1
|
Yang Y, Mayo A, Levy T, Raz N, Shenhar B, Jarosz DF, Alon U. Compression of morbidity by interventions that steepen the survival curve. Nat Commun 2025; 16:3340. [PMID: 40199852 PMCID: PMC11978790 DOI: 10.1038/s41467-025-57807-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/26/2025] [Indexed: 04/10/2025] Open
Abstract
Longevity research aims to extend the healthspan while minimizing the duration of disability and morbidity, known as the sickspan. Most longevity interventions in model organisms extend healthspan, but it is not known whether they compress sickspan relative to the lifespan. Here, we present a theory that predicts which interventions compress relative sickspan, based on the shape of the survival curve. Interventions such as caloric restriction that extend mean lifespan while preserving the shape of the survival curve, are predicted to extend the sickspan proportionally, without compressing it. Conversely, a subset of interventions that extend lifespan and steepen the shape of the survival curve are predicted to compress the relative sickspan. We explain this based on the saturating-removal mathematical model of aging, and present evidence from longitudinal health data in mice, Caenorhabditis elegans and Drosophila melanogaster. We apply this theory to identify potential interventions for compressing the sickspan in mice, and to combinations of longevity interventions. This approach offers potential strategies for compressing morbidity and extending healthspan.
Collapse
Affiliation(s)
- Yifan Yang
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
- Center for Interdisciplinary Studies, Westlake University, Hangzhou, Zhejiang, China.
| | - Avi Mayo
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tomer Levy
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Naveh Raz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ben Shenhar
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel F Jarosz
- Department of Chemical & Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
2
|
Alsabbagh R, LaVerde L, Chufar E, Willows JW, Townsend KL, Peters SB. Characterization of craniofacial tissue aging in genetically diverse HET3 male mice with longevity treatment of 17-alpha estradiol. Arch Oral Biol 2025; 171:106170. [PMID: 39742550 PMCID: PMC11867854 DOI: 10.1016/j.archoralbio.2024.106170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/03/2025]
Abstract
OBJECTIVE The objective of our study was to 1) characterize craniofacial tissue aging in the new, genetically diverse HET3 mouse model; and 2) ascertain whether increased longevity with 17-alpha estradiol (17αE2) treatment in male mice also improved the health of these tissues. The HET3 mice are a four-strain cross preferred and recommended by the National Institute of Aging to identify longevity treatments and test their ability to reduce age-related pathologies. Previous reports demonstrated increased longevity in male, but not female, HET3 mice with 17αE2 administration. DESIGN Male mice were raised to approximately 8 months (young), 16 months (middle-aged), and 25 months (old). Middle-aged and old mice were administered a diet supplemented with 17αE2 for 19 weeks. We quantified craniofacial tissue volume and density changes with micro-computed tomography followed by histology. RESULTS Micro-CT showed that the alveolar bone volume and density did not change with age or treatment. Enamel volume and density changed with age but not treatment. Histology revealed region-specific degeneration of periodontal ligaments (PDLs) with age. Cellular cementum demonstrated age-related density decreases but no change in volume. However, cementum volume and density increased with 17αE2 treatment. Dentin volume increased with age whereas density decreased with age, which were attenuated by 17αE2 treatment. CONCLUSIONS The HET3 mice present an excellent model with which to study the heterogeneous nature of tooth aging and the effects of longevity interventions. We provide novel data on how 17αE2 improves healthspan by modifying age-related changes in the molar dentin and cementum of male mice.
