1
|
Capone F, Vacca A, Bidault G, Sarver D, Kaminska D, Strocchi S, Vidal-Puig A, Greco CM, Lusis AJ, Schiattarella GG. Decoding the Liver-Heart Axis in Cardiometabolic Diseases. Circ Res 2025; 136:1335-1362. [PMID: 40403112 DOI: 10.1161/circresaha.125.325492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
The liver and heart are closely interconnected organs, and their bidirectional interaction plays a central role in cardiometabolic disease. In this review, we summarize current evidence linking liver dysfunction-particularly metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, and cirrhosis-with an increased risk of heart failure and other cardiovascular diseases. We discuss how these liver conditions contribute to cardiac remodeling, systemic inflammation, and hemodynamic stress and how cardiac dysfunction in turn impairs liver perfusion and promotes hepatic injury. Particular attention is given to the molecular mediators of liver-heart communication, including hepatokines and cardiokines, as well as the emerging role of advanced research methodologies, including omics integration, proximity labeling, and organ-on-chip platforms, that are redefining our understanding of interorgan cross talk. By integrating mechanistic insights with translational tools, this review aims to support the development of multiorgan therapeutic strategies for cardiometabolic disease.
Collapse
Affiliation(s)
- Federico Capone
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (F.C., A.V., S.S., G.G.S.)
- Department of Medicine, Unit of Internal Medicine III, Padua University Hospital, University of Padua, Padova, Italy (F.C.)
- Department of Biomedical Sciences, University of Padova, Italy (F.C.)
| | - Antonio Vacca
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (F.C., A.V., S.S., G.G.S.)
- Clinica Medica, Department of Medicine, University of Udine, Italy (A.V.)
| | - Guillaume Bidault
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, United Kingdom (G.B., A.V.-P.)
| | - Dylan Sarver
- Division of Cardiology, Department of Medicine (D.S., D.K., A.J.L.), University of California, Los Angeles
- Department of Microbiology, Immunology and Molecular Genetics (D.S., A.J.L.), University of California, Los Angeles
- Department of Human Genetics (D.S., A.J.L.), University of California, Los Angeles
| | - Dorota Kaminska
- Division of Cardiology, Department of Medicine (D.S., D.K., A.J.L.), University of California, Los Angeles
| | - Stefano Strocchi
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (F.C., A.V., S.S., G.G.S.)
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Deutsches Herzzentrum der Charité, Charité-Universitätsmedizin Berlin, Germany (S.S., G.G.S.)
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, United Kingdom (G.B., A.V.-P.)
- Centro de Investigacion Principe Felipe, Valencia, Spain (A.V.-P.)
| | - Carolina M Greco
- Department of Biomedical Sciences, Humanitas University, Milan, Italy (C.M.G.)
- IRCCS Humanitas Research Hospital, Milan, Italy (C.M.G.)
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine (D.S., D.K., A.J.L.), University of California, Los Angeles
- Department of Microbiology, Immunology and Molecular Genetics (D.S., A.J.L.), University of California, Los Angeles
- Department of Human Genetics (D.S., A.J.L.), University of California, Los Angeles
| | - Gabriele G Schiattarella
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (F.C., A.V., S.S., G.G.S.)
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Deutsches Herzzentrum der Charité, Charité-Universitätsmedizin Berlin, Germany (S.S., G.G.S.)
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany (G.G.S.)
- Friede Springer Cardiovascular Prevention Center at Charité-Universitätsmedizin Berlin, Germany (G.G.S.)
