1
|
Liu K, Liu Z, Miao J, Huang Y, Lai K. Multi-response kinetic study of Maillard reaction hazards in the glucose-lysine model system. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1207-1215. [PMID: 39299926 DOI: 10.1002/jsfa.13911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Nε-carboxymethyllysine (CML), Nε-carboxyethyllysine (CEL) and α-aminoadipic acid (AAA) are important foodborne hazards and their intake can cause a variety of diseases in humans. It is extremely important to investigate the formation mechanism of CML, CEL and AAA, as well as their association with each other when aiming to control their production. RESULTS A multi-response kinetic model was developed within the glucose-lysine Maillard reaction model system. The concentrations of glucose, lysine, glyoxal (GO), methylglyoxal (MGO), CML, CEL and AAA were quantified at different temperature (100-160 °C) and at different intervals (0-60 min). The experimental data were fitted to the proposed model to calculate kinetic parameters for the corresponding steps. The results indicated that the production of CML was primarily relied on the direct oxidative cleavage of the Amadori product, rather than the reaction between GO and Lys, whereas CEL and AAA were generated through the reaction of MGO with Lys. Significantly, the reaction between α-dicarbonyl compounds and Lys preferentially generated CML and CEL, resulting in the lower concentrations of AAA compared to CML and CEL. CONCLUSION The multi-response kinetic model developed in the present study can be applied well to the Maillard reaction. The relationship between the formation mechanisms of CML, CEL and AAA is also explained. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kaihua Liu
- College of Food Science and Technology, Shanghai Ocean University, LinGang New City, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai, China
| | - Zhijie Liu
- College of Food Science and Technology, Shanghai Ocean University, LinGang New City, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai, China
| | - Junjian Miao
- College of Food Science and Technology, Shanghai Ocean University, LinGang New City, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai, China
| | - Yiqun Huang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, China
| | - Keqiang Lai
- College of Food Science and Technology, Shanghai Ocean University, LinGang New City, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
2
|
Sánchez-Terrón G, Martínez R, Ruiz J, Luna C, Estévez M. Impact of Sustained Fructose Consumption on Gastrointestinal Function and Health in Wistar Rats: Glycoxidative Stress, Impaired Protein Digestion, and Shifted Fecal Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16270-16285. [PMID: 37859404 PMCID: PMC10623553 DOI: 10.1021/acs.jafc.3c04515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The gastrointestinal tract (GIT) is the target of assorted pathological conditions, and dietary components are known to affect its functionality and health. In previous in vitro studies, we observed that reducing sugars induced protein glycoxidation and impaired protein digestibility. To gain further insights into the pathophysiological effects of dietary sugars, Wistar rats were provided with a 30% (w/v) fructose water solution for 10 weeks. Upon slaughter, in vivo protein digestibility was assessed, and the entire GIT (digests and tissues) was analyzed for markers of oxidative stress and untargeted metabolomics. Additionally, the impact of sustained fructose intake on colonic microbiota was also evaluated. High fructose intake for 10 weeks decreased protein digestibility and promoted changes in the physiological digestion of proteins, enhancing intestinal digestion rather than stomach digestion. Moreover, at colonic stages, the oxidative stress was harmfully increased, and both the microbiota and the intraluminal colonic metabolome were modified.
Collapse
Affiliation(s)
- Guadalupe Sánchez-Terrón
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX), Cáceres 10003, Spain
| | - Remigio Martínez
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX), Cáceres 10003, Spain
- Animal Health Department, Universidad of Extremadura (UEX), Cáceres 10003, Spain
- Animal Health Department, GISAZ Research Group, ENZOEM Competitive Research Unit, Universidad of Córdoba (UCO), Córdoba 14014, Spain
| | - Jorge Ruiz
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX), Cáceres 10003, Spain
| | - Carolina Luna
- Emergency Unit, Servicio Extremeño de Salud, SES, Junta de Extremadura, Cáceres 10003, Spain
| | - Mario Estévez
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX), Cáceres 10003, Spain
| |
Collapse
|
3
|
Zhang Y, Liu G, Xie Q, Wang Y, Yu J, Ma X. Physicochemical and structural changes of myofibrillar proteins in muscle foods during thawing: Occurrence, consequences, evidence, and implications. Compr Rev Food Sci Food Saf 2023; 22:3444-3477. [PMID: 37306543 DOI: 10.1111/1541-4337.13194] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023]
Abstract
Myofibrillar protein (MP) endows muscle foods with texture and important functional properties, such as water-holding capacity (WHC) and emulsifying and gel-forming abilities. However, thawing deteriorates the physicochemical and structural properties of MPs, significantly affecting the WHC, texture, flavor, and nutritional value of muscle foods. Thawing-induced physicochemical and structural changes in MPs need further investigation and consideration in the scientific development of muscle foods. In this study, we reviewed the literature for the thawing effects on the physicochemical and structural characters of MPs to identify potential associations between MPs and the quality of muscle-based foods. Physicochemical and structural changes of MPs in muscle foods occur because of physical changes during thawing and microenvironmental changes, including heat transfer and phase transformation, moisture activation and migration, microbial activation, and alterations in pH and ionic strength. These changes are not only essential inducements for changes in spatial conformation, surface hydrophobicity, solubility, Ca2+ -ATPase activity, intermolecular interaction, gel properties, and emulsifying properties of MPs but also factors causing MP oxidation, characterized by thiols, carbonyl compounds, free amino groups, dityrosine content, cross-linking, and MP aggregates. Additionally, the WHC, texture, flavor, and nutritional value of muscle foods are closely related to MPs. This review encourages additional work to explore the potential of tempering techniques, as well as the synergistic effects of traditional and innovative thawing technologies, in reducing the oxidation and denaturation of MPs and maintaining the quality of muscle foods.
Collapse
Affiliation(s)
- Yuanlv Zhang
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Guishan Liu
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qiwen Xie
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Yanyao Wang
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Jia Yu
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaoju Ma
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
4
|
Mitigative capacity of Kaempferia galanga L. and kaempferol on heterocyclic amines and advanced glycation end products in roasted beef patties and related mechanistic analysis by density functional theory. Food Chem 2022; 385:132660. [PMID: 35306240 DOI: 10.1016/j.foodchem.2022.132660] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/01/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022]
Abstract
The capacity of Kaempferia galanga L. (KG) and kaempferol to mitigate the formation of free and bound heterocyclic amines (HAs) and advanced glycation end products (AGEs) in roast beef patties was explored. Electron paramagnetic resonance (EPR) and density functional theory (DFT) were used to reveal the possible mechanisms involved in quenching the free radicals. KG (0.5%, 1.0%, 1.5%) and kaempferol (0.005%, 0.010%, 0.015%) reduced HAs and AGEs in a dose-dependent manner. Alkyl free radical, HOO·, and 1O2 were critical to the formation of HAs, and 1O2 was pivotal to AGEs. They were quenched by KG and kaempferol in a dose-dependent manner. DFT indicated that the 3-OH group of kaempferol was most pivotal and quenched the HOO· mainly via H-atom transfer. The active carbonyl intermediates phenylacetaldehyde, glyoxal, and methylglyoxal can also be reduced by KG and kaempferol in a dose-dependent manner, which may be result from the quenching of free radicals.