Collapse
Affiliation(s)
- Rami Alsabbagh
- Division Biosciences, College of Dentistry, The Ohio State University, 305 West 12th Avenue, Columbus, OH 43210, USA
| | - Leah LaVerde
- Division Biosciences, College of Dentistry, The Ohio State University, 305 West 12th Avenue, Columbus, OH 43210, USA
| | - Emma Chufar
- Division Biosciences, College of Dentistry, The Ohio State University, 305 West 12th Avenue, Columbus, OH 43210, USA
| | - Jake W Willows
- Department of Neurological Surgery, College of Medicine, Pelotonia Research Center, The Ohio State University, 2255 Kenny Road, Columbus, OH, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, College of Medicine, Pelotonia Research Center, The Ohio State University, 2255 Kenny Road, Columbus, OH, USA
| | - Sarah B Peters
- Division Biosciences, College of Dentistry, The Ohio State University, 305 West 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
3
|
Sathiaseelan R, Isola JVV, Santín-Márquez R, Adekunbi D, Fornalik M, Salmon AB, Stout MB. A pilot study evaluating dosing tolerability of 17α-estradiol in male common marmosets (Callithrix jacchus). GeroScience 2025; 47:1005-1017. [PMID: 39107620 PMCID: PMC11872862 DOI: 10.1007/s11357-024-01311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024] Open
Abstract
17α-estradiol extends healthspan and lifespan in male mice without significant feminization or deleterious effects on reproductive function, making it a candidate for human translation. However, studies in animal models that more accurately replicate human physiology are necessary to establish 17α-estradiol dosing standards for clinical trials. This study evaluated the tolerability of 17α-estradiol treatment in the common marmoset over a short treatment duration. We found that male marmosets tolerated two dosing regimens (0.37-0.47 or 0.62-0.72 mg/kg/day) as evidenced by the absence of gastrointestinal distress, changes in vital signs, or overall health conditions. 17α-estradiol treatment mildly decreased body mass, adiposity, and glycosylated hemoglobin, although these changes were not statistically significant in most instances. However, neither dose of 17α-estradiol elicited feminization in our study, thereby suggesting that optimized dosing regimens may provide health benefits without feminization in primates. Additional studies are needed to determine if longer duration treatments would also be nonfeminizing and elicit significant health benefits, which would aid in developing dosing regimens targeting healthy aging in humans.
Collapse
Affiliation(s)
- Roshini Sathiaseelan
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
| | - Jose V V Isola
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
| | - Roberto Santín-Márquez
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
| | - Daniel Adekunbi
- Barshop Institute for Longevity & Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Michal Fornalik
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA
| | - Adam B Salmon
- Barshop Institute for Longevity & Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
- South Texas Veterans Affairs Medical Center, San Antonio, TX, USA
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Chapman S212, Oklahoma City, OK, 73104, USA.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
4
|
Majumder P, Hsu TI, Hu CJ, Huang JK, Lee YC, Hsieh YC, Ahsan A, Huang CC. Potential role of solid lipid curcumin particle (SLCP) as estrogen replacement therapy in mitigating TDP-43-related neuropathy in the mouse model of ALS disease. Exp Neurol 2024; 383:114999. [PMID: 39419433 DOI: 10.1016/j.expneurol.2024.114999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/10/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) was first identified in 1869, but it wasn't until the 2014 Ice Bucket Challenge that widespread attention was drawn to the disease. Since then, substantial research has been dedicated to developing treatments for ALS. Despite this, only three drugs - riluzole, edaravone and AMX0035, have been approved for clinical use, and they can only temporarily alleviate mild symptoms without significant disease modification or cure. Therefore, there remains a critical unmet need to identify disease modifying or curative therapies for ALS. The higher incidence and more severe progression of ALS and FTLD (frontotemporal lobar degeneration) observed in men and postmenopausal woman compared to young women suggests that sex hormones may significantly influence disease onset and progression. In both animal models and human clinical studies, 17β estradiol (E2) has been shown to delay and improve the outcomes of many neurodegenerative diseases. Here, we examined the role of TDP-43 in the regulation of estrogen-related enzymes, CYP19A1 and CYP3A4. In addition, we examined the impact of curcumin on the regulation of estrogen E2 levels and TDP-43-associated neuropathy as a potential therapeutic strategy for the treatment of FTLD and ALS. METHODS Prp-TDP-43A315T mice was used as a model of ALS/FTLD to examine the expression patterns of E2 and its biosynthesis and degradation enzymes, CYP19A1 and CYP3A4. Moreover, the molecular mechanisms and the potency of solid lipid curcumin particles (SLCP) as an E2 replacement therapy for TDP-43 associated neuropathy was analyzed. We further examined the survival rates and the pathological TDP43 patterns in female and male Prp-TDP-43A315T mice administrated with or without SLCP. In addition, the changed expression levels of enzymes corresponding to E2 biosynthesis and degradation in the spinal cord of female and male Prp-TDP-43A315T mice with or without SLCP were determined. RESULTS We found that in addition to E2, the expression patterns of CYP19A1 and CYP3A4 proteins differed between Prp-TDP-43A315T mice compared to wild-type control, suggesting that toxic phosphorylated TDP43 oligomers may disrupt the balance between CYP19A1 and CYP3A4 expression, leading to reduced estrogen biosynthesis and accelerated degradation. In addition, we found that oral administration of SLCP prolonged the survival rates in female Prp-TDP-43A315T mice and significantly reduced the pathological insoluble phosphorylated TDP-43 species. Furthermore, SLCP attenuated disease progression associated with TDP-43-related neuropathies through modulating estrogen biosynthesis and the activity of CYP450 enzymes. CONCLUSIONS Our results showed that Prp-TDP-43A315T mice exhibit altered estradiol levels. Moreover, we demonstrated the efficacy of SLCP as an estrogen replacement therapy in mitigating TDP-43-associated disease progression and pathogenesis. These findings suggest that SLCP could be a promising strategy to induce E2 expression for the treatment of ALS and FTLD.
