve targeted immunotherapies and therapies targeting tumor cell metabolism, that are well documented in other reviews. Without surprise, the most frequently reported drugs are those targeting (i) EGFR (40 clinical trials), and more generally tyrosine kinase receptors (85 clinical trials) and (ii) VEGF/VEGFR (75 clinical trials of which 53 involving bevacizumab). But many other targets and drugs are of interest. They are all listed and thoroughly described, on an one-on-one basis, in four sections related to targeting (i) GBM stem cells and stem cell pathways, (ii) the growth autonomy and migration, (iii) the cell cycle and the escape to cell death, (iv) and angiogenesis.
Collapse
Affiliation(s)
- Elisabete Cruz Da Silva
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| | - Marie-Cécile Mercier
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| | - Nelly Etienne-Selloum
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
- Service de Pharmacie, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Monique Dontenwill
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| | - Laurence Choulier
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| |
Collapse
|
18
|
Tu J, Fang Y, Han D, Tan X, Jiang H, Gong X, Wang X, Hong W, Wei W. Activation of nuclear factor-κB in the angiogenesis of glioma: Insights into the associated molecular mechanisms and targeted therapies. Cell Prolif 2020; 54:e12929. [PMID: 33300633 PMCID: PMC7848966 DOI: 10.1111/cpr.12929] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
Glioma is the most commonly observed primary intracranial tumour and is associated with massive angiogenesis. Glioma neovascularization provides nutrients for the growth and metabolism of tumour tissues, promotes tumour cell division and proliferation, and provides conditions ideal for the infiltration and migration of tumour cells to distant places. Growing evidence suggests that there is a correlation between the activation of nuclear factor (NF)‐κB and the angiogenesis of glioma. In this review article, we highlighted the functions of NF‐κB in the angiogenesis of glioma, showing that NF‐κB activation plays a pivotal role in the growth and progression of glioma angiogenesis and is a rational therapeutic target for antiangiogenic strategies aimed at glioma.
Collapse
Affiliation(s)
- Jiajie Tu
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Yilong Fang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Dafei Han
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Xuewen Tan
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Haifeng Jiang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Xun Gong
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Xinming Wang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenming Hong
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
19
|
Montemurro N, Perrini P, Rapone B. Clinical Risk and Overall Survival in Patients with Diabetes Mellitus, Hyperglycemia and Glioblastoma Multiforme. A Review of the Current Literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:8501. [PMID: 33212778 PMCID: PMC7698156 DOI: 10.3390/ijerph17228501] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 12/15/2022]
Abstract
The relationship between type 2 diabetes mellitus (DM2) and hyperglycemia with cancer patients remains controversial also in the setting of patients with glioblastoma multiforme (GBM), the most common and aggressive form of astrocytoma with a short overall survival (OS) and poor prognosis. A systematic search of two databases was performed for studies published up to 19 August 2020, reporting the OS of patients with DM2 or high blood sugar level and GBM and the clinical risk of diabetic patients for development of GBM. According to PRISMA guidelines, we included a total of 20 papers reporting clinical data of patients with GBM and diabetes and/or hyperglycemia. The aim of this review was to investigate the effect of DM2, hyperglycemia and metformin on OS of patients with GBM. In addition, we evaluated the effect of these factors on the risk of development of GBM. This review supports accumulating evidence that hyperglycemia, rather than DM2, and elevated BMI are independent risk factors for poor outcome and shorter OS in patients with GBM. GBM patients with normal weight compared to obese, and diabetic patients on metformin compared to other therapies, seems to have a longer OS. Further studies are needed to understand better these associations.
Collapse
Affiliation(s)
- Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana (AOUP), 56126 Pisa, Italy;
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Paolo Perrini
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana (AOUP), 56126 Pisa, Italy;
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Biagio Rapone
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, “Aldo Moro” University of Bari, 70121 Bari, Italy;
| |
Collapse
|
20
|
Panhans CM, Gresham G, Amaral LJ, Hu J. Exploring the Feasibility and Effects of a Ketogenic Diet in Patients With CNS Malignancies: A Retrospective Case Series. Front Neurosci 2020; 14:390. [PMID: 32508561 PMCID: PMC7248360 DOI: 10.3389/fnins.2020.00390] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/30/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Recently, the ketogenic diet has been proposed as an adjunct treatment for a range of medical conditions including weight loss, diabetes, cancer, and neurodegenerative diseases. Because malignant CNS tumors are highly dependent on glucose, the use of a ketogenic diet as an adjunct therapy is currently being explored. This case series summarizes our experience implementing a ketogenic diet for patients with CNS malignancies. Methods: Patients diagnosed with CNS malignancies following a ketogenic diet were identified between 2015 and 2017. Malignancies included confirmed diagnoses of glioblastoma (GBM), astrocytoma, or oligodendroglioma. With guidance from a registered dietitian, ketone levels, glucose levels, and weight were regularly collected for several patients along with patient-reported symptoms and adverse effects. Interested patients were asked to follow a 3:1 ketogenic diet for 120 days. The ketogenic diet is a high-fat, moderate protein, and very low carbohydrate diet, where patients limited carbohydrate intake to ≤20 g per day. Brain imaging was reviewed. A series of descriptive analyses were conducted. Results: The ketogenic diet was initiated in 12 patients of which 8 patients contributed data on their blood glucose and ketone levels. The majority of patients were male (n = 10) with a median age of 45 (range 32–62). Diagnoses included GBM (n = 6), grade 2/3 astrocytomas (n = 5) and one patient with a grade 2 spinal cord astrocytoma. Ten of the 12 patients were receiving concurrent treatment; two received supportive care only. The majority of patients with evaluable data (n = 8) maintained ketone levels above 0.5 mM for the duration of 120-day period. Ketone levels generally increased from baseline while glucose levels and BMI decreased. Overall, patients reported improved symptoms over the course of the diet. Imaging also suggested improved disease control and reduction in vasogenic edema. Conclusion: Taking advantage of a tumor’s metabolic inflexibility can have a positive impact on patients, particularly those with CNS malignancies. More structured and statistically planned clinical trials are needed to determine the margin of impact of a ketogenic diet.
Collapse
Affiliation(s)
- Cristina M Panhans
- Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Center, Los Angeles, CA, United States
| | - Gillian Gresham
- Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Center, Los Angeles, CA, United States
| | - L J Amaral
- Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Center, Los Angeles, CA, United States
| | - Jethro Hu
- Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Center, Los Angeles, CA, United States
| |
Collapse
|
21
|
Vargas-Molina S, Petro JL, Romance R, Kreider RB, Schoenfeld BJ, Bonilla DA, Benítez-Porres J. Effects of a ketogenic diet on body composition and strength in trained women. J Int Soc Sports Nutr 2020; 17:19. [PMID: 32276630 PMCID: PMC7146906 DOI: 10.1186/s12970-020-00348-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/27/2020] [Indexed: 01/07/2023] Open
Abstract
Background The effect of ketogenic diets (KD) on body composition in different populations has been investigated. More recently, some have recommended that athletes adhere to ketogenic diets in order to optimize changes in body composition during training. However, there is less evidence related to trained women. We aimed to evaluate the effect of a KD on body composition and strength in trained women following an eight-week resistance training (RT) program. Methods Twenty-one strength-trained women (27.6 ± 4.0 years; 162.1 ± 6.6 cm; 62.3 ± 7.8 kg; 23.7 ± 2.9 kg·m− 2) were randomly assigned to either a non-KD group (n = 11, NKD) or a KD group (n = 10, KD). Study outcomes included body composition as measured by dual-energy X-ray absorptiometry (DXA), strength levels measured using one maximum repetition (RM) in back squat and bench press (BP), and countermovement jump (CMJ) measured on a force plate. Results A significant reduction in fat mass was observed in KD (− 1.1 ± 1.5 kg; P = 0.042; d = − 0.2) but not in NDK (0.3 ± 0.8 kg; P = 0.225; d = 0.1). No significant changes in fat-free mass were observed in KD (− 0.7 ± 1.7 kg; P = 0.202; d = − 0.1) or NKD (0.7 ± 1.1 kg; P = 0.074; d = 0.2), but absolute changes favored NKD. No significant changes in BP were observed in KD (1.5 ± 4.6 kg; P = 0.329; d = 0.2), although significant changes were noted in the squat and CMJ (5.6 ± 7.6 kg; P = 0.045; d = 0.5 and 2.2 ± 1.7 kg; P = 0.022; d = 0.6, respectively). In contrast, NKD showed significant increases in BP (4.8 ± 1.8; P < 0.01; d = 0.7), squat (15.6 ± 5.4 kg; P = 0.005; d = 1.4) and CMJ (22.0 + 4.2 cm; P = 0.001; d = 0.5). Conclusions Findings indicate that a KD may help to decrease fat mass and maintain fat-free mass after eight 8 weeks of RT in trained-women but is suboptimal for increasing fat-free mass.