- Experimental and Clinical Research Center, a Cooperation of Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy (G.G.S.)
| |
Collapse
|
2
|
Bergman BC, Zemski Berry K, Garfield A, Keller A, Zarini S, Bowen S, McKenna C, Kahn D, Pavelka J, Macias E, Uhlson C, Johnson C, Russ HA, Viesi CH, Seldin M, Liu C, Doliba N, Schoen J, Rothchild K, Hazel K, Naji A. Human peripancreatic adipose tissue paracrine signaling impacts insulin secretion, blood flow, and gene transcription. J Clin Endocrinol Metab 2024:dgae767. [PMID: 39484843 DOI: 10.1210/clinem/dgae767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/14/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024]
Abstract
CONTEXT Adipose tissue accumulation around non-adipose tissues is associated with obesity and metabolic disease. One relatively unstudied depot is peripancreatic adipose tissue (PAT) that accumulates in obesity and insulin resistance and may impact beta cell function. Pancreatic lipid accumulation and PAT content are negatively related to metabolic outcomes in humans, but these studies are limited by the inability to pursue mechanisms. OBJECTIVE We obtained PAT from human donors through the Human Pancreas Analysis Program to evaluate differences in paracrine signaling compared to subcutaneous adipose tissue (SAT), as well as effects of the PAT secretome on aortic vasodilation, human islet insulin secretion, and gene transcription using RNAseq. RESULTS PAT had greater secretion of IFN-γ and most inflammatory eicosanoids compared to SAT. Secretion of adipokines negatively related to metabolic health were also increased in PAT compared to SAT. We found no overall effects of PAT compared to SAT on human islet insulin secretion, however, insulin secretion was suppressed after PAT exposure from men compared to women. Vasodilation was significantly dampened by PAT conditioned media, an effect explained almost completely by PAT from men and not women. Islets treated with PAT showed selective changes in lipid metabolism pathways while SAT altered cellular signaling and growth. RNAseq analysis showed changes in islet gene transcription impacted by PAT compared to SAT, with the biggest changes found between PAT based on sex. CONCLUSION The PAT secretome is metabolically negative compared to SAT, and impacts islet insulin secretion, blood flow, and gene transcription in a sex dependent manner.
Collapse
Affiliation(s)
- Bryan C Bergman
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Karin Zemski Berry
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Amanda Garfield
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Amy Keller
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Simona Zarini
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sophia Bowen
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Colleen McKenna
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Darcy Kahn
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jay Pavelka
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emily Macias
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Charis Uhlson
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Chris Johnson
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Holger A Russ
- College of Medicine, Department of Pharmacology and Therapeutics, University of Florida USA
- Diabetes Institute, University of Florida USA
| | - Carlos H Viesi
- Department of Biological Chemistry and the Center for Epigenetics and Metabolism, University of California, Irvine, CA, USA
| | - Marcus Seldin
- Department of Biological Chemistry and the Center for Epigenetics and Metabolism, University of California, Irvine, CA, USA
| | - Chengyang Liu
- University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | - Nicolai Doliba
- University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | - Jonathan Schoen
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kevin Rothchild
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kweku Hazel
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ali Naji
- University of Pennsylvania Medical Center, Philadelphia, PA, USA
| |
Collapse
|
3
|
Zhou M, Tamburini I, Van C, Molendijk J, Nguyen CM, Chang IYY, Johnson C, Velez LM, Cheon Y, Yeo R, Bae H, Le J, Larson N, Pulido R, Nascimento-Filho CHV, Jang C, Marazzi I, Justice J, Pannunzio N, Hevener AL, Sparks L, Kershaw EE, Nicholas D, Parker BL, Masri S, Seldin MM. Leveraging inter-individual transcriptional correlation structure to infer discrete signaling mechanisms across metabolic tissues. eLife 2024; 12:RP88863. [PMID: 38224289 PMCID: PMC10945578 DOI: 10.7554/elife.88863] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Inter-organ communication is a vital process to maintain physiologic homeostasis, and its dysregulation contributes to many human diseases. Given that circulating bioactive factors are stable in serum, occur naturally, and are easily assayed from blood, they present obvious focal molecules for therapeutic intervention and biomarker development. Recently, studies have shown that secreted proteins mediating inter-tissue signaling could be identified by 'brute force' surveys of all genes within RNA-sequencing measures across tissues within a population. Expanding on this intuition, we reasoned that parallel strategies could be used to understand how individual genes mediate signaling across metabolic tissues through correlative analyses of gene variation between individuals. Thus, comparison of quantitative levels of gene expression relationships between organs in a population could aid in understanding cross-organ signaling. Here, we