Collapse
Affiliation(s)
- Pritha Majumder
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Tsung-I Hsu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Chaur-Joug Hu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei 110, Taiwan; Neurology Department, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Jeffrey K Huang
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Yi-Chao Lee
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Yi-Chen Hsieh
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Asmar Ahsan
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan
| | - Chi-Chen Huang
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
5
|
Bansal S, Swami R, Bansal N, Chaudhary R, Mahendiratta S, Kaur H, Chopra K, Medhi B. Evidence-based neuroprotective potential of nonfeminizing estrogens: In vitro and in vivo studies. Eur J Neurosci 2024; 60:6046-6056. [PMID: 39297873 DOI: 10.1111/ejn.16512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/12/2024] [Accepted: 08/09/2024] [Indexed: 10/17/2024]
Abstract
Menopause weakens the brain's structural integrity and increases its susceptibility to a range of degenerative and mental illnesses. 17β estradiol (17βE2) exhibits potent neuroprotective properties. Exogenous estrogen supplementation provides neuroprotection, but the findings presented by the Million Women Study (MWS) and the Women's Health Initiative (WHI), as well as the increased risk of endometrial cancer, breast cancer and venous thromboembolism associated with estrogen use, have cast doubt on its clinical use for neurological disorders. Thus, the objective of our review article is to compile all in vitro and in vivo studies conducted till date demonstrating the neuroprotective potential of nonfeminizing estrogens. This objective has been achieved by gathering various research and review manuscripts from different records such as PubMed, Embase, Scopus, Google Scholar, Web of Science and OVID, using different terms like 'estrogen deficiency, 17β estradiol, non-feminising estrogens, and brain disorder'. However, recent evidence has revealed the contribution of numerous non-estrogen receptor-dependent pathways in neuroprotective effects of estrogen. In conclusion, synthetic nonfeminizing estrogens that have little or no ER binding but are equally powerful (and in some cases more potent) in delivering neuroprotection are emerging as viable and potential alternatives.
Collapse
Affiliation(s)
- Seema Bansal
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be university) Mullana-Ambala, Mullana, Haryana, India
| | - Rajan Swami
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Nitin Bansal
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, India
| | - Rishabh Chaudhary
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be university) Mullana-Ambala, Mullana, Haryana, India
| | - Saniya Mahendiratta
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Harpreet Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Kanwaljit Chopra
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
6
|
Banse SA, Sedore CA, Johnson E, Coleman-Hulbert AL, Onken B, Hall D, Jackson EG, Huynh P, Foulger AC, Guo S, Garrett T, Xue J, Inman D, Morshead ML, Plummer WT, Chen E, Bhaumik D, Chen MK, Harinath G, Chamoli M, Quinn RP, Falkowski R, Edgar D, Schmidt MO, Lucanic M, Guo M, Driscoll M, Lithgow GJ, Phillips PC. Antioxidants green tea extract and nordihydroguaiaretic acid confer species and strain-specific lifespan and health effects in Caenorhabditis nematodes. GeroScience 2024; 46:2239-2251. [PMID: 37923874 PMCID: PMC10828308 DOI: 10.1007/s11357-023-00978-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/08/2023] [Indexed: 11/06/2023] Open
Abstract
The Caenorhabditis Intervention Testing Program (CITP) is an NIH-funded research consortium of investigators who conduct analyses at three independent sites to identify chemical interventions that reproducibly promote health and lifespan in a robust manner. The founding principle of the CITP is that compounds with positive effects across a genetically diverse panel of Caenorhabditis species and strains are likely engaging conserved biochemical pathways to exert their effects. As such, interventions that are broadly efficacious might be considered prominent compounds for translation for pre-clinical research and human clinical applications. Here, we report results generated using a recently streamlined pipeline approach for the evaluation of the effects of chemical compounds on lifespan and health. We studied five compounds previously shown to extend C. elegans lifespan or thought to promote mammalian health: 17α-estradiol, acarbose, green tea extract, nordihydroguaiaretic acid, and rapamycin. We found that green tea extract and nordihydroguaiaretic acid extend Caenorhabditis lifespan in a species-specific manner. Additionally, these two antioxidants conferred assay-specific effects in some studies-for example, decreasing survival for certain genetic backgrounds in manual survival assays in contrast with extended lifespan as assayed using automated C. elegans Lifespan Machines. We also observed that GTE and NDGA impact on older adult mobility capacity is dependent on genetic background, and that GTE reduces oxidative stress resistance in some Caenorhabditis strains. Overall, our analysis of the five compounds supports the general idea that genetic background and assay type can influence lifespan and health effects of compounds, and underscores that lifespan and health can be uncoupled by chemical interventions.