Collapse
Affiliation(s)
- Salvador Vargas-Molina
- Human Kinetics and Body Composition Laboratory, University of Málaga, Bulevar Louis Pasteur, 25, 29010, Málaga, Spain.,EADE-University of Wales Trinity Saint David, Málaga, Spain
| | - Jorge L Petro
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería, Colombia.,Research Division, DBSS INTERNATIONAL SAS, Bogotá, Colombia
| | - Ramón Romance
- Human Kinetics and Body Composition Laboratory, University of Málaga, Bulevar Louis Pasteur, 25, 29010, Málaga, Spain
| | - Richard B Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX, USA
| | | | | | - Javier Benítez-Porres
- Human Kinetics and Body Composition Laboratory, University of Málaga, Bulevar Louis Pasteur, 25, 29010, Málaga, Spain.
| |
Collapse
|
22
|
Martin-McGill KJ, Marson AG, Tudur Smith C, Young B, Mills SJ, Cherry MG, Jenkinson MD. Ketogenic diets as an adjuvant therapy for glioblastoma (KEATING): a randomized, mixed methods, feasibility study. J Neurooncol 2020; 147:213-227. [PMID: 32036576 PMCID: PMC7076054 DOI: 10.1007/s11060-020-03417-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/30/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE We conducted a feasibility study to investigate the use of ketogenic diets (KDs) as an adjuvant therapy for patients with glioblastoma (GBM), investigating (i) trial feasibility; (ii) potential impacts of the trial on patients' quality of life and health; (iii) patients' perspectives of their decision-making when invited to participate in the trial and (iv) recommending improvements to optimize future phase III trials. METHODS A single-center, prospective, randomized, pilot study (KEATING), with an embedded qualitative design. Twelve newly diagnosed patients with GBM were randomized 1:1 to modified ketogenic diet (MKD) or medium chain triglyceride ketogenic diet (MCTKD). Primary outcome was retention at three months. Semi-structured interviews were conducted with a purposive sample of patients and caregivers (n = 15). Descriptive statistics were used for quantitative outcomes and qualitative data were analyzed thematically aided by NVivo. RESULTS KEATING achieved recruitment targets, but the recruitment rate was low (28.6%). Retention was poor; only four of 12 patients completed the three-month diet (MCTKD n = 3; MKD n = 1). Participants' decisions were intuitive and emotional; caregivers supported diet implementation and influenced the patients' decision to participate. Those who declined made a deliberative and considered decision factoring diet burden and quality of life. A three-month diet was undesirable to patients who declined and withdrew. CONCLUSION Recruitment to a KD trial for patients with GBM is possible. A six-week intervention period is proposed for a phase III trial. The role of caregivers should not be underestimated. Future trials should optimize and adequately support the decision-making of patients.
Collapse
Affiliation(s)
- Kirsty J Martin-McGill
- Institute of Translational Medicine, University of Liverpool, Brownlow Hill, Liverpool, L69 3BX, UK. .,Department of Clinical Sciences and Nutrition, University of Chester, Chester, UK.
| | - Anthony G Marson
- Institute of Translational Medicine, University of Liverpool, Brownlow Hill, Liverpool, L69 3BX, UK.,The Walton Centre NHS Foundation Trust, Lower Lane, Liverpool, L9 7LJ, UK
| | - Catrin Tudur Smith
- Department of Biostatistics, University of Liverpool, Brownlow Hill, Liverpool, L69 3BX, UK
| | - Bridget Young
- Department of Health Services Research, University of Liverpool, Brownlow Hill, Liverpool, L69 3BX, UK
| | - Samantha J Mills
- The Walton Centre NHS Foundation Trust, Lower Lane, Liverpool, L9 7LJ, UK
| | - M Gemma Cherry
- Department of Psychological Sciences, University of Liverpool, Brownlow Hill, Liverpool, L69 3BX, UK.,Clinical Health Psychology Service, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK
| | - Michael D Jenkinson
- Institute of Translational Medicine, University of Liverpool, Brownlow Hill, Liverpool, L69 3BX, UK.,The Walton Centre NHS Foundation Trust, Lower Lane, Liverpool, L9 7LJ, UK
| |
Collapse
|
23
|
Li Z, Li F, Ma C, Xu C, Pan Z. Advancement of clinical therapeutic research on glioma: A narrative review. GLIOMA 2020. [DOI: 10.4103/glioma.glioma_18_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
24
|
Ketogenic Diet: A New Light Shining on Old but Gold Biochemistry. Nutrients 2019; 11:nu11102497. [PMID: 31627352 PMCID: PMC6836190 DOI: 10.3390/nu11102497] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022] Open
Abstract
Diets low in carbohydrates and proteins and enriched in fat stimulate the hepatic synthesis of ketone bodies (KB). These molecules are used as alternative fuel for energy production in target tissues. The synthesis and utilization of KB are tightly regulated both at transcriptional and hormonal levels. The nuclear receptor peroxisome proliferator activated receptor α (PPARα), currently recognized as one of the master regulators of ketogenesis, integrates nutritional signals to the activation of transcriptional networks regulating fatty acid β-oxidation and ketogenesis. New factors, such as circadian rhythms and paracrine signals, are emerging as important aspects of this metabolic regulation. However, KB are currently considered not only as energy substrates but also as signaling molecules. β-hydroxybutyrate has been identified as class I histone deacetylase inhibitor, thus establishing a connection between products of hepatic lipid metabolism and epigenetics. Ketogenic diets (KD) are currently used to treat different forms of infantile epilepsy, also caused by genetic defects such as Glut1 and Pyruvate Dehydrogenase Deficiency Syndromes. However, several researchers are now focusing on the possibility to use KD in other diseases, such as cancer, neurological and metabolic disorders. Nonetheless, clear-cut evidence of the efficacy of KD in other disorders remains to be provided in order to suggest the adoption of such diets to metabolic-related pathologies.
Collapse
|
25
|
Feng S, Wang H, Liu J, Aa J, Zhou F, Wang G. Multi-dimensional roles of ketone bodies in cancer biology: Opportunities for cancer therapy. Pharmacol Res 2019; 150:104500. [PMID: 31629092 DOI: 10.1016/j.phrs.2019.104500] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/29/2019] [Accepted: 10/15/2019] [Indexed: 01/09/2023]
Abstract
Ketone bodies are traditionally viewed as metabolic substrates in carbohydrate restriction and are applied in the treatment of epilepsy and other neurodegenerative diseases. Recently, people have paid more attention to its application in the treatment for cancers. Compared to normal cells, cancer cells maintain a higher level of reactive oxygen species (ROS) due to the dysfunctional oxidative phosphorylation and they highly rely on glucose for glycolysis and pentose phosphate pathway (PPP) to against the oxidative stress. Based on tumor metabolism, ketogenic diets (low-carbohydrate, high-fat, and moderate protein) or ketone supplementation, as non-toxic therapeutic approaches, showed a positive therapeutic advantage in a broad range of malignancies. This review summarizes the multi-dimensional roles of ketone bodies in cancer biology and discusses the potential underlying mechanism in the inhibition of tumor growth.