surveyed gene-gene correlation structure across 18 metabolic tissues in 310 human individuals and 7 tissues in 103 diverse strains of mice fed a normal chow or high-fat/high-sucrose (HFHS) diet. Variation of genes such as FGF21, ADIPOQ, GCG, and IL6 showed enrichments which recapitulate experimental observations. Further, similar analyses were applied to explore both within-tissue signaling mechanisms (liver PCSK9) and genes encoding enzymes producing metabolites (adipose PNPLA2), where inter-individual correlation structure aligned with known roles for these critical metabolic pathways. Examination of sex hormone receptor correlations in mice highlighted the difference of tissue-specific variation in relationships with metabolic traits. We refer to this resource as gene-derived correlations across tissues (GD-CAT) where all tools and data are built into a web portal enabling users to perform these analyses without a single line of code (gdcat.org). This resource enables querying of any gene in any tissue to find correlated patterns of genes, cell types, pathways, and network architectures across metabolic organs.
Collapse
Affiliation(s)
- Mingqi Zhou
- Department of Biological Chemistry, UC IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
| | - Ian Tamburini
- Department of Biological Chemistry, UC IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
| | - Cassandra Van
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
| | - Jeffrey Molendijk
- Department of Anatomy and Physiology, University of MelbourneMelbourneAustralia
| | - Christy M Nguyen
- Department of Biological Chemistry, UC IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
| | | | - Casey Johnson
- Department of Biological Chemistry, UC IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
| | - Leandro M Velez
- Department of Biological Chemistry, UC IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
| | - Youngseo Cheon
- Department of Biological Chemistry, UC IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
| | - Reichelle Yeo
- Translational Research Institute, AdventHealthOrlandoUnited States
| | - Hosung Bae
- Department of Biological Chemistry, UC IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
| | - Johnny Le
- Department of Biological Chemistry, UC IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
| | - Natalie Larson
- Department of Biological Chemistry, UC IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
| | - Ron Pulido
- Department of Biological Chemistry, UC IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
| | - Carlos HV Nascimento-Filho
- Department of Biological Chemistry, UC IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
| | - Cholsoon Jang
- Department of Biological Chemistry, UC IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
| | - Ivan Marazzi
- Department of Biological Chemistry, UC IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
| | - Jamie Justice
- Veterans Administration Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center (GRECC)Los AngelesUnited States
| | - Nicholas Pannunzio
- Divison of Hematology/Oncology, Department of Medicine, UC Irvine HealthIrvineUnited States
| | - Andrea L Hevener
- Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, David Geffen School of Medicine at UCLALos AngelesUnited States
- Iris Cantor-UCLA Women’s Health Research Center, David Geffen School of Medicine at UCLALos AngelesUnited States
| | - Lauren Sparks
- Translational Research Institute, AdventHealthOrlandoUnited States
| | - Erin E Kershaw
- Division of Endocrinology, Department of Medicine, University of PittsburgPittsburghUnited States
| | - Dequina Nicholas
- Department of Biological Chemistry, UC IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California IrvineIrvineUnited States
| | - Benjamin L Parker
- Department of Anatomy and Physiology, University of MelbourneMelbourneAustralia
| | - Selma Masri
- Department of Biological Chemistry, UC IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
| | - Marcus M Seldin
- Department of Biological Chemistry, UC IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, UC IrvineIrvineUnited States
| |
Collapse
|
4
|
Zhou M, Tamburini IJ, Van C, Molendijk J, Nguyen CM, Chang IYY, Johnson C, Velez LM, Cheon Y, Yeo RX, Bae H, Le J, Larson N, Pulido R, Filho C, Jang C, Marazzi I, Justice JN, Pannunzio N, Hevener A, Sparks LM, Kershaw EE, Nicholas D, Parker B, Masri S, Seldin M. Leveraging inter-individual transcriptional correlation structure to infer discrete signaling mechanisms across metabolic tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540142. [PMID: 37214953 PMCID: PMC10197628 DOI: 10.1101/2023.05.10.540142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Abstract/IntroductionInter-organ communication is a vital process to maintain physiologic homeostasis, and its dysregulation contributes to many human diseases. Beginning with the discovery of insulin over a century ago, characterization of molecules responsible for signal between tissues has required careful and elegant experimentation where these observations have been integral to deciphering physiology and disease. Given that circulating bioactive factors are stable in serum, occur naturally, and are easily assayed from blood, they present obvious focal molecules for therapeutic intervention and biomarker development. For example, physiologic dissection of the actions of soluble proteins such as proprotein convertase subtilisin/kexin type 9 (PCSK9) and glucagon-like peptide 1 (GLP1) have yielded among the most promising therapeutics to treat cardiovascular