Collapse
Affiliation(s)
- Stephen A Banse
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - Christine A Sedore
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - Erik Johnson
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | | | - Brian Onken
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers University, Piscataway, NJ, 08854, USA
| | - David Hall
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - E Grace Jackson
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - Phu Huynh
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers University, Piscataway, NJ, 08854, USA
| | - Anna C Foulger
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Suzhen Guo
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers University, Piscataway, NJ, 08854, USA
| | - Theo Garrett
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Jian Xue
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers University, Piscataway, NJ, 08854, USA
| | - Delaney Inman
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | | | - W Todd Plummer
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Esteban Chen
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers University, Piscataway, NJ, 08854, USA
| | - Dipa Bhaumik
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Michelle K Chen
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - Girish Harinath
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers University, Piscataway, NJ, 08854, USA
| | - Manish Chamoli
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Rose P Quinn
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - Ron Falkowski
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers University, Piscataway, NJ, 08854, USA
| | - Daniel Edgar
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Madeline O Schmidt
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - Mark Lucanic
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA
| | - Max Guo
- Division of Aging Biology, National Institute On Aging, Bethesda, MD, 20892-9205, USA
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers University, Piscataway, NJ, 08854, USA.
| | - Gordon J Lithgow
- The Buck Institute for Research On Aging, Novato, CA, 94945, USA.
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
7
|
McGill CJ, Christensen A, Qian W, Thorwald MA, Lugo JG, Namvari S, White OS, Finch CE, Benayoun BA, Pike CJ. Protection against APOE4 -associated aging phenotypes with the longevity-promoting intervention 17α-estradiol in male mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584678. [PMID: 38559059 PMCID: PMC10980056 DOI: 10.1101/2024.03.12.584678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The apolipoprotein ε4 allele ( APOE4 ) is associated with decreased longevity, increased vulnerability to age-related declines, and disorders across multiple systems. Interventions that promote healthspan and lifespan represent a promising strategy to attenuate the development of APOE4 -associated aging phenotypes. Here we studied the ability of the longevity-promoting intervention 17α-estradiol (17αE2) to protect against age-related impairments in APOE4 versus the predominant APOE3 genotype using early middle-aged mice with knock-in of human APOE alleles. Beginning at age 10 months, male APOE3 or APOE4 mice were treated for 20 weeks with 17αE2 or vehicle then compared for indices of aging phenotypes body-wide. Across peripheral and neural measures, APOE4 was associated with poorer outcomes. Notably, 17αE2 treatment improved outcomes in a genotype-dependent manner favoring APOE4 mice. These data demonstrate a positive APOE4 bias in 17αE2-mediated healthspan actions, suggesting that longevity-promoting interventions may be useful in mitigating deleterious age-related risks associated with APOE4 genotype.
Collapse
|
8
|
Stout MB, Vaughan KL, Isola JVV, Mann SN, Wellman B, Hoffman JM, Porter HL, Freeman WM, Mattison JA. Assessing tolerability and physiological responses to 17α-estradiol administration in male rhesus macaques. GeroScience 2023; 45:2337-2349. [PMID: 36897526 PMCID: PMC10651821 DOI: 10.1007/s11357-023-00767-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
17α-estradiol has recently been shown to extend healthspan and lifespan in male mice through multiple mechanisms. These benefits occur in the absence of significant feminization or deleterious effects on reproductive function, which makes 17α-estradiol a candidate for translation into humans. However, human dosing paradigms for the treatment of aging and chronic disease are yet to be established. Therefore, the goals of the current studies were to assess tolerability of 17α-estradiol treatment, in addition to evaluating metabolic and endocrine responses in male rhesus macaque monkeys during a relatively short treatment period. We found that our dosing regimens (0.30 and 0.20 mg/kg/day) were tolerable as evidenced by a lack of GI distress, changes in blood chemistry or complete blood counts, and unaffected vital signs. We also found that the higher dose did elicit mild benefits on metabolic parameters including body mass, adiposity, and glycosylated hemoglobin. However, both of our 17α-estradiol trial doses elicited significant feminization to include testicular atrophy, increased circulating estrogens, and suppressed circulating androgens and gonadotropins. We suspect that the observed level of feminization results from a saturation of the endogenous conjugation enzymes, thereby promoting a greater concentration of unconjugated 17α-estradiol in serum, which has more biological activity. We also surmise that the elevated level of unconjugated 17α-estradiol was subjected to a greater degree of isomerization to 17β-estradiol, which is aligned with the sevenfold increase in serum 17β-estradiol in 17α-estradiol treated animals in our first trial. Future studies in monkeys, and certainly humans, would likely benefit from the development and implementation of 17α-estradiol transdermal patches, which are commonly prescribed in humans and would circumvent potential issues with bolus dosing effects.