Collapse
Affiliation(s)
- Siqi Feng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Huan Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiali Liu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiye Aa
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
26
|
Noorlag L, De Vos FY, Kok A, Broekman MLD, Seute T, Robe PA, Snijders TJ. Treatment of malignant gliomas with ketogenic or caloric restricted diets: A systematic review of preclinical and early clinical studies. Clin Nutr 2019; 38:1986-1994. [PMID: 30473444 DOI: 10.1016/j.clnu.2018.10.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Patients with malignant gliomas have a poor prognosis. Diets that lower blood glucose, such as ketogenic or caloric restricted diets (KCRDs), are hypothesized to reduce tumor growth and improve survival. In this systematic review, we summarize preclinical and clinical data on KCRDs in gliomas. METHODS We searched PubMed and Embase for preclinical and clinical studies on KCRDs in gliomas, and extracted data on surrogate and clinically relevant endpoints, in accordance with PRISMA statement. Quality assessment of clinical studies was performed with use of Cochrane Collaboration's tool. We performed Fisher's exact test to examine associations between surrogate and clinically relevant endpoints. RESULTS We included 24 preclinical studies, seven clinical studies and one mixed study. Both preclinical and clinical studies were highly heterogeneous. Preclinically, KCRDs reduced tumor growth, but only a small majority of the in vivo studies found improved survival. These effects were stronger in groups with decreased blood glucose than in those with increased ketones, and also when other therapies were used concomitantly. Finally, KCRDs influence multiple molecular-biological pathways, including the PTEN/Akt/TSC2 and NF-kB pathway. In clinical studies, KCRDs seem to be safe and feasible in glioma patients. Clinical data were insufficient to draw conclusions regarding efficacy. CONCLUSIONS KCRDs have positive effects on malignant gliomas in published preclinical studies. Preliminary clinical data suggest that KCRDs are safe and feasible. However, because of the paucity of clinical data, the efficacy of KCRDs for improving survival and quality of life of glioma patients remains to be proven in prospective studies.
Collapse
Affiliation(s)
- Lotte Noorlag
- Brain Center Rudolf Magnus, Department of Neurology, University Medical Center Utrecht, G03.232, PO Box 85500, 3508 GA, Utrecht, the Netherlands
| | - Filip Y De Vos
- Department of Medical Oncology, Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Annemieke Kok
- Department of Dietetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marike L D Broekman
- Brain Center Rudolf Magnus, Department of Neurosurgery, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands; Department of Neurosurgery, Haaglanden Medical Center, The Hague, the Netherlands
| | - Tatjana Seute
- Brain Center Rudolf Magnus, Department of Neurology, University Medical Center Utrecht, G03.232, PO Box 85500, 3508 GA, Utrecht, the Netherlands
| | - Pierre A Robe
- Brain Center Rudolf Magnus, Department of Neurosurgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Tom J Snijders
- Brain Center Rudolf Magnus, Department of Neurology, University Medical Center Utrecht, G03.232, PO Box 85500, 3508 GA, Utrecht, the Netherlands.
| |
Collapse
|
27
|
Iyikesici MS. Feasibility study of metabolically supported chemotherapy with weekly carboplatin/paclitaxel combined with ketogenic diet, hyperthermia and hyperbaric oxygen therapy in metastatic non-small cell lung cancer. Int J Hyperthermia 2019; 36:446-455. [DOI: 10.1080/02656736.2019.1589584] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Mehmet Salih Iyikesici
- Department of Medical Oncology, School of Medicine, Altinbas University, Istanbul, Turkey
- ChemoThermia Oncology Center, Istanbul, Turkey
| |
Collapse
|
28
|
Chen TC, da Fonseca CO, Schönthal AH. Intranasal Perillyl Alcohol for Glioma Therapy: Molecular Mechanisms and Clinical Development. Int J Mol Sci 2018; 19:E3905. [PMID: 30563210 PMCID: PMC6321279 DOI: 10.3390/ijms19123905] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/26/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023] Open
Abstract
Intracranial malignancies, such as primary brain cancers and brain-localized metastases derived from peripheral cancers, are particularly difficult to treat with therapeutic agents, because the blood-brain barrier (BBB) effectively minimizes brain entry of the vast majority of agents arriving from the systemic circulation. Intranasal administration of cancer drugs has the potential to reach the brain via direct nose-to-brain transport, thereby circumventing the obstacle posed by the BBB. However, in the field of cancer therapy, there is a paucity of studies reporting positive results with this type of approach. A remarkable exception is the natural compound perillyl alcohol (POH). Its potent anticancer activity was convincingly established in preclinical studies, but it nonetheless failed in subsequent clinical trials, where it was given orally and displayed hard-to-tolerate gastrointestinal side effects. Intriguingly, when switched to intranasal delivery, POH yielded highly promising activity in recurrent glioma patients and was well tolerated. As of 2018, POH is the only intranasally delivered compound in the field of cancer therapy (outside of cancer pain) that has advanced to active clinical trials. In the following, we will introduce this compound, summarize its molecular mechanisms of action, and present the latest data on its clinical evaluation as an intranasally administered agent for glioma.
Collapse
Affiliation(s)
- Thomas C Chen
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| | - Clovis O da Fonseca
- Department of General and Specialized Surgery, Antonio Pedro University Hospital, Fluminense Federal University, Niterói, RJ 24220, Brazil.
| | - Axel H Schönthal
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
29
|
Application of Bayesian evidence synthesis to modelling the effect of ketogenic therapy on survival of high grade glioma patients. Theor Biol Med Model 2018; 15:12. [PMID: 30122157 PMCID: PMC6100754 DOI: 10.1186/s12976-018-0084-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/04/2018] [Indexed: 02/06/2023] Open
Abstract
Background Ketogenic therapy in the form of ketogenic diets or calorie restriction has been proposed as a metabolic treatment of high grade glioma (HGG) brain tumors based on mechanistic reasoning obtained mainly from animal experiments. Given the paucity of clinical studies of this relatively new approach, our goal is to extrapolate evidence from the greater number of animal studies and synthesize it with the available human data in order to estimate the expected effects of ketogenic therapy on survival in HGG patients. At the same time we are using this analysis as an example for demonstrating how Bayesianism can be applied in the spirit of a circular view of evidence. Results A Bayesian hierarchical model was developed. Data from three human cohort studies and 17 animal experiments were included to estimate the effects of four ketogenic interventions (calorie restriction/ketogenic diets as monotherapy/combination therapy) on the restricted mean survival time ratio in humans using various assumptions for the relationships between humans, rats and mice. The impact of different biological assumptions about the relevance of animal data for humans as well as external information based on mechanistic reasoning or case studies was evaluated by specifying appropriate priors. We provide statistical and philosophical arguments for why our approach is an improvement over existing (frequentist) methods for evidence synthesis as it is able to utilize evidence from a variety of sources. Depending on the prior assumptions, a 30–70% restricted mean survival time prolongation in HGG patients was predicted by the models. The highest probability of a benefit (> 90%) for all four ketogenic interventions was obtained when adopting an enthusiastic prior based on previous case reports together with assuming synergism between ketogenic therapies with other forms of treatment. Combinations with other treatments were generally found more effective than ketogenic monotherapy. Conclusions Combining evidence from both human and animal studies is statistically possible using a Bayesian approach. We found an overall survival-prolonging effect of ketogenic therapy in HGG patients. Our approach is best compatible with a circular instead of hierarchical view of evidence and easy to update once more data become available. Electronic supplementary material The online version of this article (10.1186/s12976-018-0084-y) contains supplementary material, which is available to authorized users.