disease and obesity, respectively1–4. A major obstacle in the characterization of such soluble factors is that defining their tissues and pathways of action requires extensive experimental testing in cells and animal models. Recently, studies have shown that secreted proteins mediating inter-tissue signaling could be identified by “brute-force” surveys of all genes within RNA-sequencing measures across tissues within a population5–9. Expanding on this intuition, we reasoned that parallel strategies could be used to understand how individual genes mediate signaling across metabolic tissues through correlative analyses of gene variation between individuals. Thus, comparison of quantitative levels of gene expression relationships between organs in a population could aid in understanding cross-organ signaling. Here, we surveyed gene-gene correlation structure across 18 metabolic tissues in 310 human individuals and 7 tissues in 103 diverse strains of mice fed a normal chow or HFHS diet. Variation of genes such asFGF21, ADIPOQ, GCGandIL6showed enrichments which recapitulate experimental observations. Further, similar analyses were applied to explore both within-tissue signaling mechanisms (liverPCSK9) as well as genes encoding enzymes producing metabolites (adiposePNPLA2), where inter-individual correlation structure aligned with known roles for these critical metabolic pathways. Examination of sex hormone receptor correlations in mice highlighted the difference of tissue-specific variation in relationships with metabolic traits. We refer to this resource asGene-DerivedCorrelationsAcrossTissues (GD-CAT) where all tools and data are built into a web portal enabling users to perform these analyses without a single line of code (gdcat.org). This resource enables querying of any gene in any tissue to find correlated patterns of genes, cell types, pathways and network architectures across metabolic organs.
Collapse
Affiliation(s)
- Mingqi Zhou
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Ian J. Tamburini
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Cassandra Van
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Jeffrey Molendijk
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Christy M Nguyen
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | | | - Casey Johnson
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Leandro M. Velez
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Youngseo Cheon
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Reichelle X. Yeo
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Hosung Bae
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Johnny Le
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Natalie Larson
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Ron Pulido
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Carlos Filho
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Ivan Marazzi
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Jamie N. Justice
- Veterans Administration Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center (GRECC), Los Angeles, CA, USA
| | - Nicholas Pannunzio
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Andrea Hevener
- Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Iris Cantor-UCLA Women’s Health Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Lauren M. Sparks
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Erin E. Kershaw
- Department of Internal Medicine, Section On Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Dequina Nicholas
- Division of Endocrinology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Benjamin Parker
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Selma Masri
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
- Center for Epigenetics and Metabolism, UC Irvine. Irvine, CA, USA
| | - Marcus Seldin
- Department of Biological Chemistry, UC Irvine. Irvine, CA, USA
| |
Collapse
|
5
|
Xiong C, Zhou Y, Han Y, Yi J, Pang H, Zheng R, Zhou Y. IntiCom-DB: A Manually Curated Database of Inter-Tissue Communication Molecules and Their Communication Routes. BIOLOGY 2023; 12:833. [PMID: 37372118 DOI: 10.3390/biology12060833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
Inter-tissue communication (ITC) is critical for maintaining the physiological functions of multiple tissues and is closely related to the onset and development of various complex diseases. Nevertheless, there is no well-organized data resource for known ITC molecules with explicit ITC routes from source tissues to target tissues. To address this issue, in this work, we manually reviewed nearly 190,000 publications and identified 1408 experimentally supported ITC entries in which the ITC molecules, their communication routes, and their functional annotations were included. To facilitate our work, these curated ITC entries were incorporated into a user-friendly database named IntiCom-DB. This database also enables visualization of the expression abundances of ITC proteins and their interaction partners. Finally, bioinformatics analyses on these data revealed common biological characteristics of the ITC molecules. For example, tissue specificity scores of ITC molecules at the protein level are often higher than those at the mRNA level in the target tissues. Moreover, the ITC molecules and their interaction partners are more abundant in both the source tissues and the target tissues. IntiCom-DB is freely available as an online database. As the first comprehensive database of ITC molecules with explicit ITC routes to the best of our knowledge, we hope that IntiCom-DB will benefit future ITC-related studies.
