1
|
Gan Q, Cui X, Zhang L, Zhou W, Lu Y. Control Phytophagous Nematodes By Engineering Phytosterol Dealkylation Caenorhabditis elegans as a Model. Mol Biotechnol 2024; 66:2769-2777. [PMID: 37843756 DOI: 10.1007/s12033-023-00869-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/25/2023] [Indexed: 10/17/2023]
Abstract
Plant-parasitic nematodes ingest and convert host phytosterols via dealkylation to cholesterol for both structural and hormonal requirements. The insect 24-dehydrocholesterol reductase (DHCR24) was shown in vitro as a committed enzyme in the dealkylation via chemical blocking. However, an increased brood size and ovulation rate, instead compromised development, were observed in the engineered nematode Caenorhabditis elegans where the DHCR24 gene was knocked down, indicating the relationship between DHCR24 and dealkylation and their function in nematodes remains illusive. In this study, a defect in C. elegans DHCR24 causes impaired growth of the nematode with sitosterol (a major component of phytosterols) as a sole sterol source. Plant sterols with rationally designed structure (null substrates for dealkylation) can't be converted to cholesterol in wild-type worms, and their development was completely halted. This study underpins the essential function of DHCR24 in nematodes and would be beneficial for the development of novel nematocidal strategies.
Collapse
Affiliation(s)
- Qinhua Gan
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Biology and Fisheries, Hainan University, Hainan Province, 570228, Hainan, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou Province, 570228, Hainan, China
| | - Xinyu Cui
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Biology and Fisheries, Hainan University, Hainan Province, 570228, Hainan, China
| | - Lin Zhang
- Shandong Rongchen Pharmaceuticals Inc, Qingdao, 266061, China
| | - Wenxu Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Biology and Fisheries, Hainan University, Hainan Province, 570228, Hainan, China.
| | - Yandu Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Biology and Fisheries, Hainan University, Hainan Province, 570228, Hainan, China.
- Key Laboratory of Tropical Hydrobiotechnology of Hainan Province, Hainan University, Haikou, 570228, China.
- Haikou Innovation Center for Research and Utilization of Algal Bioresources, Hainan University, Haikou, 570228, China.
- Hainan Engineering and Research Center of Marine Bioactives & Bioproducts, Hainan University, Haikou, 570228, China.
| |
Collapse
|
2
|
Brunoir T, Mulligan C, Sistiaga A, Vuu KM, Shih PM, O'Reilly SS, Summons RE, Gold DA. Common origin of sterol biosynthesis points to a feeding strategy shift in Neoproterozoic animals. Nat Commun 2023; 14:7941. [PMID: 38040676 PMCID: PMC10692144 DOI: 10.1038/s41467-023-43545-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023] Open
Abstract
Steranes preserved in sedimentary rocks serve as molecular fossils, which are thought to record the expansion of eukaryote life through the Neoproterozoic Era ( ~ 1000-541 Ma). Scientists hypothesize that ancient C27 steranes originated from cholesterol, the major sterol produced by living red algae and animals. Similarly, C28 and C29 steranes are thought to be derived from the sterols of prehistoric fungi, green algae, and other microbial eukaryotes. However, recent work on annelid worms-an advanced group of eumetazoan animals-shows that they are also capable of producing C28 and C29 sterols. In this paper, we explore the evolutionary history of the 24-C sterol methyltransferase (smt) gene in animals, which is required to make C28+ sterols. We find evidence that the smt gene was vertically inherited through animals, suggesting early eumetazoans were capable of C28+ sterol synthesis. Our molecular clock of the animal smt gene demonstrates that its diversification coincides with the rise of C28 and C29 steranes in the Neoproterozoic. This study supports the hypothesis that early eumetazoans were capable of making C28+ sterols and that many animal lineages independently abandoned its biosynthesis around the end-Neoproterozoic, coinciding with the rise of abundant eukaryotic prey.
Collapse
Affiliation(s)
- T Brunoir
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, CA, USA
| | - C Mulligan
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, CA, USA
| | - A Sistiaga
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - K M Vuu
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - P M Shih
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - S S O'Reilly
- Department of Life Sciences, Atlantic Technological University, ATU Sligo, Ash Lane, Sligo, Ireland
| | - R E Summons
- Department of Earth, Atmospheric, and Planetary Sciences. Massachusetts Institute of Technology, Cambridge, MA, USA
| | - D A Gold
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
3
|
Zhou W, Zhang X, Wang A, Yang L, Gan Q, Yi L, Summons RE, Volkman JK, Lu Y. Widespread Sterol Methyltransferase Participates in the Biosynthesis of Both C4α- and C4β-Methyl Sterols. J Am Chem Soc 2022; 144:9023-9032. [PMID: 35561259 PMCID: PMC9136925 DOI: 10.1021/jacs.2c01401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The 4-methyl steranes
serve as molecular fossils and are used for
studying both eukaryotic evolution and geological history. The occurrence
of 4α-methyl steranes in sediments has long been considered
evidence of products of partial demethylation mediated by sterol methyl
oxidases (SMOs), while 4β-methyl steranes are attributed entirely
to diagenetic generation from 4α-methyl steroids since possible
biological sources of their precursor 4β-methyl sterols are
unknown. Here, we report a previously unknown C4-methyl sterol biosynthetic
pathway involving a sterol methyltransferase rather than the SMOs.