Collapse
|
5
|
Glucose boosts protein oxidation/nitration during simulated gastric digestion of myofibrillar proteins by creating a severe pro-oxidative environment. Food Chem 2022; 397:133805. [PMID: 35914463 DOI: 10.1016/j.foodchem.2022.133805] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022]
Abstract
The severe pro-oxidative environment in the stomach promotes oxidation of dietary components. The pro-oxidant molecular mechanisms of reducing sugars on this environment are unknown. To investigate the mechanisms involved in protein oxidation and nitration during a simulated gastric digestion (porcine pepsin, 37 °C, 2 h) of meat proteins, these were exposed to several dietary reactive components namely myoglobin, glucose, glyoxal, myoglobin + glucose and myoglobin + glyoxal. Two versions of each experimental unit were prepared depending on the addition or absence of nitrite. Compared to control (only meat proteins), myoglobin + glucose showed the highest pro-oxidative and pro-nitrosative effect (p < 0.001), likely caused by an increase in ROS derived from the degradation of glucose during assay. Nitrite promoted the occurrence of protein nitration but decreased protein oxidation in myoglobin-added groups (p < 0.001) by, plausibly, stabilizing heme iron. These results indicate the relevant role of glyco-oxidation during digestion of red meat with other dietary components such as reducing sugars.
Collapse
|
6
|
Nawaz A, Irshad S, Ali Khan I, Khalifa I, Walayat N, Muhammad Aadil R, Kumar M, Wang M, Chen F, Cheng KW, Lorenzo JM. Protein oxidation in muscle-based products: Effects on physicochemical properties, quality concerns, and challenges to food industry. Food Res Int 2022; 157:111322. [DOI: 10.1016/j.foodres.2022.111322] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/16/2022] [Accepted: 04/28/2022] [Indexed: 12/29/2022]
|
7
|
Lassak J, Sieber A, Hellwig M. Exceptionally versatile take II: post-translational modifications of lysine and their impact on bacterial physiology. Biol Chem 2022; 403:819-858. [PMID: 35172419 DOI: 10.1515/hsz-2021-0382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/05/2022] [Indexed: 01/16/2023]
Abstract
Among the 22 proteinogenic amino acids, lysine sticks out due to its unparalleled chemical diversity of post-translational modifications. This results in a wide range of possibilities to influence protein function and hence modulate cellular physiology. Concomitantly, lysine derivatives form a metabolic reservoir that can confer selective advantages to those organisms that can utilize it. In this review, we provide examples of selected lysine modifications and describe their role in bacterial physiology.
Collapse
Affiliation(s)
- Jürgen Lassak
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2-4, D-82152 Planegg, Germany
| | - Alina Sieber
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2-4, D-82152 Planegg, Germany
| | - Michael Hellwig
- Technische Universität Braunschweig - Institute of Food Chemistry, Schleinitzstraße 20, D-38106 Braunschweig, Germany
| |
Collapse
|
8
|
Abstract
Protein oxidation is a topic of indisputable scientific interest given the impact of oxidized proteins on food quality and safety. Carbonylation is regarded as one of the most notable post-translational modifications in proteins and yet, this reaction and its consequences are poorly understood. From a mechanistic perspective, primary protein carbonyls (i.e. α-aminoadipic and γ-glutamic semialdehydes) have been linked to radical-mediated oxidative stress, but recent studies emphasize the role alternative carbonylation pathways linked to the Maillard reaction. Secondary protein carbonyls are introduced in proteins via covalent linkage of lipid carbonyls (i.e. protein-bound malondialdehyde). The high reactivity of protein carbonyls in foods and other biological systems indicates the intricate chemistry of these species and urges further research to provide insight into these molecular mechanisms and pathways. In particular, protein carbonyls are involved in the formation of aberrant and dysfunctional protein aggregates, undergo further oxidation to yield carboxylic acids of biological relevance and establish interactions with other biomolecules such as oxidizing lipids and phytochemicals. From a methodological perspective, the routine dinitrophenylhydrazine (DNPH) method is criticized not only for the lack of accuracy and consistency but also authors typically perform a poor interpretation of DNPH results, which leads to misleading conclusions. From a practical perspective, the biological relevance of protein carbonyls in the field of food science and nutrition is still a topic of debate. Though the implication of carbonylation on impaired protein functionality and poor protein digestibility is generally recognized, the underlying mechanism of such connections requires further clarification. From a medical perspective, protein carbonyls are highlighted as markers of protein oxidation, oxidative stress and disease. Yet, the specific role of specific protein carbonyls in the onset of particular biological impairments needs further investigations. Recent studies indicates that regardless of the origin (in vivo or dietary) protein carbonyls may act as signalling molecules which activate not only the endogenous antioxidant defences but also implicate the immune system. The present paper concisely reviews the most recent advances in this topic to identify, when applicable, potential fields of interest for future studies.
Collapse
|
9
|
Akagawa M. Protein carbonylation: molecular mechanisms, biological implications, and analytical approaches. Free Radic Res 2021; 55:307-320. [DOI: 10.1080/10715762.2020.1851027] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mitsugu Akagawa
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
10
|
Zhang Y, Dong L, Zhang J, Shi J, Wang Y, Wang S. Adverse Effects of Thermal Food Processing on the Structural, Nutritional, and Biological Properties of Proteins. Annu Rev Food Sci Technol 2021; 12:259-286. [PMID: 33770470 DOI: 10.1146/annurev-food-062320-012215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thermal processing is one of the most important processing methods in the food industry. However, many studies have revealed that thermal processing can have detrimental effects on the nutritional and functional properties of foods because of the complex interactions among food components. Proteins are essential nutrients for humans, and changes in the structure and nutritional properties of proteins can substantially impact the biological effects of foods. This review focuses on the interactions among proteins, sugars, and lipids during thermal food processing and the effects of these interactions on the structure, nutritional value, and biological effects of proteins. In particular, the negative effects of modified proteins on human health and strategies for mitigating these detrimental effects from two perspectives, namely, reducing the formation of modified proteins during thermal processing and dietary intervention in vivo, are discussed.