Collapse
Affiliation(s)
- Changxian Xiong
- Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Yiran Zhou
- Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yu Han
- Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Jingkun Yi
- Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Huai Pang
- Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yuan Zhou
- Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| |
Collapse
|
6
|
Sarver DC, Xu C, Velez LM, Aja S, Jaffe AE, Seldin MM, Reeves RH, Wong GW. Dysregulated systemic metabolism in a Down syndrome mouse model. Mol Metab 2023; 68:101666. [PMID: 36587842 PMCID: PMC9841171 DOI: 10.1016/j.molmet.2022.101666] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Trisomy 21 is one of the most complex genetic perturbations compatible with postnatal survival. Dosage imbalance arising from the triplication of genes on human chromosome 21 (Hsa21) affects multiple organ systems. Much of Down syndrome (DS) research, however, has focused on addressing how aneuploidy dysregulates CNS function leading to cognitive deficit. Although obesity, diabetes, and associated sequelae such as fatty liver and dyslipidemia are well documented in the DS population, only limited studies have been conducted to determine how gene dosage imbalance affects whole-body metabolism. Here, we conduct a comprehensive and systematic analysis of key metabolic parameters across different physiological states in the Ts65Dn trisomic mouse model of DS. METHODS Ts65Dn mice and euploid littermates were subjected to comprehensive metabolic phenotyping under basal (chow-fed) state and the pathophysiological state of obesity induced by a high-fat diet (HFD). RNA sequencing of liver, skeletal muscle, and two major fat depots were conducted to determine the impact of aneuploidy on tissue transcriptome. Pathway enrichments, gene-centrality, and key driver estimates were performed to provide insights into tissue autonomous and non-autonomous mechanisms contributing to the dysregulation of systemic metabolism. RESULTS Under the basal state, chow-fed Ts65Dn mice of both sexes had elevated locomotor activity and energy expenditure, reduced fasting serum cholesterol levels, and mild glucose intolerance. Sexually dimorphic deterioration in metabolic homeostasis became apparent when mice were challenged with a high-fat diet. While obese Ts65Dn mice of both sexes exhibited dyslipidemia, male mice also showed impaired systemic insulin sensitivity, reduced mitochondrial activity, and elevated fibrotic and inflammatory gene signatures in the liver and adipose tissue. Systems-level analysis highlighted conserved pathways and potential endocrine drivers of adipose-liver crosstalk that contribute to dysregulated glucose and lipid metabolism. CONCLUSIONS A combined alteration in the expression of trisomic and disomic genes in peripheral tissues contribute to metabolic dysregulations in Ts65Dn mice. These data lay the groundwork for understanding the impact of aneuploidy on in vivo metabolism.