Collapse
|
30
|
Venegas-Borsellino C, Sonikpreet, Bhutiani N. Fasting and its Therapeutic Impact in Brain Tumors. CURRENT SURGERY REPORTS 2018. [DOI: 10.1007/s40137-018-0208-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
31
|
Martin-McGill KJ, Marson AG, Tudur Smith C, Jenkinson MD. The Modified Ketogenic Diet in Adults with Glioblastoma: An Evaluation of Feasibility and Deliverability within the National Health Service. Nutr Cancer 2018; 70:643-649. [DOI: 10.1080/01635581.2018.1460677] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kirsty J. Martin-McGill
- Institute of Translational Medicine, University of Liverpool and The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Anthony G. Marson
- Institute of Translational Medicine, University of Liverpool and The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Catrin Tudur Smith
- Department of Biostatistics, University of Liverpool, Brownlow Hill, Liverpool, UK
| | - Michael D. Jenkinson
- Institute of Translational Medicine, University of Liverpool and The Walton Centre NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
32
|
Arthur AE, Goss AM, Demark-Wahnefried W, Mondul AM, Fontaine KR, Chen YT, Carroll WR, Spencer SA, Rogers LQ, Rozek LS, Wolf GT, Gower BA. Higher carbohydrate intake is associated with increased risk of all-cause and disease-specific mortality in head and neck cancer patients: results from a prospective cohort study. Int J Cancer 2018; 143:1105-1113. [PMID: 29604042 DOI: 10.1002/ijc.31413] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 01/01/2023]
Abstract
No studies have evaluated associations between carbohydrate intake and head and neck squamous cell carcinoma (HNSCC) prognosis. We prospectively examined associations between pre- and post-treatment carbohydrate intake and recurrence, all-cause mortality, and HNSCC-specific mortality in a cohort of 414 newly diagnosed HNSCC patients. All participants completed pre- and post-treatment Food Frequency Questionnaires (FFQs) and epidemiologic surveys. Recurrence and mortality events were collected annually. Multivariable Cox Proportional Hazards models tested associations between carbohydrate intake (categorized into low, medium and high intake) and time to recurrence and mortality, adjusting for relevant covariates. During the study period, there were 70 deaths and 72 recurrences. In pretreatment analyses, high intakes of total carbohydrate (HR: 2.29; 95% CI: 1.23-4.25), total sugar (HR: 3.03; 95% CI: 1.12-3.68), glycemic load (HR: 2.10; 95% CI: 1.15-3.83) and simple carbohydrates (HR 2.26; 95% CI 1.19-4.32) were associated with significantly increased risk of all-cause mortality compared to low intake. High intakes of carbohydrate (HR 2.45; 95% CI: 1.23-4.25) and total sugar (HR 3.03; 95% CI 1.12-3.68) were associated with increased risk of HNSCC-specific mortality. In post-treatment analyses, medium fat intake was significantly associated with reduced risk of recurrence (HR 0.08; 95% CI 0.01-0.69) and all-cause mortality (HR 0.27; 95% CI 0.07-0.96). Stratification by tumor site and cancer stage in pretreatment analyses suggested effect modification by these factors. Our data suggest high pretreatment carbohydrate intake may be associated with adverse prognosis in HNSCC patients. Clinical intervention trials to further examine this hypothesis are warranted.
Collapse
Affiliation(s)
- Anna E Arthur
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL.,Carle Foundation Hospital, Carle Cancer Center, Urbana, IL
| | - Amy M Goss
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | | | - Alison M Mondul
- Department of Epidemiology, University of Michigan, Ann Arbor, MI
| | - Kevin R Fontaine
- Department of Health Behavior, University of Alabama at Birmingham, Birmingham, AL
| | - Yi Tang Chen
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL
| | - William R Carroll
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| | - Sharon A Spencer
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL
| | - Laura Q Rogers
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Laura S Rozek
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI.,Department of Otolaryngology, University of Michigan, Ann Arbor, MI
| | - Gregory T Wolf
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI
| | - Barbara A Gower
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | | |
Collapse
|
33
|
Erukainure OL, Ashraf N, Naqvi AS, Zaruwa MZ, Muhammad A, Odusote AD, Elemo GN. Fatty Acids Rich Extract From Clerodendrum volubile Suppresses Cell Migration; Abates Oxidative Stress; and Regulates Cell Cycle Progression in Glioblastoma Multiforme (U87 MG) Cells. Front Pharmacol 2018; 9:251. [PMID: 29615913 PMCID: PMC5870396 DOI: 10.3389/fphar.2018.00251] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 03/06/2018] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a malignant primary type of brain cancer with high proliferation and metastasis rates due to involvement of the microglial cell. It is resistant against available chemotherapy. Many strategic protocols have been developed but prognosis and patient life has not improved substantially. In this study, the anti-metastatic and antioxidant effect of fatty acids from Clerodendrum volubile leaves were investigated in U87-MG (Human Glioblastoma Multiforme) cell lines. The extracted fatty acids were incubated with U87-MG cells for 48 h. The anti-proliferative effect was determined by MTT assay, while apoptosis and cell cycle were analyzed with BD FACSCalibur. The transwell assay protocol was utilized in the analysis of cell migration and invasion. The treated cell lines were also assessed for reduced glutathione (GSH) level, catalase, superoxide dismutase (SOD) and lipid peroxidation. The fatty acid extract showed significant inhibitory activity on cell proliferation and cell cycle progression, mitigated oxidative stress, and suppressed migration and invasion in U-87 MG cell lines. These results give credence to the therapeutic potential of this plant against cancer, especially GBM.
Collapse
Affiliation(s)
- Ochuko L Erukainure
- Nutrition and Toxicology Division, Federal Institute of Industrial Research Oshodi, Lagos, Nigeria
| | - Nadia Ashraf
- Faculty of Pharmacy, Barrett Hodgson University, Karachi, Pakistan
| | - Asma S Naqvi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Moses Z Zaruwa
- Department of Biochemistry, Adamawa State University, Mubi, Nigeria
| | - Aliyu Muhammad
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.,Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Adenike D Odusote
- Analytical Division, Federal Institute of Industrial Research Oshodi, Lagos, Nigeria
| | - Gloria N Elemo
- Nutrition and Toxicology Division, Federal Institute of Industrial Research Oshodi, Lagos, Nigeria
| |
Collapse
|
34
|
Gardener SL, Rainey-Smith SR, Sohrabi HR, Weinborn M, Verdile G, Fernando WMADB, Lim YY, Harrington K, Burnham S, Taddei K, Masters CL, Macaulay SL, Rowe CC, Ames D, Maruff P, Martins RN. Increased Carbohydrate Intake is Associated with Poorer Performance in Verbal Memory and Attention in an APOE Genotype-Dependent Manner. J Alzheimers Dis 2018; 58:193-201. [PMID: 28387666 DOI: 10.3233/jad-161158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Evidence suggests that a diet low in carbohydrates can impact on cognitive performance among those with Alzheimer's disease (AD). However, there is a lack of data assessing this relationship among cognitively normal (CN) older adults at increased future risk of developing AD due to carriage of the apolipoprotein E (APOE) ɛ4 allele. We assessed the cross-sectional association between carbohydrate intake, cognitive performance, and cerebral amyloid-β (Aβ) load in CN older adults, genotyped for APOEɛ4 allele carrier status. Greater carbohydrate intake was associated with poorer performance in verbal memory in APOEɛ4 allele non-carriers, and poorer performance in attention in APOEɛ4 allele carriers. There were no associations between carbohydrate intake and cerebral Aβ load. These results provide support to the idea that decreasing carbohydrate intake may offer neurocognitive benefits, with specific cognitive domains affected in an APOE genotype-dependent manner. These findings warrant further investigation utilizing a longitudinal study design.