Collapse
Affiliation(s)
- Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China;
| | - Lu Dong
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China;
| | - Jinhui Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China;
| | - Jiaqi Shi
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China;
| | - Yaya Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China;
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China;
| |
Collapse
|
11
|
Luna C, Arjona A, Dueñas C, Estevez M. Allysine and α-Aminoadipic Acid as Markers of the Glyco-Oxidative Damage to Human Serum Albumin under Pathological Glucose Concentrations. Antioxidants (Basel) 2021; 10:474. [PMID: 33802856 PMCID: PMC8002732 DOI: 10.3390/antiox10030474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the molecular basis of the disease is of the utmost scientific interest as it contributes to the development of targeted strategies of prevention, diagnosis, and therapy. Protein carbonylation is a typical feature of glyco-oxidative stress and takes place in health disorders such as diabetes. Allysine as well as its oxidation product, the α-amino adipic acid (α-AA) have been found to be markers of diabetes risk whereas little is known about the chemistry involved in its formation under hyperglycemic conditions. To provide insight into this issue, human serum albumin was incubated in the presence of FeCl3 (25 μM) and increasing glucose concentrations for 32 h at 37 °C. These concentrations were selected to simulate (i) physiological fasting plasma concentration (4 mM), (ii) pathological pre-diabetes fasting plasma concentration (8 mM), and pathological diabetes fasting plasma concentration (12 mM) of glucose. While both allysine and α-AA were found to increase with increasing glucose concentrations, the carboxylic acid was only detected at pathological glucose concentrations and appeared to be a more reliable indicator of glyco-oxidative stress. The underlying chemical mechanisms of lysine glycation as well as of the depletion of tryptophan and formation of fluorescent and colored advanced glycation products are discussed.
Collapse
Affiliation(s)
- Carolina Luna
- Emergency unit, Hospital Nuestra Señora de la Montaña, Servicio Extremeño de Salud, Gobierno de Extremadura, 10002 Cáceres, Spain;
| | - Alexis Arjona
- Family and Community Medicine, Servicio Extremeño de Salud, Gobierno de Extremadura, 10002 Cáceres, Spain;
| | - Carmen Dueñas
- Gastroenterology unit, Hospital Universitario Cáceres, Servicio Extremeño de Salud, Gobierno de Extremadura, 10002 Cáceres, Spain;
| | - Mario Estevez
- Meat and Meat Products Research Institute (IPROCAR), Food Technology, University of Extremadura, 10003 Cáceres, Spain
| |
Collapse
|
12
|
Estévez M, Geraert PA, Liu R, Delgado J, Mercier Y, Zhang W. Sulphur amino acids, muscle redox status and meat quality: More than building blocks – Invited review. Meat Sci 2020; 163:108087. [DOI: 10.1016/j.meatsci.2020.108087] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/21/2020] [Accepted: 02/10/2020] [Indexed: 12/31/2022]
|
13
|
Panpipat W, Chaijan M. Effect of Atmospheric Pressure Cold Plasma on Biophysical Properties and Aggregation of Natural Actomyosin from Threadfin Bream (Nemipterus bleekeri). FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02441-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
14
|
Heterocyclic aromatic amine concentrations and quality characteristics of traditional smoked and roasted poultry products on the northern Chinese market. Food Chem Toxicol 2020; 135:110931. [DOI: 10.1016/j.fct.2019.110931] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 11/19/2022]
|
15
|
Estévez M, Padilla P, Carvalho L, Martín L, Carrapiso A, Delgado J. Malondialdehyde interferes with the formation and detection of primary carbonyls in oxidized proteins. Redox Biol 2019; 26:101277. [PMID: 31352127 PMCID: PMC6669345 DOI: 10.1016/j.redox.2019.101277] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 12/31/2022] Open
Abstract
Carbonylation is one of the most remarkable expressions of the oxidative damage to proteins and the DNPH method the most common procedure to assess protein oxidation in biological samples. The present study was elicited by two hypotheses: i) is malondialdehyde, as a reactive dicarbonyl, able to induce the formation of allysine through a Maillard-type reaction? and ii) to which extent does the attachment of MDA to proteins interfere in the assessment of protein carbonyls using the DNPH method? Human serum albumin (HSA), human hemoglobin (HEM) and β-lactoglobulin (LAC) (5 mg/mL) were incubated with MDA (0.25 mM) for 24 h at 37 °C (HSA and HEM) or 80 °C (LAC). Results showed that MDA was unable to induce oxidative deamination of lysine residues and instead, formed stable and fluorescent adducts with proteins. Such adducts were tagged by the DNPH method, accounting for most of the protein hydrazones quantified. This interfering effect was observed in a wide range of MDA concentrations (0.05-1 mM). Being aware of its limitations, protein scientists should accurately interpret results from the DNPH method, and apply, when required, other methodologies such as chromatographic methods to detect specific primary oxidation products such as allysine.
Collapse
Affiliation(s)
- Mario Estévez
- IPROCAR Research Institute, Faculty of Veterinary, University of Extremadura, 10003, Cáceres, Spain.
| | - Patricia Padilla
- IPROCAR Research Institute, Faculty of Veterinary, University of Extremadura, 10003, Cáceres, Spain
| | - Leila Carvalho
- Post-Graduate Program in Food Science and Technology, Federal University of Paraiba, João Pessoa, Brazil
| | - Lourdes Martín
- Food Technology, School of Agricultural Engineering, University of Extremadura, 06007, Badajoz, Spain
| | - Ana Carrapiso
- Food Technology, School of Agricultural Engineering, University of Extremadura, 06007, Badajoz, Spain
| | - Josué Delgado
- IPROCAR Research Institute, Faculty of Veterinary, University of Extremadura, 10003, Cáceres, Spain; Heart Clinical Unit, Virgen de la Victoria University Clinic Hospital. Institute of Biomedical Research in Malaga. IBIMA. CIBERCV. University of Málaga, Málaga, Spain
| |
Collapse
|
16
|
Arcanjo NO, Andrade MJ, Padilla P, Rodríguez A, Madruga MS, Estévez M. Resveratrol protects Lactobacillus reuteri against H 2O 2- induced oxidative stress and stimulates antioxidant defenses through upregulation of the dhaT gene. Free Radic Biol Med 2019; 135:38-45. [PMID: 30807829 DOI: 10.1016/j.freeradbiomed.2019.02.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/24/2019] [Accepted: 02/18/2019] [Indexed: 01/14/2023]
Abstract
Understanding of the mechanisms implicated in the protective role of probiotic bacteria is of the utmost scientific interest. This study provides original insight into the genetic and molecular basis of the responses of Lactobacillus reuteri PL503 against hydrogen peroxide (H2O2)-induced oxidative stress. Six experimental groups were considered depending on the addition and concentration of H2O2 and resveratrol: 1. CONTROL (L. reuteri in MRS broth); 2. H2O2 (L. reuteri in MRS broth + 0.5 mM H2O2); 3. LRES (L. reuteri in MRS broth + 20 μM resveratrol); 4. HRES (L. reuteri in MRS broth + 100 μM resveratrol); 5. H2O2-LRES (L. reuteri in MRS broth + 0.5 mM H2O2 + 20 μM resveratrol); 6. H2O2-HRES (L. reuteri in MRS broth + 0.5 mM H2O2 + 100 μM resveratrol). Three replicates were incubated at 37 °C for 24 h in microaerophilic conditions sampled at 12, 16, 20 and 24 h. The NADH-dependent-oxidoreductase encoded by the dhaT gene is a plausible candidate to be strongly implicated in the antioxidant response of L. reuteri. Resveratrol (100 μM) is found to protect L. reuteri against protein carbonylation plausibly through various mechanisms including direct scavenging of reactive oxygen species (ROS), upregulation of the dhaT gene and promoting the synthesis of sulfur containing compounds. The hypothesis formulated on the ability of L. reuteri to detoxify H2O2 and its underlying mechanism needs to be clarified. Furthermore, the consequences of protein carbonylation as a reflection of oxidative damage to bacteria and its role in the responses of bacteria to oxidative stress need to be further investigated.