Collapse
Affiliation(s)
- Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cheng Xu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leandro M Velez
- Department of Biological Chemistry, University of California, Irvine, Irvine, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, USA
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew E Jaffe
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; The Lieber Institute for Brain Development, Baltimore, MD, USA; Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Marcus M Seldin
- Department of Biological Chemistry, University of California, Irvine, Irvine, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, USA
| | - Roger H Reeves
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Velez LM, Van C, Moore T, Zhou Z, Johnson C, Hevener AL, Seldin MM. Genetic variation of putative myokine signaling is dominated by biological sex and sex hormones. eLife 2022; 11:e76887. [PMID: 35416774 PMCID: PMC9094747 DOI: 10.7554/elife.76887] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
Skeletal muscle plays an integral role in coordinating physiological homeostasis, where signaling to other tissues via myokines allows for coordination of complex processes. Here, we aimed to leverage natural genetic correlation structure of gene expression both within and across tissues to understand how muscle interacts with metabolic tissues. Specifically, we performed a survey of genetic correlations focused on myokine gene regulation, muscle cell composition, cross-tissue signaling, and interactions with genetic sex in humans. While expression levels of a majority of myokines and cell proportions within skeletal muscle showed little relative differences between males and females, nearly all significant cross-tissue enrichments operated in a sex-specific or hormone-dependent fashion; in particular, with estradiol. These sex- and hormone-specific effects were consistent across key metabolic tissues: liver, pancreas, hypothalamus, intestine, heart, visceral, and subcutaneous adipose tissue. To characterize the role of estradiol receptor signaling on myokine expression, we generated male and female mice which lack estrogen receptor α specifically in skeletal muscle (MERKO) and integrated with human data. These analyses highlighted potential mechanisms of sex-dependent myokine signaling conserved between species, such as myostatin enriched for divergent substrate utilization pathways between sexes. Several other putative sex-dependent mechanisms of myokine signaling were uncovered, such as muscle-derived tumor necrosis factor alpha (TNFA) enriched for stronger inflammatory signaling in females compared to males and GPX3 as a male-specific link between glycolytic fiber abundance and hepatic inflammation. Collectively, we provide a population genetics framework for inferring muscle signaling to metabolic tissues in humans. We further highlight sex and estradiol receptor signaling as critical variables when assaying myokine functions and how changes in cell composition are predicted to impact other metabolic organs.
Collapse
Affiliation(s)
- Leandro M Velez
- Department of Biological Chemistry, University of California, IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, University of California IrvineIrvineUnited States
| | - Cassandra Van
- Department of Biological Chemistry, University of California, IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, University of California IrvineIrvineUnited States
| | - Timothy Moore
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLALos AngelesUnited States
| | - Zhenqi Zhou
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, David Geffen School of Medicine at UCLALos AngelesUnited States
| | - Casey Johnson
- Department of Biological Chemistry, University of California, IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, University of California IrvineIrvineUnited States
| | - Andrea L Hevener
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, David Geffen School of Medicine at UCLALos AngelesUnited States
- Iris Cantor-UCLA Women’s Health Research Center, David Geffen School of Medicine at UCLALos AngelesUnited States
| | - Marcus M Seldin
- Department of Biological Chemistry, University of California, IrvineIrvineUnited States
- Center for Epigenetics and Metabolism, University of California IrvineIrvineUnited States
| |
Collapse
|
8
|
Greco CM, Koronowski KB, Smith JG, Shi J, Kunderfranco P, Carriero R, Chen S, Samad M, Welz PS, Zinna VM, Mortimer T, Chun SK, Shimaji K, Sato T, Petrus P, Kumar A, Vaca-Dempere M, Deryagian O, Van C, Kuhn JMM, Lutter D, Seldin MM, Masri S, Li W, Baldi P, Dyar KA, Muñoz-Cánoves P, Benitah SA, Sassone-Corsi P. Integration of feeding behavior by the liver circadian clock reveals network dependency of metabolic rhythms. SCIENCE ADVANCES 2021; 7:eabi7828. [PMID: 34550736 PMCID: PMC8457671 DOI: 10.1126/sciadv.abi7828] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/29/2021] [Indexed: 05/28/2023]
Abstract
The mammalian circadian clock, expressed throughout the brain and body, controls daily metabolic homeostasis. Clock function in peripheral tissues is required, but not sufficient, for this task. Because of the lack of specialized animal models, it is unclear how tissue clocks interact with extrinsic signals to drive molecular oscillations. Here, we isolated the interaction between feeding and the liver clock by reconstituting Bmal1 exclusively in hepatocytes (Liver-RE), in otherwise clock-less mice, and controlling timing of food intake. We found that the cooperative action of BMAL1 and the transcription factor CEBPB regulates daily liver metabolic transcriptional programs. Functionally, the liver clock and feeding rhythm are sufficient to drive temporal carbohydrate homeostasis. By contrast, liver rhythms tied to redox and lipid metabolism required communication with the skeletal muscle clock, demonstrating peripheral clock cross-talk. Our results highlight how the inner workings of the clock system rely on communicating signals to maintain daily metabolism.