Collapse
Affiliation(s)
- Samantha L Gardener
- Centre of Excellence for Alzheimer's disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), Perth, WA, Australia
| | - Stephanie R Rainey-Smith
- Centre of Excellence for Alzheimer's disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), Perth, WA, Australia
| | - Hamid R Sohrabi
- Centre of Excellence for Alzheimer's disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), Perth, WA, Australia.,Department of Biomedical Sciences, Macquarie University, NSW, Australia
| | - Michael Weinborn
- Centre of Excellence for Alzheimer's disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), Perth, WA, Australia.,School of Psychology, University of Western Australia, Crawley, WA, Australia
| | - Giuseppe Verdile
- Centre of Excellence for Alzheimer's disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), Perth, WA, Australia.,School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University of Technology, Bentley, WA, Australia
| | - W M A D Binosha Fernando
- Centre of Excellence for Alzheimer's disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), Perth, WA, Australia
| | - Yen Ying Lim
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Karra Harrington
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Cooperative Research Centre (CRC) for Mental Health, Carlton South, VIC, Australia
| | - Samantha Burnham
- CSIRO Computational Informatics, Preventative Health Flagship, Floreat, WA, Australia
| | - Kevin Taddei
- Centre of Excellence for Alzheimer's disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), Perth, WA, Australia
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | | | - Christopher C Rowe
- Department of Molecular Imaging and Therapy, Centre for PET, Austin Health, Heidelberg, VIC, Australia
| | - David Ames
- National Ageing Research Institute, Royal Melbourne Hospital, Melbourne, Australia.,Academic Unit for Psychiatry of Old Age, University of Melbourne, Melbourne, Australia
| | | | - Ralph N Martins
- Centre of Excellence for Alzheimer's disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), Perth, WA, Australia.,Department of Biomedical Sciences, Macquarie University, NSW, Australia
| | | |
Collapse
|
35
|
Lemke D, Pledl HW, Zorn M, Jugold M, Green E, Blaes J, Löw S, Hertenstein A, Ott M, Sahm F, Steffen AC, Weiler M, Winkler F, Platten M, Dong Z, Wick W. Slowing down glioblastoma progression in mice by running or the anti-malarial drug dihydroartemisinin? Induction of oxidative stress in murine glioblastoma therapy. Oncotarget 2018; 7:56713-56725. [PMID: 27447560 PMCID: PMC5302947 DOI: 10.18632/oncotarget.10723] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/14/2016] [Indexed: 12/18/2022] Open
Abstract
Influencing cancer metabolism by lifestyle changes is an attractive strategy as - if effective - exercise-induced problems may be less severe than those induced by classical anti-cancer therapies. Pursuing this idea, clinical trials evaluated the benefit of e.g. different diets such as the ketogenic diet, intermittent caloric restriction and physical exercise (PE) in the primary and secondary prevention of different cancer types. PE proved to be beneficial in the context of breast and colon cancer.Glioblastoma has a dismal prognosis, with an average overall survival of about one year despite maximal safe resection, concomitant radiochemotherapy with temozolomide followed by adjuvant temozolomide therapy. Here, we focused on the influence of PE as an isolated and adjuvant treatment in murine GB therapy.PE did not reduce toxic side effects of chemotherapy in mice administered in a dose escalating scheme as shown before for starvation. Although regular treadmill training on its own had no obvious beneficial effects, its combination with temozolomide was beneficial in the treatment of glioblastoma-bearing mice. As PE might partly act through the induction of reactive oxygen species, dihydroartemisinin - an approved anti-malarial drug which induces oxidative stress in glioma cells - was further evaluated in vitro and in vivo. Dihydroartemisinin showed anti-glioma activity by promoting autophagy, reduced the clonogenic survival and proliferation capacity of glioma cells, and prolonged the survival of tumor bearing mice. Using the reactive oxygen species scavenger n-acetyl-cysteine these effects were in part reversible, suggesting that dihydroartemisinin partly acts through the generation of reactive oxygen species.
Collapse
Affiliation(s)
- Dieter Lemke
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University of Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hans-Werner Pledl
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University of Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Markus Zorn
- Central Laboratory of Heidelberg University Hospital, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manfred Jugold
- Core Facility Small Animal Imaging Center, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ed Green
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonas Blaes
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sarah Löw
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University of Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anne Hertenstein
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University of Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Ott
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, University of Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ann-Catherine Steffen
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Markus Weiler
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University of Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Winkler
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University of Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Platten
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University of Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Zhen Dong
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wolfgang Wick
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University of Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
36
|
Martin-McGill KJ, Marson AG, Tudur Smith C, Jenkinson MD. Ketogenic diets as an adjuvant therapy in glioblastoma (the KEATING trial): study protocol for a randomised pilot study. Pilot Feasibility Stud 2017; 3:67. [PMID: 29209515 PMCID: PMC5704454 DOI: 10.1186/s40814-017-0209-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/13/2017] [Indexed: 01/07/2023] Open
Abstract
Background Glioblastoma is the commonest form of malignant brain tumour in adults, affecting 2-3 people per 100,000 per year. Despite current treatment options including surgical resection, radiotherapy and temozolomide chemotherapy, overall survival at 2 years is approximately 27%, with a median survival of 12-14 months. The ketogenic diet (KD) is postulated to work by simulating the metabolic response to fasting by promoting the utilisation of ketones as a primary energy source, and depriving the glycolytic pathways utilised by malignant glioma cells for growth. At present, there is no consensus as to which KD is preferable, with previous case series using different KDs, at different points in the treatment pathway. The aim of this randomised pilot study is to investigate protocol feasibility, tolerability and the impact on patient health and quality of life of two different KDs within an NHS setting. The results of this pilot study will inform which KD will be most deliverable and adhered to by patients in order to test for effectiveness in future trials. Methods A prospective, non-blinded, randomised, pilot study will be undertaken in 12 patients with newly diagnosed glioblastoma treated by surgical resection. Patients will be randomised in a ratio of 1:1, using a permuted block randomisation method to one of two diets; the modified ketogenic diet and the medium chain triglyceride ketogenic diet. Primary data collection will take place 12 weeks after starting the diet and secondary data collection after 12 months. Feasibility will be assessed by retention and recruitment rates, ability to enrol patients prior to starting chemoradiotherapy, dietary compliance and adjustments, ketone levels, glucose levels and intervention time. Patient impact will be assessed through quality of life and food acceptability questionnaires, gastrointestinal side effects and changes to biochemical markers and anthropometric measures, assessed at regular intervals. Discussion The results of this pilot study will be used to inform the feasibility, methodological design and power calculations of future phase III clinical trials investigating the effectiveness of KD as an adjuvant therapy in the management of glioblastoma. Trial registration ISRCTN71665562 and NCT03075514.
Collapse
Affiliation(s)
- Kirsty J Martin-McGill
- Institute of Translational Medicine, University of Liverpool, Brownlow Hill, Liverpool, L69 3BX UK.,The Walton Centre NHS Foundation Trust, Lower Lane, Liverpool, L9 7LJ UK
| | - Anthony G Marson
- Institute of Translational Medicine, University of Liverpool, Brownlow Hill, Liverpool, L69 3BX UK.,The Walton Centre NHS Foundation Trust, Lower Lane, Liverpool, L9 7LJ UK
| | - Catrin Tudur Smith
- Department of Biostatistics, University of Liverpool, Brownlow Hill, Liverpool, L69 3BX UK
| | - Michael D Jenkinson
- Institute of Translational Medicine, University of Liverpool, Brownlow Hill, Liverpool, L69 3BX UK.,The Walton Centre NHS Foundation Trust, Lower Lane, Liverpool, L9 7LJ UK
| |
Collapse
|
37
|
Kato Y, Maeda T, Suzuki A, Baba Y. Cancer metabolism: New insights into classic characteristics. JAPANESE DENTAL SCIENCE REVIEW 2017; 54:8-21. [PMID: 29628997 PMCID: PMC5884251 DOI: 10.1016/j.jdsr.2017.08.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022] Open
Abstract
Initial studies of cancer metabolism in the early 1920s found that cancer cells were phenotypically characterized by aerobic glycolysis, in that these cells favor glucose uptake and lactate production, even in the presence of oxygen. This property, called the Warburg effect, is considered a hallmark of cancer. The mechanism by which these cells acquire aerobic glycolysis has been uncovered. Acidic extracellular fluid, secreted by cancer cells, induces a malignant phenotype, including invasion and metastasis. Cancer cells survival depends on a critical balance of redox status, which is regulated by amino acid metabolism. Glutamine is extremely important for oxidative phosphorylation and redox regulation. Cells highly dependent on glutamine and that cannot survive with glutamine are called glutamine-addicted cells. Metabolic reprogramming has been observed in cancer stem cells, which have the property of self-renewal and are resistant to chemotherapy and radiotherapy. These findings suggest that studies of cancer metabolism can reveal methods of preventing cancer recurrence and metastasis.