Collapse
Affiliation(s)
- Narciza O Arcanjo
- Department of Food Engineering, Technology Centre, Federal University of Paraiba, 58051-900, Joao Pessoa, Paraiba, Brazil
| | - María J Andrade
- Meat and Meat Products Research Institute, Food Hygiene and Safety, University of Extremadura, 10003, Cáceres, Spain
| | - Patricia Padilla
- Meat and Meat Products Research Institute, Food Hygiene and Safety, University of Extremadura, 10003, Cáceres, Spain; Meat and Meat Products Research Institute, Food Technology, University of Extremadura, 10003, Cáceres, Spain
| | - Alicia Rodríguez
- Meat and Meat Products Research Institute, Food Hygiene and Safety, University of Extremadura, 10003, Cáceres, Spain
| | - Marta S Madruga
- Department of Food Engineering, Technology Centre, Federal University of Paraiba, 58051-900, Joao Pessoa, Paraiba, Brazil
| | - Mario Estévez
- Meat and Meat Products Research Institute, Food Technology, University of Extremadura, 10003, Cáceres, Spain.
| |
Collapse
|
17
|
Estévez M, Xiong Y. Intake of Oxidized Proteins and Amino Acids and Causative Oxidative Stress and Disease: Recent Scientific Evidences and Hypotheses. J Food Sci 2019; 84:387-396. [PMID: 30714623 DOI: 10.1111/1750-3841.14460] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/26/2018] [Accepted: 01/13/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Mario Estévez
- Meat and Meat Products Research Institute, TECAL Research Group; Univ. of Extremadura; Avda. Universidad s/n 10003 Cáceres Spain
| | - Youling Xiong
- Depart. of Animal and Food Sciences; Univ. of Kentucky; Lexington KY 40546-0215 U.S.A
| |
Collapse
|
18
|
Hassel B, Rogne AG, Hope S. Intellectual Disability Associated With Pyridoxine-Responsive Epilepsies: The Need to Protect Cognitive Development. Front Psychiatry 2019; 10:116. [PMID: 30930802 PMCID: PMC6423912 DOI: 10.3389/fpsyt.2019.00116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/15/2019] [Indexed: 01/03/2023] Open
Abstract
Pyridoxine (vitamin B6)-responsive epilepsies are severe forms of epilepsy that manifest as seizures immediately after birth, sometimes in utero, sometimes months, or years after birth. Seizures may be treated efficiently by life-long supplementation with pyridoxine or its biologically active form, pyridoxal phosphate, but even so patients may become intellectually disabled, for which there currently is no effective treatment. The condition may be caused by mutations in several genes (TNSALP, PIGV, PIGL, PIGO, PNPO, PROSC, ALDH7A1, MOCS2, or ALDH4A1). Mutations in ALDH7A1, MOCS2, and ALDH4A1 entail build-up of reactive aldehydes (α-aminoadipic semialdehyde, γ-glutamic semialdehyde) that may react non-enzymatically with macromolecules of brain cells. Such reactions may alter the function of macromolecules, and they may produce "advanced glycation end products" (AGEs). AGEs trigger inflammation in the brain. This understanding points to aldehyde-quenching, anti-AGE, or anti-inflammatory therapies as possible strategies to protect cognitive development and prevent intellectual disability in affected children. Studies on how aldehydes traverse cell membranes and how they affect brain function could further the development of therapies for patients with pyridoxine-responsive epilepsies.
Collapse
Affiliation(s)
- Bjørnar Hassel
- Department for Neurohabilitation, Oslo University Hospital and University of Oslo, Oslo, Norway.,Norwegian Defence Research Establishment (FFI), Kjeller, Norway
| | - Ane Gretesdatter Rogne
- Department for Neurohabilitation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Sigrun Hope
- Department for Neurohabilitation, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Luna C, Estévez M. Formation of allysine in β-lactoglobulin and myofibrillar proteins by glyoxal and methylglyoxal: Impact on water-holding capacity and in vitro digestibility. Food Chem 2018; 271:87-93. [PMID: 30236745 DOI: 10.1016/j.foodchem.2018.07.167] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 01/29/2023]
Abstract
The ability of α-dicarbonyls, glyoxal (GO) and methyl-glyoxal (MGO) (2 M), to induce the formation of allysine in β-lactoglubulin (LAC), and myofibrillar proteins (MP) (2 mg/mL) during incubation at 80 °C for 48 h, was studied. Both GO and MGO induced the formation of allysine in all tested proteins with GO being more reactive (23.8 and 8.6 nmoles/mg protein in LAC and MP respectively after 6 h) than MGO (2.6 and 3.1 nmoles/mg protein at the same sampling point). LAC seemed to be more susceptible to the glycation reactions than MP. The concentration of allysine decreased at 24 h along with a concomitant increase of advanced-glycation end-products suggesting that allysine may be involved in the formation of fluorescent adducts. The water-holding capacity and trypsin-chymotrypsin digestibility of the proteins decreased during the incubation assay. The mechanisms by which α-dicarbonyls-mediated carbonylation likely influenced the impairment of such protein properties are thoroughly discussed.