We show that both C4α- and C4β-methyl sterols are end
products of the sterol biosynthetic pathway in an endosymbiont of
reef corals, Breviolum minutum, while
this mechanism exists not only in dinoflagellates but also in eukaryotes
from alveolates, haptophytes, and aschelminthes. Our discovery provides
a previously untapped route for the generation of C4-methyl steranes
and overturns the paradigm that all 4β-methyl steranes are diagenetically
generated from the 4α isomers. This may facilitate the interpretation
of molecular fossils and understanding of the evolution of eukaryotic
life in general.
Collapse
Affiliation(s)
- Wenxu Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou 570228, China
| | - Xu Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou 570228, China
| | - Aoqi Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou 570228, China
| | - Lin Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou 570228, China
| | - Qinhua Gan
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou 570228, China
| | - Liang Yi
- State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
| | - Roger E Summons
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - John K Volkman
- CSIRO Oceans and Atmosphere, GPO Box 1538, Hobart, Tasmania 7001, Australia
| | - Yandu Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Trabelcy B, Gerchman Y, Sapir A. A sterol-defined system for quantitative studies of sterol metabolism in C. elegans. STAR Protoc 2021; 2:100710. [PMID: 34409305 PMCID: PMC8361321 DOI: 10.1016/j.xpro.2021.100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This protocol describes the culturing of the nematode Caenorhabditis elegans (C. elegans) in a sterol-defined experimental system and the subsequent quantitative analysis of C. elegans sterols through gas chromatography-mass spectrometry. Although studied primarily in mammals, sterols are essential biomolecules for most eukaryotes. C. elegans cannot synthesize sterols and thus relies on the uptake of dietary sterols. Therefore, C. elegans is a powerful system to study metabolism in sterol-defined conditions that are described in our protocol. For complete details on the use and execution of this protocol, please refer to Shamsuzzama et al. (2020).
Collapse
Affiliation(s)
- Benjamin Trabelcy
- Faculty of Natural Sciences, University of Haifa, Haifa 3498838 Israel
- Corresponding author
| | - Yoram Gerchman
- Faculty of Natural Sciences, University of Haifa, Haifa 3498838 Israel
| | - Amir Sapir
- Faculty of Natural Sciences, University of Haifa, Haifa 3498838 Israel
- Corresponding author
| |
Collapse
|
5
|
Darnet S, Blary A, Chevalier Q, Schaller H. Phytosterol Profiles, Genomes and Enzymes - An Overview. FRONTIERS IN PLANT SCIENCE 2021; 12:665206. [PMID: 34093623 PMCID: PMC8172173 DOI: 10.3389/fpls.2021.665206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/20/2021] [Indexed: 05/12/2023]
Abstract
The remarkable diversity of sterol biosynthetic capacities described in living organisms is enriched at a fast pace by a growing number of sequenced genomes. Whereas analytical chemistry has produced a wealth of sterol profiles of species in diverse taxonomic groups including seed and non-seed plants, algae, phytoplanktonic species and other unicellular eukaryotes, functional assays and validation of candidate genes unveils new enzymes and new pathways besides canonical biosynthetic schemes. An overview of the current landscape of sterol pathways in the tree of life is tentatively assembled in a series of sterolotypes that encompass major groups and provides also peculiar features of sterol profiles in bacteria, fungi, plants, and algae.
Collapse
Affiliation(s)
| | | | | | - Hubert Schaller
- Plant Isoprenoid Biology Team, Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
6
|
Madan B, Virshup DM, Nes WD, Leaver DJ. Unearthing the Janus-face cholesterogenesis pathways in cancer. Biochem Pharmacol 2021; 196:114611. [PMID: 34010597 DOI: 10.1016/j.bcp.2021.114611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/23/2022]
Abstract
Cholesterol biosynthesis, primarily associated with eukaryotes, occurs as an essential component of human metabolism with biosynthetic deregulation a factor in cancer viability. The segment that partitions between squalene and the C27-end cholesterol yields the main cholesterogenesis branch subdivided into the Bloch and Kandutsch-Russell pathways. Their importance in cell viability, in normal growth and development originates primarily from the amphipathic property and shape of the cholesterol molecule which makes it suitable as a membrane insert. Cholesterol can also convert to variant oxygenated product metabolites of distinct function producing a complex interplay between cholesterol synthesis and overall steroidogenesis. In this review, we disassociate the two sides of cholesterogenesisis affecting the type and amounts of systemic sterols-one which is beneficial to human welfare while the other dysfunctional leading to misery and disease that could result in premature death. Our focus here is first to examine the cholesterol biosynthetic genes, enzymes, and order of biosynthetic intermediates in human cholesterogenesis pathways, then compare the effect of proximal and distal inhibitors of cholesterol biosynthesis against normal and cancer cell growth and metabolism. Collectively, the inhibitor studies of druggable enzymes and specific biosynthetic steps, suggest a potential role of disrupted cholesterol biosynthesis, in coordination with imported cholesterol, as a factor in cancer development and as discussed some of these inhibitors have chemotherapeutic implications.
Collapse
Affiliation(s)
- Babita Madan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore; Department of Pediatrics, Duke University, Durham, NC, USA
| | - W David Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.
| | - David J Leaver
- Department of Biology, Geology, and Physical Sciences, Sul Ross State University, Alpine, TX, USA.
| |
Collapse
|
7
|
Darnet S, Fliesler SJ, Schaller H. Worming our way toward multiple evolutionary origins of convergent sterol pathways. J Lipid Res 2019; 61:129-132. [PMID: 31871066 DOI: 10.1194/jlr.c119000600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Sylvain Darnet
- Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Brazil
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry and the Neuroscience Graduate Program, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY.,Research Service, Veterans Administration Western NY Healthcare System, Buffalo, NY
| | - Hubert Schaller
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|