Collapse
Affiliation(s)
- Yasumasa Kato
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, 31-1 Misumido, Tomita-machi, Koriyama 963-8611, Japan
- Corresponding author. Fax: +81 249328978.
| | - Toyonobu Maeda
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, 31-1 Misumido, Tomita-machi, Koriyama 963-8611, Japan
| | - Atsuko Suzuki
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, 31-1 Misumido, Tomita-machi, Koriyama 963-8611, Japan
| | - Yuh Baba
- Department of General Clinical Medicine, Ohu University School of Dentistry, 31-1 Misumido, Tomita-machi, Koriyama 963-8611, Japan
| |
Collapse
|
38
|
Brain Tumor-Related Epilepsy: a Current Review of the Etiologic Basis and Diagnostic and Treatment Approaches. Curr Neurol Neurosci Rep 2017; 17:70. [DOI: 10.1007/s11910-017-0777-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
The ketogenic diet is not feasible as a therapy in a CD-1 nu/nu mouse model of renal cell carcinoma with features of Stauffer's syndrome. Oncotarget 2017; 8:57201-57215. [PMID: 28915665 PMCID: PMC5593636 DOI: 10.18632/oncotarget.19306] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/27/2017] [Indexed: 12/29/2022] Open
Abstract
The ketogenic diet (KD), a high-fat low-carbohydrate diet, has shown some efficacy in the treatment of certain types of tumors such as brain tumors and neuroblastoma. These tumors are characterized by the Warburg effect. Because renal cell carcinoma (RCC) presents similar energetic features as neuroblastoma, KD might also be effective in the treatment of RCC. To test this, we established xenografts with RCC 786-O cells in CD-1 nu/nu mice and then randomized them to a control diet or to KDs with different triglyceride contents. Although the KDs tended to reduce tumor growth, mouse survival was dramatically reduced due to massive weight loss. A possible explanation comes from observations of human RCC patients, who often experience secondary non-metastatic hepatic dysfunction due to secretion of high levels of inflammatory cytokines by the RCCs. Measurement of the mRNA levels of tumor necrosis factor alpha (TNFα) and interleukin-6 revealed high expression in the RCC xenografts compared to the original 786-O cells. The expression of TNFα, interleukin-6 and C-reactive protein were all increased in the livers of tumor-bearing mice, and KD significantly boosted their expression. KDs did not cause weight loss or liver inflammation in healthy mice, suggesting that KDs are per se safe, but might be contraindicated in the treatment of RCC patients presenting with Stauffer's syndrome, because they potentially worsen the associated hepatic dysfunction.
Collapse
|
40
|
|
41
|
Holmquist EF, B Keiding U, Kold-Christensen R, Salomón T, Jørgensen KA, Kristensen P, Poulsen TB, Johannsen M. ReactELISA: Monitoring a Carbon Nucleophilic Metabolite by ELISA-a Study of Lipid Metabolism. Anal Chem 2017; 89:5066-5071. [PMID: 28376300 DOI: 10.1021/acs.analchem.7b00507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We here present a conceptually novel reaction-based ELISA principle (ReactELISA) for quantitation of the carbon nucleophilic lipid metabolite acetoacetate. Key to the assay is the utilization of a highly chemoselective Friedländer reaction that captures and simultaneously stabilizes the nucleophilic metabolite directly in the biological matrix. By developing a bifunctional biotinylated capture probe, the Friedländer-acetoacetate adduct can be trapped and purified directly in streptavidin coated wells. Finally, we outline the selection and refinement of a highly selective recombinant antibody for specific adduct quantitation. The setup is very robust and, as we demonstrate via miniaturization for microplate format, amenable for screening of compounds or interventions that alter lipid metabolism in liver cell cultures. The assay-principle should be extendable to quantitation of other nucleophilic or electrophilic and perhaps even more reactive metabolites provided suitable capture probes and antibodies.
Collapse
Affiliation(s)
- Emil F Holmquist
- Department of Forensic Medicine, Aarhus University , Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark.,Department of Chemistry, Aarhus University , Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Ulrik B Keiding
- Department of Forensic Medicine, Aarhus University , Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark.,Department of Chemistry, Aarhus University , Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Rasmus Kold-Christensen
- Department of Forensic Medicine, Aarhus University , Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark.,Department of Chemistry, Aarhus University , Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Trine Salomón
- Department of Forensic Medicine, Aarhus University , Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Karl Anker Jørgensen
- Department of Chemistry, Aarhus University , Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Peter Kristensen
- Department of Engineering, Aarhus University , Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Thomas B Poulsen
- Department of Chemistry, Aarhus University , Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Mogens Johannsen
- Department of Forensic Medicine, Aarhus University , Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| |
Collapse
|
42
|
Role of ketogenic metabolic therapy in malignant glioma: A systematic review. Crit Rev Oncol Hematol 2017; 112:41-58. [DOI: 10.1016/j.critrevonc.2017.02.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/30/2017] [Accepted: 02/14/2017] [Indexed: 12/22/2022] Open
|
43
|
Grabacka M, Pierzchalska M, Dean M, Reiss K. Regulation of Ketone Body Metabolism and the Role of PPARα. Int J Mol Sci 2016; 17:ijms17122093. [PMID: 27983603 PMCID: PMC5187893 DOI: 10.3390/ijms17122093] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 12/28/2022] Open
Abstract
Ketogenesis and ketolysis are central metabolic processes activated during the response to fasting. Ketogenesis is regulated in multiple stages, and a nuclear receptor peroxisome proliferator activated receptor α (PPARα) is one of the key transcription factors taking part in this regulation. PPARα is an important element in the metabolic network, where it participates in signaling driven by the main nutrient sensors, such as AMP-activated protein kinase (AMPK), PPARγ coactivator 1α (PGC-1α), and mammalian (mechanistic) target of rapamycin (mTOR) and induces hormonal mediators, such as fibroblast growth factor 21 (FGF21). This work describes the regulation of ketogenesis and ketolysis in normal and malignant cells and briefly summarizes the positive effects of ketone bodies in various neuropathologic conditions.
Collapse
Affiliation(s)
- Maja Grabacka
- Department of Food Biotechnology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland.
| | - Malgorzata Pierzchalska
- Department of Food Biotechnology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland.
| | - Matthew Dean
- Neurological Cancer Research, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.
| | - Krzysztof Reiss
- Neurological Cancer Research, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.
| |
Collapse
|
44
|
Jaworski DM, Namboodiri AMA, Moffett JR. Acetate as a Metabolic and Epigenetic Modifier of Cancer Therapy. J Cell Biochem 2016; 117:574-88. [PMID: 26251955 DOI: 10.1002/jcb.25305] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/04/2015] [Indexed: 12/25/2022]
Abstract
Metabolic networks are significantly altered in neoplastic cells. This altered metabolic program leads to increased glycolysis and lipogenesis and decreased dependence on oxidative phosphorylation and oxygen consumption. Despite their limited mitochondrial respiration, cancer cells, nonetheless, derive sufficient energy from alternative carbon sources and metabolic pathways to maintain cell proliferation. They do so, in part, by utilizing fatty acids, amino acids, ketone bodies, and acetate, in addition to glucose. The alternative pathways used in the metabolism of these carbon sources provide opportunities for therapeutic manipulation. Acetate, in particular, has garnered increased attention in the context of cancer as both an epigenetic regulator of posttranslational protein modification, and as a carbon source for cancer cell biomass accumulation. However, to date, the data have not provided a clear understanding of the precise roles that protein acetylation and acetate oxidation play in carcinogenesis, cancer progression or treatment. This review highlights some of the major issues, discrepancies, and opportunities associated with the manipulation of acetate metabolism and acetylation-based signaling in cancer development and treatment.