Collapse
Affiliation(s)
- Carolina Luna
- Nuestra Sª de la Montaña Public Hospital, Servicio Extremeño de Salud, SES, Cáceres, Gobex, Spain
| | - Mario Estévez
- IPROCAR Research Institute, TECAL Research Group, University of Extremadura, 10003 Cáceres, Spain.
| |
Collapse
|
20
|
Arcanjo NMO, Luna C, Madruga MS, Estévez M. Antioxidant and pro-oxidant actions of resveratrol on human serum albumin in the presence of toxic diabetes metabolites: Glyoxal and methyl-glyoxal. Biochim Biophys Acta Gen Subj 2018; 1862:1938-1947. [PMID: 29902553 DOI: 10.1016/j.bbagen.2018.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/08/2018] [Accepted: 06/08/2018] [Indexed: 12/23/2022]
Abstract
Methylglyoxal (MGO) and glyoxal (GO) are attracting considerable attention because of their role in the onset of diabetes symptoms. Therefore, to comprehend the molecular fundamentals of their pathological actions is of the utmost importance. In this study, the molecular interactions between resveratrol (RES) and human serum albumin (HSA) and the ability of the stilbene to counteract the oxidative damage caused by pathological concentrations of MGO and GO to the human plasma protein, was assessed. The oxidation of Cys34 in HSA as well as the formation of specific protein semialdehydes AAS (α-aminoadipic), GGS (γ-glutamic) and the accumulation of Advanced Glycation End-products (AGEs) was investigated. Resveratrol was found to neutralize both α-dicarbonyls by forming adducts detected by HESI-Orbitrap-MS. This antioxidant action was manifested in a significant reduction of AGEs. However, RES-α-dicarbonyl conjugates oxidized Cys34 and lysine, arginine and/or proline by a nucleophilic attack on SH and ε-NH groups in HSA. The formation of specific semialdehydes in HSA after incubation with GO and MGO at pathological concentrations was reported for the first time in this study, and may be used as early and specific biomarkers of the oxidative stress undergone by diabetic patients. The pro-oxidative role of the RES-α-dicarbonyl conjugates should be further investigated to clarify whether this action leads to positive or harmful clinical consequences. The biological relevance of human protein carbonylation as a redox signaling mechanism and/or as a reflection of oxidative damage and disease should also be studied in future works.
Collapse
Affiliation(s)
- N M O Arcanjo
- Department of Food Engineering, Federal University of Paraiba, Joao Pessoa CEP 58051-900, PB, Brazil
| | - C Luna
- Servicio Extremeño de Salud, SES, Gobierno de Extremadura, Cáceres, Spain
| | - M S Madruga
- Department of Food Engineering, Federal University of Paraiba, Joao Pessoa CEP 58051-900, PB, Brazil
| | - M Estévez
- IPROCAR Research Institute, Food Technology, University of Extremadura, 10003 Cáceres. Spain.
| |
Collapse
|
21
|
Influence of cooking methods and storage time on lipid and protein oxidation and heterocyclic aromatic amines production in bacon. Food Res Int 2017; 99:660-669. [DOI: 10.1016/j.foodres.2017.06.029] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/13/2017] [Accepted: 06/17/2017] [Indexed: 01/09/2023]
|
22
|
Oxidative damage to food and human serum proteins: Radical-mediated oxidation vs. glyco-oxidation. Food Chem 2017; 267:111-118. [PMID: 29934144 DOI: 10.1016/j.foodchem.2017.06.154] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/21/2017] [Accepted: 06/29/2017] [Indexed: 11/22/2022]
Abstract
This study compared a hydroxyl radical-generating system (HRGS) (0.05-0.2mM Fe3++0.6mM H2O2) and a glycation system (GLY) (0.05-0.2mM Fe3++0.05M glucose) for their ability to promote protein carbonylation and tryptophan depletion in myofibrillar proteins, ovalbumin, β-lactoglobulin, soy protein and human serum albumin. Animal-source were more susceptible to protein carbonylation than soy proteins and globular were more susceptible than fibrillar proteins. Both systems promoted tryptophan loss and the formation of protein carbonyls and iron had a clear dose-effect in most systems and proteins. In the tested conditions, the GLY environment was more effective than the HRGS system in promoting the oxidative damage to food proteins. According to the results, glucose and H2O2 may compete for iron for the production of glycosylative and oxidative species, respectively. This study provides original insight into the chemical mechanisms implicated in the oxidative and glycosylative damage to food proteins.
Collapse
|
23
|
Estévez M, Luna C. Dietary protein oxidation: A silent threat to human health? Crit Rev Food Sci Nutr 2017; 57:3781-3793. [DOI: 10.1080/10408398.2016.1165182] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- M. Estévez
- IPROCAR Research Institute, University of Extremadura, Caceres, Spain
| | - C. Luna
- Medical Hospital, SES, Gobierno de Extremadura, Badajoz, Spain
| |
Collapse
|
24
|
Özyurt H, Luna C, Estévez M. Redox chemistry of the molecular interactions between tea catechins and human serum proteins under simulated hyperglycemic conditions. Food Funct 2016; 7:1390-400. [PMID: 26839039 DOI: 10.1039/c5fo01525a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbonylation is an irreversible modification in oxidized proteins that has been directly related to a number of health disorders including Type 2 diabetes. Dietary antioxidants have been proposed to counteract the oxidative stress occurring under hyperglycemic conditions. An understanding of the nature and consequences of the molecular interactions between phytochemicals and human plasma proteins is of utmost scientific interest. Three tea catechins namely epicatechin (EC), epigallocatechin (EGC) and epigallocatechin-3-gallate (EGCG) were tested for (i) their affinity to bind to human serum albumin (HSA) and human hemoglobin (HH) and (ii) their ability to inhibit tryptophan (Trp) depletion and for the formation of specific protein carbonyls and pentosidine in the aforementioned proteins. Both proteins (20 mg mL(-1)) were allowed to react with postprandial plasmatic concentrations of the catechins (EC: 0.7 μM, EGC: 1.8 μM, and EGCG: 0.7 μM) under simulated hyperglycemic conditions (12 mM glucose/0.2 mM Fe(3+)/37 °C/10 days). The three catechins were able to inhibit Trp oxidation and protein carbonylation in both plasma proteins. Some anti-glycation properties were linked to their binding affinities. The molecular interactions reported in the present study may explain the alleged beneficial effects of tea catechins against the redox impairment linked to hyperglycemic conditions.
Collapse
Affiliation(s)
- Hazal Özyurt
- Graduate School of Natural and Applied Sciences, Food Engineering Branch, Ege University, 35100 Izmir, Turkey
| | - Carolina Luna
- Sistema Extremeño de Salud, SES, Cáceres, Gobex, Spain
| | - Mario Estévez
- IPROCAR Research Institute, TECAL research group, University of Extremadura, 10003, Caceres, Spain.
| |
Collapse
|
25
|
Trnková L, Dršata J, Boušová I. Oxidation as an important factor of protein damage: Implications for Maillard reaction. J Biosci 2015; 40:419-39. [DOI: 10.1007/s12038-015-9523-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Greifenhagen U, Frolov A, Hoffmann R. Oxidative degradation of N(ε)-fructosylamine-substituted peptides in heated aqueous systems. Amino Acids 2015; 47:1065-76. [PMID: 25712730 DOI: 10.1007/s00726-015-1940-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/11/2015] [Indexed: 10/23/2022]
Abstract
Glycation, or non-enzymatic glycosylation, is a common protein modification formed by reactions between reducing sugars (i.e. aldoses and ketoses) with protein amino groups. Resulting Amadori and Heyns compounds, respectively, can be oxidatively degraded yielding a structurally heterogeneous group of advanced glycation end-products. We have studied this process in aqueous conditions at 95 °C in terms of appearing products and their formation kinetics in the presence or absence of reactive oxygen species (ROS)-generating systems (iron(II) sulfate). RP-HPLC-ESI-MS revealed 20 products, 12 of which were confirmed after synthesis by identical retention times and fragmentation patterns. These products accumulated during the incubation period of 4 h (N(ε)-carboxymethyl-, N(ε)-formyl- and N(ε)-methyl lysine) or appeared intermediately (2-aminoadipic semialdehyde, N(ε)-ethanalyl lysine). Acidic and basic amino acid residues near the glycation site and elevated ROS levels in the reaction mixture had significant effects on both product formation and degradation kinetics.