Collapse
Affiliation(s)
- Carolina M. Greco
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Kevin B. Koronowski
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Jacob G. Smith
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Jiejun Shi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Paolo Kunderfranco
- Bioinformatics Unit, Humanitas Clinical and Research Center–IRCCS, Rozzano 20089, Italy
| | - Roberta Carriero
- Bioinformatics Unit, Humanitas Clinical and Research Center–IRCCS, Rozzano 20089, Italy
| | - Siwei Chen
- Institute for Genomics and Bioinformatics, Department of Computer Science, UCI, Irvine, CA 92697, USA
| | - Muntaha Samad
- Institute for Genomics and Bioinformatics, Department of Computer Science, UCI, Irvine, CA 92697, USA
| | - Patrick-Simon Welz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
- Program in Cancer Research, Hospital del Mar Medical Research Institute (IMIM), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Valentina M. Zinna
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Thomas Mortimer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Sung Kook Chun
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Kohei Shimaji
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Tomoki Sato
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Paul Petrus
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Arun Kumar
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona 08003, Spain
| | - Mireia Vaca-Dempere
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona 08003, Spain
| | - Oleg Deryagian
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona 08003, Spain
| | - Cassandra Van
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - José Manuel Monroy Kuhn
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Computational Discovery Research, Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, Neuherberg, Germany
| | - Dominik Lutter
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Computational Discovery Research, Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, Neuherberg, Germany
| | - Marcus M. Seldin
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Selma Masri
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Wei Li
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, Department of Computer Science, UCI, Irvine, CA 92697, USA
| | - Kenneth A. Dyar
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Metabolic Physiology, Institute for Diabetes and Cancer (IDC), Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Pura Muñoz-Cánoves
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona 08003, Spain
- Spanish National Center on Cardiovascular Research (CNIC), Madrid 28029, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
9
|
Chevrier N. Decoding the Body Language of Immunity: Tackling the Immune System at the Organism Level. ACTA ACUST UNITED AC 2019; 18:19-26. [PMID: 32490290 DOI: 10.1016/j.coisb.2019.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The immune system is a dynamic mesh of molecules, cells and tissues spanning the entire organism. Despite a wealth of knowledge about the components of the immune system, little is known about the general rules governing the organismal circuitry of immunity. Deciphering the immune system at the scale of the whole organism is crucial to understanding fundamental problems in immunobiology and physiology, and to manipulate immunity for maintaining health and preventing disease. Here I discuss the emerging principles of inter-organ communications during immune responses by focusing on three common themes that are the regulation of the (i) composition, (ii) condition and (iii) coordination of communicating organs by molecular and cellular factors. Based on these common principles, I emphasize fundamental gaps in our knowledge of organismal immune processes and the outlook to tackle immunity at the scale of the whole organism.
Collapse
Affiliation(s)
- Nicolas Chevrier
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|