Collapse
Affiliation(s)
- Diane M Jaworski
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont
| | - Aryan M A Namboodiri
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - John R Moffett
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
45
|
Oppermann H, Ding Y, Sharma J, Berndt Paetz M, Meixensberger J, Gaunitz F, Birkemeyer C. Metabolic response of glioblastoma cells associated with glucose withdrawal and pyruvate substitution as revealed by GC-MS. Nutr Metab (Lond) 2016; 13:70. [PMID: 27777605 PMCID: PMC5070012 DOI: 10.1186/s12986-016-0131-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/08/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Tumor cells are highly dependent on glucose even in the presence of oxygen. This concept called the Warburg effect is a hallmark of cancer and strategies are considered to therapeutically exploit the phenomenon such as ketogenic diets. The success of such strategies is dependent on a profound understanding of tumor cell metabolism. With new techniques it is now possible to thoroughly analyze the metabolic responses to the withdrawal of substrates and their substitution by others. In the present study we used gas chromatography coupled to mass spectrometry (GC-MS) to analyze how glioblastoma brain tumor cells respond metabolically when glucose is withdrawn and substituted by pyruvate. METHODS Glioblastoma brain tumor cells were cultivated in medium with high (25 mM), medium (11 mM) or low (5.5 mM) glucose concentration or with pyruvate (5 mM). After 24 h GC-MS metabolite profiling was performed. RESULTS The abundances of most metabolites were dependent on the supply of glucose in tendency but not in a linear manner indicating saturation at high glucose. Noteworthy, a high level of sorbitol production and release was observed at high concentrations of glucose and high release of alanine, aspartate and citrate were observed when glucose was substituted by pyruvate. Intermediates of the TCA cycle were present under all nutritional conditions and evidence was found that cells may perform gluconeogenesis from pyruvate. CONCLUSIONS Our experiments reveal a high plasticity of glioblastoma cells to changes in nutritional supply which has to be taken into account in clinical trials in which specific diets are considered for therapy.
Collapse
Affiliation(s)
- Henry Oppermann
- Klinik und Poliklinik für Neurochirurgie, Universitätsklinikum Leipzig AöR, Liebigstraße 19, Leipzig, 04103 Germany
| | - Yonghong Ding
- Institut für Analytische Chemie, Fakultät für Chemie & Mineralogie der Universität Leipzig, Linnéstraße 3, Leipzig, 04103 Germany
| | - Jeevan Sharma
- Institut für Analytische Chemie, Fakultät für Chemie & Mineralogie der Universität Leipzig, Linnéstraße 3, Leipzig, 04103 Germany
| | - Mandy Berndt Paetz
- Klinik und Poliklinik für Neurochirurgie, Universitätsklinikum Leipzig AöR, Liebigstraße 19, Leipzig, 04103 Germany
| | - Jürgen Meixensberger
- Klinik und Poliklinik für Neurochirurgie, Universitätsklinikum Leipzig AöR, Liebigstraße 19, Leipzig, 04103 Germany
| | - Frank Gaunitz
- Klinik und Poliklinik für Neurochirurgie, Universitätsklinikum Leipzig AöR, Liebigstraße 19, Leipzig, 04103 Germany
| | - Claudia Birkemeyer
- Institut für Analytische Chemie, Fakultät für Chemie & Mineralogie der Universität Leipzig, Linnéstraße 3, Leipzig, 04103 Germany
| |
Collapse
|
46
|
Affiliation(s)
- Benjamin Purow
- Neuro-Oncology Division Neurology Department, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
47
|
Maysinger D, Zhang I. Nutritional and Nanotechnological Modulators of Microglia. Front Immunol 2016; 7:270. [PMID: 27471505 PMCID: PMC4945637 DOI: 10.3389/fimmu.2016.00270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/27/2016] [Indexed: 12/11/2022] Open
Abstract
Microglia are the essential responders to alimentary, pharmacological, and nanotechnological immunomodulators. These neural cells play multiple roles as surveyors, sculptors, and guardians of essential parts of complex neural circuitries. Microglia can play dual roles in the central nervous system; they can be deleterious and/or protective. The immunomodulatory effects of alimentary components, gut microbiota, and nanotechnological products have been investigated in microglia at the single-cell level and in vivo using intravital imaging approaches, and different biochemical assays. This review highlights some of the emerging questions and topics from studies involving alimentation, microbiota, nanotechnological products, and associated problems in this area of research. Some of the advantages and limitations of in vitro and in vivo models used to study the neuromodulatory effects of these factors, as well as the merits and pitfalls of intravital imaging modalities employed are presented.
Collapse
Affiliation(s)
- Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University , Montreal, QC , Canada
| | - Issan Zhang
- Department of Pharmacology and Therapeutics, McGill University , Montreal, QC , Canada
| |
Collapse
|
48
|
Wright C, Simone NL. Obesity and tumor growth: inflammation, immunity, and the role of a ketogenic diet. Curr Opin Clin Nutr Metab Care 2016; 19:294-9. [PMID: 27168354 DOI: 10.1097/mco.0000000000000286] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW This article reviews the impact the obese state has on malignancy through inflammation and immune dysregulation using recent excerpts from the medical literature. RECENT FINDINGS The obese state creates a proinflammatory endocrinologic milieu altering cellular signaling between adipocytes, immunologic cells, and epithelial cells, leading to the over-activation of adipose tissue macrophages and the upregulation of compounds associated with carcinogenesis. Obesity correlates with a deficiency in numerous immunologic cells, including dendritic cells, natural killer cells, and T cells. In part, this can be attributed to a recent finding of leptin receptor expression on these immune cells and the upregulation of leptin signaling in the obese state. A number of clinical trials have demonstrated the feasibility of a high-fat, low-carbohydrate diet as an adjuvant treatment for cancer, and current trials are investigating the impact of this intervention on disease outcomes. In preclinical trials, a ketogenic diet has been shown to impede tumor growth in a variety of cancers through anti-angiogenic, anti-inflammatory, and proapoptotic mechanisms. SUMMARY Obesity is becoming more prevalent and its link to cancer is clearly established providing a rationale for the implementation of dietary interventions as an adjuvant therapeutic strategy for malignancy.
Collapse
Affiliation(s)
- Christopher Wright
- aSidney Kimmel Medical College at Thomas Jefferson University bDepartment of Radiation Oncology, Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
49
|
Lussier DM, Woolf EC, Johnson JL, Brooks KS, Blattman JN, Scheck AC. Enhanced immunity in a mouse model of malignant glioma is mediated by a therapeutic ketogenic diet. BMC Cancer 2016; 16:310. [PMID: 27178315 PMCID: PMC4866042 DOI: 10.1186/s12885-016-2337-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/04/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme is a highly aggressive brain tumor with a poor prognosis, and advances in treatment have led to only marginal increases in overall survival. We and others have shown previously that the therapeutic ketogenic diet (KD) prolongs survival in mouse models of glioma, explained by both direct tumor growth inhibition and suppression of pro-inflammatory microenvironment conditions. The aim of this study is to assess the effects of the KD on the glioma reactive immune response. METHODS The GL261-Luc2 intracranial mouse model of glioma was used to investigate the effects of the KD on the tumor-specific immune response. Tumor-infiltrating CD8+ T cells, CD4+ T cells and natural killer (NK) cells were analyzed by flow cytometry. The expression of immune inhibitory receptors cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed death 1 (PD-1) on CD8+ T cells were also analyzed by flow cytometry. Analysis of intracellular cytokine production was used to determine production of IFN, IL-2 and IFN- in tumor-infiltrating CD8+ T and natural killer (NK) cells and IL-10 production by T regulatory cells. RESULTS We demonstrate that mice fed the KD had increased tumor-reactive innate and adaptive immune responses, including increased cytokine production and cytolysis via tumor-reactive CD8+ T cells. Additionally, we saw that mice maintained on the KD had increased CD4 infiltration, while T regulatory cell numbers stayed consistent. Lastly, mice fed the KD had a significant reduction in immune inhibitory receptor expression as well as decreased inhibitory ligand expression on glioma cells. CONCLUSIONS The KD may work in part as an immune adjuvant, boosting tumor-reactive immune responses in the microenvironment by alleviating immune suppression. This evidence suggests that the KD increases tumor-reactive immune responses, and may have implications in combinational treatment approaches.