Collapse
Affiliation(s)
- Uta Greifenhagen
- Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Universität Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany
| | | | | |
Collapse
|
27
|
Soladoye O, Juárez M, Aalhus J, Shand P, Estévez M. Protein Oxidation in Processed Meat: Mechanisms and Potential Implications on Human Health. Compr Rev Food Sci Food Saf 2015; 14:106-122. [DOI: 10.1111/1541-4337.12127] [Citation(s) in RCA: 350] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/04/2014] [Indexed: 01/07/2023]
Affiliation(s)
- O.P. Soladoye
- Dept. of Food and Bioproduct Science, College of Agriculture and Bioresources; Univ. of Saskatchewan; 51 Campus Drive S7N 5A Saskatoon Canada
- Lacombe Research Centre; Agriculture and Agri-Food Canada; 6000 C and E Trail T4L 1W1 Lacombe Alberta Canada
| | - M.L. Juárez
- Lacombe Research Centre; Agriculture and Agri-Food Canada; 6000 C and E Trail T4L 1W1 Lacombe Alberta Canada
| | - J.L. Aalhus
- Lacombe Research Centre; Agriculture and Agri-Food Canada; 6000 C and E Trail T4L 1W1 Lacombe Alberta Canada
| | - P. Shand
- Dept. of Food and Bioproduct Science, College of Agriculture and Bioresources; Univ. of Saskatchewan; 51 Campus Drive S7N 5A Saskatoon Canada
| | - M. Estévez
- IPROCAR Research Inst; Univ. of Extremadura; 10003 Caceres Spain
| |
Collapse
|
28
|
Valliere-Douglass JF, Lewis P, Salas-Solano O, Jiang S. Solid-State mAbs and ADCs Subjected to Heat-Stress Stability Conditions can be Covalently Modified with Buffer and Excipient Molecules. J Pharm Sci 2015; 104:652-65. [DOI: 10.1002/jps.24276] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/23/2014] [Accepted: 10/28/2014] [Indexed: 12/17/2022]
|
29
|
Villaverde A, Estévez M. Carbonylation of myofibrillar proteins through the maillard pathway: effect of reducing sugars and reaction temperature. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:3140-3147. [PMID: 23438261 DOI: 10.1021/jf305451p] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Carbonylation is recognized as one of the most remarkable chemical modifications in oxidized proteins and is generally ascribed to the direct attack of free radicals to basic amino acid residues. The purpose of this work was to investigate the formation of specific carbonyls, α-aminoadipic and γ-glutamic semialdehydes (AAS and GGS, respectively), in myofibrillar proteins (MP) through a Maillard-type pathway in the presence of reducing sugars. The present study confirmed the concurrent formation of protein carbonyls and advanced glycation end-products (AGEs) during incubation (80 °C/48 h) of MP (4 mg/mL) in the presence of reducing sugars (0.5 M). Copper irons (10 μM) were found to promote the formation of protein carbonyls, and a specific inhibitor of the Maillard reaction (0.02 M pyridoxamine) blocked the carbonylation process which emphasize the occurrence of a Maillard-type pathway. The Maillard-mediated carbonylation occurred in a range of reducing sugars (0.02-0.5 M) and reaction temperatures (4-110 °C) compatible with food systems. Upcoming studies on this topic may contribute further to shed light on the complex interactions between protein oxidation and the Maillard reaction and the impact of the protein damage on food quality and human health.
Collapse
Affiliation(s)
- Adriana Villaverde
- Department of Animal Production and Food Science, Food Technology, University of Extremadura, 10003 Cáceres, Spain
| | | |
Collapse
|
30
|
Zhang W, Xiao S, Ahn DU. Protein Oxidation: Basic Principles and Implications for Meat Quality. Crit Rev Food Sci Nutr 2013; 53:1191-201. [DOI: 10.1080/10408398.2011.577540] [Citation(s) in RCA: 475] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Estévez M. Protein carbonyls in meat systems: A review. Meat Sci 2011; 89:259-79. [DOI: 10.1016/j.meatsci.2011.04.025] [Citation(s) in RCA: 772] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/20/2011] [Accepted: 04/25/2011] [Indexed: 01/15/2023]
|
32
|
Formation of Strecker aldehydes between protein carbonyls – α-Aminoadipic and γ-glutamic semialdehydes – and leucine and isoleucine. Food Chem 2011. [DOI: 10.1016/j.foodchem.2011.04.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Estévez M, Heinonen M. Effect of phenolic compounds on the formation of alpha-aminoadipic and gamma-glutamic semialdehydes from myofibrillar proteins oxidized by copper, iron, and myoglobin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:4448-4455. [PMID: 20196602 DOI: 10.1021/jf903757h] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The effect of selected phenolic compounds, namely, gallic acid, chlorogenic acid, genistein, catechin, cyanidin-3-glucoside and rutin, on the formation of specific protein carbonyls, alpha-aminoadipic and gamma-glutamic semialdehydes (AAS and GGS, respectively), from oxidized myofibrillar proteins, was studied in the present article. Suspensions containing myofibrillar proteins (20 mg/mL) and the aforementioned phenolic compounds (1 mM) were oxidized (37 degrees C for 20 days) in the presence of copper acetate, iron (FeCl(3)), or myoglobin (10 microM) in combination with 1 mM H(2)O(2) and analyzed for AAS and GGS using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). Suspensions with added alpha-tocopherol (1 mM) and a control group (with no phenolic compound) were also considered. In the presence of copper, the alpha-tocopherol and most phenolic compounds significantly inhibited the formation of AAS and GGS. In iron- and myoglobin-oxidized suspensions, however, some of those phenolic compounds (i.e., chlorogenic acid and genistein) promoted the formation of the semialdehydes. Besides the influence of the oxidation promoters, the overall effect of plant phenolics on protein oxidation is likely affected by the chemical structure of the phenolics and the result of the interactions between these compounds and myofibrillar proteins. Plausible mechanisms for the antioxidant and pro-oxidant effects of plant phenolics on myofibrillar proteins are proposed in the present article. This study highlights the complexity of redox reactions between plant phenolics and oxidizing myofibrillar proteins.
Collapse
Affiliation(s)
- Mario Estévez
- Department of Food and Environmental Sciences, Food Chemistry, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
34
|
Inhibitory effects of Chrysanthemum species extracts on formation of advanced glycation end products. Food Chem 2009. [DOI: 10.1016/j.foodchem.2009.03.042] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Ducho C, Hamed RB, Batchelar ET, Sorensen JL, Odell B, Schofield CJ. Synthesis of regio- and stereoselectively deuterium-labelled derivatives of L-glutamate semialdehyde for studies on carbapenem biosynthesis. Org Biomol Chem 2009; 7:2770-9. [PMID: 19532994 DOI: 10.1039/b903312b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
L-glutamate semialdehyde (L-GSA) is an intermediate in biosynthetic pathways including those leading to the carbapenem antibiotics. We describe studies on asymmetric deuteration or hydrogenation of appropriate didehydro-amino acid precursors for the stereoselective synthesis of C-2- and/or C-3-[2H]-labelled L-GSA suitable for use in mechanistic studies. Regioselective deuterium incorporation into the 5-position of L-GSA was achieved using a labelled form of the Schwartz reagent (Cp2Zr2HCl). 4,4-Dideuterated and fully backbone deuterated L-GSAs were prepared. The application of the labelled L-GSA derivatives to biosynthetic studies was exemplified by the chemo-enzymatic preparation of selectively deuterated trans-carboxymethylprolines using two different carboxymethylproline synthases (CarB and ThnE), enzymes that catalyse early steps in the biosynthesis of two carbapenems: (5R)-carbapenem-3-carboxylate and thienamycin, respectively.
Collapse
Affiliation(s)
- Christian Ducho
- University of Oxford, Department of Chemistry, Chemistry Research Laboratory, Mansfield Road, Oxford, United Kingdom OX1 3TA
| | | | | | | | | | | |
Collapse
|
36
|
Estévez M, Ollilainen V, Heinonen M. Analysis of protein oxidation markers alpha-aminoadipic and gamma-glutamic semialdehydes in food proteins using liquid chromatography (LC)-electrospray ionization (ESI)-multistage tandem mass spectrometry (MS). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:3901-3910. [PMID: 19326863 DOI: 10.1021/jf804017p] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To elucidate the formation of protein oxidation biomarkers alpha-aminoadipic semialdehyde (AAS) and gamma-glutamic semialdehyde (GGS) in food proteins was the main purpose of the present study. Food proteins, namely, myofibrillar proteins, alpha-lactalbumin, and soy proteins, as well as bovine serum albumin (BSA), were suspended in a piperazine-1,4-bis(2-ethanesulfonic acid) (PIPES) buffer and oxidized by Fe(3+) and H(2)O(2) while kept in an oven for 14 days at 37 degrees C. For the analysis of semialdehydes, a derivatization procedure with p-aminobenzoic acid (ABA) and NaCNBH(3) followed by liquid chromatography (LC)-electrospray ionization (ESI)-multistage tandem mass spectrometry (MS) was performed. For comparative purposes, the dinitrophenylhydrazine (DNPH) method was also employed as a routine method to assess carbonyl gain. Both semialdehydes were specifically and accurately detected by LC-MS in all oxidized proteins proving that GGS and AAS are formed as a consequence of the oxidation of lysine, proline, and arginine amino acid residues from BSA and other food proteins. Proteins from an animal source and, particularly, BSA were more susceptible to undergo oxidative reactions than soy proteins. The results from the present paper highlight the significance of using both semialdehydes as protein oxidation indicators in meat and dairy products. The analysis of GGS and AAS in real food systems would contribute to the understanding of the precise mechanisms involved in food protein oxidation and shed light on the fate of oxidizing amino acids during food processing and storage.
Collapse
Affiliation(s)
- Mario Estévez
- Department of Applied Chemistry and Microbiology, Food Chemistry, University of Helsinki, Helsinki 00014, Finland.
| | | | | |
Collapse
|
37
|
Akagawa M, Suyama K, Uchida K. Fluorescent detection of alpha-aminoadipic and gamma-glutamic semialdehydes in oxidized proteins. Free Radic Biol Med 2009; 46:701-6. [PMID: 19135526 DOI: 10.1016/j.freeradbiomed.2008.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 12/09/2008] [Accepted: 12/10/2008] [Indexed: 11/29/2022]
Abstract
The oxidative modification of proteins is believed to play a critical role in the etiology and/or progression of several diseases. alpha-Aminoadipic semialdehyde (AAS) and gamma-glutamic semialdehyde (GGS) residues represent major oxidized amino acids generated in oxidized proteins. This paper describes a novel procedure for the specific and sensitive determination of AAS and GGS after their reductive amination with sodium cyanoborohydride and p-aminobenzoic acid, a fluorescence reagent, to their corresponding derivatives, followed by a high-performance liquid chromatography (HPLC) analysis. This fluorescent labeling of protein-associated aldehyde moieties is a simple and accurate technique that may be widely used to reveal increased levels of oxidatively modified proteins with reactive oxygen species during aging and disease.
Collapse
Affiliation(s)
- Mitsugu Akagawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
| | | | | |
Collapse
|
38
|
Meltretter J, Pischetsrieder M. Application of Mass Spectrometry for the Detection of Glycation and Oxidation Products in Milk Proteins. Ann N Y Acad Sci 2008; 1126:134-40. [DOI: 10.1196/annals.1433.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
39
|
Alexandru N, Constantin A, Popov D. Carbonylation of platelet proteins occurs as consequence of oxidative stress and thrombin activation, and is stimulated by ageing and type 2 diabetes. Clin Chem Lab Med 2008; 46:528-36. [DOI: 10.1515/cclm.2008.104] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Meltretter J, Seeber S, Humeny A, Becker CM, Pischetsrieder M. Site-specific formation of Maillard, oxidation, and condensation products from whey proteins during reaction with lactose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:6096-103. [PMID: 17590008 DOI: 10.1021/jf0705567] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Heat treatment of dairy products leads to structural changes of proteins, which can severely decrease the nutritional value [Mauron, J. J. Nutr. Sci. Vitaminol. (Tokyo) 1990, 36 (Suppl. 1), S57-69]. In this study, model solutions of the two main whey proteins, alpha-lactalbumin and beta-lactoglobulin, respectively, were incubated with lactose, and modifications were monitored by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Lactulosyl residues were the most abundant modifications of alpha-lactalbumin and beta-lactoglobulin. Up to four of these adducts were identified on the proteins. Enzymatical digest with endoproteinase AspN prior to mass spectrometric analysis allowed the detection of further modifications and their localization in the amino acid sequence. Most prominent modifications were lactulosyllysine, Nepsilon-carboxymethyllysine, oxidation of lysine to aminoadipic semialdehyde, oxidation of methionine to methionine sulfoxide, cyclization of N-terminal glutamic acid to a pyrrolidone, and oxidation of cysteine or tryptophan. The presence of methionine oxidation was deduced from a control protein that had been oxidized by hydrogen peroxide. These studies establish MALDI-TOF-MS as a reliable tool to monitor chemical modifications of nutritional proteins during food processing.