Collapse
Affiliation(s)
- Danielle M Lussier
- School of Life Sciences, Arizona State University, Tempe, AZ, 85281, USA.,Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ, 85281, USA
| | - Eric C Woolf
- School of Life Sciences, Arizona State University, Tempe, AZ, 85281, USA.,Neuro-Oncology Research, Barrow Brain Tumor Research Center, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W. Thomas Road, Phoenix, AZ, 85013, USA
| | - John L Johnson
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ, 85281, USA
| | - Kenneth S Brooks
- Neuro-Oncology Research, Barrow Brain Tumor Research Center, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W. Thomas Road, Phoenix, AZ, 85013, USA
| | - Joseph N Blattman
- School of Life Sciences, Arizona State University, Tempe, AZ, 85281, USA.,Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, AZ, 85281, USA
| | - Adrienne C Scheck
- School of Life Sciences, Arizona State University, Tempe, AZ, 85281, USA. .,Neuro-Oncology Research, Barrow Brain Tumor Research Center, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W. Thomas Road, Phoenix, AZ, 85013, USA.
| |
Collapse
|
50
|
De Feyter HM, Behar KL, Rao JU, Madden-Hennessey K, Ip KL, Hyder F, Drewes LR, Geschwind JF, de Graaf RA, Rothman DL. A ketogenic diet increases transport and oxidation of ketone bodies in RG2 and 9L gliomas without affecting tumor growth. Neuro Oncol 2016; 18:1079-87. [PMID: 27142056 DOI: 10.1093/neuonc/now088] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 03/28/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The dependence of tumor cells, particularly those originating in the brain, on glucose is the target of the ketogenic diet, which creates a plasma nutrient profile similar to fasting: increased levels of ketone bodies and reduced plasma glucose concentrations. The use of ketogenic diets has been of particular interest for therapy in brain tumors, which reportedly lack the ability to oxidize ketone bodies and therefore would be starved during ketosis. Because studies assessing the tumors' ability to oxidize ketone bodies are lacking, we investigated in vivo the extent of ketone body oxidation in 2 rodent glioma models. METHODS Ketone body oxidation was studied using (13)C MR spectroscopy in combination with infusion of a (13)C-labeled ketone body (beta-hydroxybutyrate) in RG2 and 9L glioma models. The level of ketone body oxidation was compared with nontumorous cortical brain tissue. RESULTS The level of (13)C-beta-hydroxybutyrate oxidation in 2 rat glioma models was similar to that of contralateral brain. In addition, when glioma-bearing animals were fed a ketogenic diet, the ketone body monocarboxylate transporter was upregulated, facilitating uptake and oxidation of ketone bodies in the gliomas. CONCLUSIONS These results demonstrate that rat gliomas can oxidize ketone bodies and indicate upregulation of ketone body transport when fed a ketogenic diet. Our findings contradict the hypothesis that brain tumors are metabolically inflexible and show the need for additional research on the use of ketogenic diets as therapy targeting brain tumor metabolism.
Collapse
Affiliation(s)
- Henk M De Feyter
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut (H.M.D.F., J.U.R., K.M.-H., K.L.I., J.-F.G., R.A.D., D.L.R.); Department of Psychiatry, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut (K.L.B.); Department of Biomedical Sciences, University of Minnesota, Duluth, Minnesota (L.R.D.); Department of Biomedical Engineering, Yale University, New Haven, Connecticut (F.H., R.A.D., D.L.R.)
| | - Kevin L Behar
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut (H.M.D.F., J.U.R., K.M.-H., K.L.I., J.-F.G., R.A.D., D.L.R.); Department of Psychiatry, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut (K.L.B.); Department of Biomedical Sciences, University of Minnesota, Duluth, Minnesota (L.R.D.); Department of Biomedical Engineering, Yale University, New Haven, Connecticut (F.H., R.A.D., D.L.R.)
| | - Jyotsna U Rao
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut (H.M.D.F., J.U.R., K.M.-H., K.L.I., J.-F.G., R.A.D., D.L.R.); Department of Psychiatry, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut (K.L.B.); Department of Biomedical Sciences, University of Minnesota, Duluth, Minnesota (L.R.D.); Department of Biomedical Engineering, Yale University, New Haven, Connecticut (F.H., R.A.D., D.L.R.)
| | - Kirby Madden-Hennessey
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut (H.M.D.F., J.U.R., K.M.-H., K.L.I., J.-F.G., R.A.D., D.L.R.); Department of Psychiatry, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut (K.L.B.); Department of Biomedical Sciences, University of Minnesota, Duluth, Minnesota (L.R.D.); Department of Biomedical Engineering, Yale University, New Haven, Connecticut (F.H., R.A.D., D.L.R.)
| | - Kevan L Ip
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut (H.M.D.F., J.U.R., K.M.-H., K.L.I., J.-F.G., R.A.D., D.L.R.); Department of Psychiatry, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut (K.L.B.); Department of Biomedical Sciences, University of Minnesota, Duluth, Minnesota (L.R.D.); Department of Biomedical Engineering, Yale University, New Haven, Connecticut (F.H., R.A.D., D.L.R.)
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut (H.M.D.F., J.U.R., K.M.-H., K.L.I., J.-F.G., R.A.D., D.L.R.); Department of Psychiatry, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut (K.L.B.); Department of Biomedical Sciences, University of Minnesota, Duluth, Minnesota (L.R.D.); Department of Biomedical Engineering, Yale University, New Haven, Connecticut (F.H., R.A.D., D.L.R.)
| | - Lester R Drewes
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut (H.M.D.F., J.U.R., K.M.-H., K.L.I., J.-F.G., R.A.D., D.L.R.); Department of Psychiatry, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut (K.L.B.); Department of Biomedical Sciences, University of Minnesota, Duluth, Minnesota (L.R.D.); Department of Biomedical Engineering, Yale University, New Haven, Connecticut (F.H., R.A.D., D.L.R.)
| | - Jean-François Geschwind
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut (H.M.D.F., J.U.R., K.M.-H., K.L.I., J.-F.G., R.A.D., D.L.R.); Department of Psychiatry, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut (K.L.B.); Department of Biomedical Sciences, University of Minnesota, Duluth, Minnesota (L.R.D.); Department of Biomedical Engineering, Yale University, New Haven, Connecticut (F.H., R.A.D., D.L.R.)
| | - Robin A de Graaf
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut (H.M.D.F., J.U.R., K.M.-H., K.L.I., J.-F.G., R.A.D., D.L.R.); Department of Psychiatry, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut (K.L.B.); Department of Biomedical Sciences, University of Minnesota, Duluth, Minnesota (L.R.D.); Department of Biomedical Engineering, Yale University, New Haven, Connecticut (F.H., R.A.D., D.L.R.)
| | - Douglas L Rothman
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut (H.M.D.F., J.U.R., K.M.-H., K.L.I., J.-F.G., R.A.D., D.L.R.); Department of Psychiatry, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, Connecticut (K.L.B.); Department of Biomedical Sciences, University of Minnesota, Duluth, Minnesota (L.R.D.); Department of Biomedical Engineering, Yale University, New Haven, Connecticut (F.H., R.A.D., D.L.R.)
| |
Collapse
|