Collapse
Affiliation(s)
- Jasmin Meltretter
- Institute of Pharmacy and Food Chemistry, Emil-Fischer-Center, University of Erlangen-Nuremberg, Schuhstrasse 19, 91052 Erlangen, Germany
| | | | | | | | | |
Collapse
|
41
|
Das KK, Buchner V. Effect of nickel exposure on peripheral tissues: role of oxidative stress in toxicity and possible protection by ascorbic acid. REVIEWS ON ENVIRONMENTAL HEALTH 2007; 22:157-73. [PMID: 17894205 DOI: 10.1515/reveh.2007.22.2.157] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The vast industrial use of nickel has led to environmental pollution by the metal and its by-products during production, recycling, and disposal. Nickel is a known hematotoxic, immunotoxic, hepatotoxic, pulmotoxic, and nephrotoxic agent. Allergic skin reactions are common in individuals who are sensitive to nickel. This article presents a selective review on nickel and its effect on certain metabolically active peripheral tissues of human and animals. The subtopics include nickel sources and uses, exposure pathways, transport, excretion, general health effects, and specific acute and chronic nickel toxicities in peripheral tissues like liver, lungs, and kidneys. The review particularly addresses the nickel-induced generation of reactive oxygen species and increased lipid peroxidation in various metabolically active tissues in humans and animals, and the possible role of vitamin c as a protective antioxidant.
Collapse
Affiliation(s)
- Kusal K Das
- Environmental Health Research Unit, Department of Physiology, Al Ameen Medical College, Bijapur 586108, Karnataka, India.
| | | |
Collapse
|
42
|
Suyama K, Yoshioka M, Akagawa M, Murayama Y, Horii H, Takata M, Yokoyama T, Mohri S. Prion inactivation by the Maillard reaction. Biochem Biophys Res Commun 2007; 356:245-8. [PMID: 17336934 DOI: 10.1016/j.bbrc.2007.02.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 02/22/2007] [Indexed: 11/25/2022]
Abstract
Since variant Creutzfeldt-Jakob disease (vCJD) has been suspected to be attributable to the infectious agents associated with bovine spongiform encephalopathy (BSE), it is important to prevent the transmission of pathogenic forms of prion protein (PrP(Sc)) through contaminated feeding materials such as meat and bone meal (MBM). Here, we demonstrate that the Maillard reaction employing a formulation of glucose in combination with sodium hydrogen carbonates effectively reduced the infectivity (approximately 5.9-log reduction) of a scrapie-infected hamster brain homogenate. In addition to a bioassay, a protein misfolding cyclic amplification (PMCA) technique, in which PrP(Sc) can be amplified in vitro, was used as a rapid test for assessing PrP(Sc) inactivation. The PMCA analysis also indicated that the PrP(Sc) level in the infected material significantly decreased following the Maillard reaction. Therefore, the Maillard reaction can be employed for the decontamination of large amounts of byproducts such as MBM.
Collapse
Affiliation(s)
- Kyozo Suyama
- Sports Nutrition Department, Sendai University, Miyagi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Mateos R, Bravo L. Chromatographic and electrophoretic methods for the analysis of biomarkers of oxidative damage to macromolecules (DNA, lipids, and proteins). J Sep Sci 2007; 30:175-91. [PMID: 17390612 DOI: 10.1002/jssc.200600314] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Free radicals and other reactive species can cause oxidative damage to biomolecules when oxidant species exceed the antioxidant defences in the body, resulting in oxidative stress. Oxidatively damaged products have been associated with aging as well as with the development of pathologies like cancer, cardiovascular disease, neurodegenerative disorders, diabetes, inflammation, etc. Reliable measurements of biomarkers of oxidative damage to macromolecules would afford information on the pre-disposition and prognosis of certain pathologies, being of utmost importance in evaluation of the effect of intervention with antioxidants on the incidence of diseases associated to oxidative stress. This review will present and compare different analytical methods, especially those involving chromatographic and electrophoretic techniques, commonly used for the analysis of biomarkers of oxidative damage to the three main macromolecules, namely oxidised DNA, lipid peroxidation products, and protein carbonyls.
Collapse
Affiliation(s)
- Raquel Mateos
- IFAPA, CIFA, Venta del Llano, Mengíbar (Jaén), Spain
| | | |
Collapse
|
44
|
Abstract
Guanidinosuccinic acid is an aberrant metabolite isolated 40 years ago in the blood and urine of uremic subjects and a suspect in the toxicity associated with renal failure. It plays a minor role in the bleeding diathesis of uremia, contributes to the methyl group deficiency of dialysis patients, and is a factor in the premature atherosclerosis of end stage renal disease through the induction of hyperhomocysteinemia. As a major player, however, in the diversity and severity of uremic symptoms, it is a disappointment. Recently its source has been identified. It results from the superoxidation of argininosuccinic acid, which leads, also, to the production of gamma glutamic semialdehyde, an advanced glycation end product (AGE), which normally results from from the Maillard reaction, the non-enzymatic browning of protein. AGEs stimulate cross-linkages in protein that lead ultimately to loss of function, phagocytosis, and removal, and are important elements in the premature aging characteristic of renal disease, and diabetes.
Collapse
Affiliation(s)
- Burton D Cohen
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10469, USA.
| |
Collapse
|
45
|
Monnier VM, Mustata GT, Biemel KL, Reihl O, Lederer MO, Zhenyu D, Sell DR. Cross-linking of the extracellular matrix by the maillard reaction in aging and diabetes: an update on "a puzzle nearing resolution". Ann N Y Acad Sci 2005; 1043:533-44. [PMID: 16037276 DOI: 10.1196/annals.1333.061] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aging extracellular matrix is characterized by an age-related increase in insolubilization, yellowing, and stiffening, all of which can be mimicked by the Maillard reaction in vitro. These phenomena are accelerated in metabolic diseases such as diabetes and end-stage renal disease, which have in common with physiological aging the accumulation of various glycation products and cross-links. Eight years ago we concluded that the evidence favored oxidative cross-linking in experimental diabetes [Monnier, V.M. et al. 1996. The mechanism of collagen cross-linking in diabetes: a puzzle nearing completion. Diabetes 45(Suppl. 3): 67-72] and proposed a major role for a putative non-UV active cross-link derived from glucose. Below, we provide an update of the field that leads to the conclusion that, while oxidation might be important for Maillard reaction-mediated cross-linking via Strecker degradation and allysine formation, the single most important collagen cross-link known to date in diabetes and aging is glucosepane, a lysyl-arginine cross-link that forms under nonoxidative conditions.
Collapse
Affiliation(s)
- Vincent M Monnier
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | |
Collapse
|