Collapse
Affiliation(s)
- Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, US.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, US.
- Oklahoma Medical Research Foundation, 825 NE 13Th Street Chapman S212, 73104, Oklahoma City, OK, US.
| | - Kelli L Vaughan
- Laboratory of Experimental Gerontology, National Institute On Aging, Dickerson, MD, US
| | - Jose V V Isola
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, US
| | - Shivani N Mann
- Department of Neuroscience, University of Arizona, Tucson, AZ, US
| | - Bayli Wellman
- Laboratory of Experimental Gerontology, National Institute On Aging, Dickerson, MD, US
| | - Jessica M Hoffman
- Department of Biological Sciences, Augusta University, Augusta, GA, US
| | - Hunter L Porter
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, US
| | - Willard M Freeman
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, US
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, US
| | - Julie A Mattison
- Laboratory of Experimental Gerontology, National Institute On Aging, Dickerson, MD, US.
- National Institute On Aging, 16701 Elmer School Road, Building 103, 20842, Dickerson, MD, US.
| |
Collapse
|
9
|
Watanabe K, Wilmanski T, Baloni P, Robinson M, Garcia GG, Hoopmann MR, Midha MK, Baxter DH, Maes M, Morrone SR, Crebs KM, Kapil C, Kusebauch U, Wiedrick J, Lapidus J, Pflieger L, Lausted C, Roach JC, Glusman G, Cummings SR, Schork NJ, Price ND, Hood L, Miller RA, Moritz RL, Rappaport N. Lifespan-extending interventions induce consistent patterns of fatty acid oxidation in mouse livers. Commun Biol 2023; 6:768. [PMID: 37481675 PMCID: PMC10363145 DOI: 10.1038/s42003-023-05128-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/10/2023] [Indexed: 07/24/2023] Open
Abstract
Aging manifests as progressive deteriorations in homeostasis, requiring systems-level perspectives to investigate the gradual molecular dysregulation of underlying biological processes. Here, we report systemic changes in the molecular regulation of biological processes under multiple lifespan-extending interventions. Differential Rank Conservation (DIRAC) analyses of mouse liver proteomics and transcriptomics data show that mechanistically distinct lifespan-extending interventions (acarbose, 17α-estradiol, rapamycin, and calorie restriction) generally tighten the regulation of biological modules. These tightening patterns are similar across the interventions, particularly in processes such as fatty acid oxidation, immune response, and stress response. Differences in DIRAC patterns between proteins and transcripts highlight specific modules which may be tightened via augmented cap-independent translation. Moreover, the systemic shifts in fatty acid metabolism are supported through integrated analysis of liver transcriptomics data with a mouse genome-scale metabolic model. Our findings highlight the power of systems-level approaches for identifying and characterizing the biological processes involved in aging and longevity.
Collapse
Affiliation(s)
| | | | - Priyanka Baloni
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | | | - Gonzalo G Garcia
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | | | | | | | - Michal Maes
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | - Charu Kapil
- Institute for Systems Biology, Seattle, WA, USA
| | | | - Jack Wiedrick
- Oregon Health and Science University, Portland, OR, USA
| | - Jodi Lapidus
- Oregon Health and Science University, Portland, OR, USA
| | - Lance Pflieger
- Institute for Systems Biology, Seattle, WA, USA
- Phenome Health, Seattle, WA, USA
| | | | | | | | - Steven R Cummings
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Nicholas J Schork
- Department of Quantitative Medicine, The Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
- Department of Population Sciences and Molecular and Cell Biology, The City of Hope National Medical Center, Duarte, CA, USA
| | - Nathan D Price
- Institute for Systems Biology, Seattle, WA, USA
- Thorne HealthTech, New York, NY, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Leroy Hood
- Institute for Systems Biology, Seattle, WA, USA.
- Phenome Health, Seattle, WA, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA.
- Department of Immunology, University of Washington, Seattle, WA, USA.
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- University of Michigan Geriatrics Center, Ann Arbor, MI, USA
| | | | | |
Collapse
|
10
|
Isola JVV, Ko S, Ocañas SR, Stout MB. Role of Estrogen Receptor α in Aging and Chronic Disease. ADVANCES IN GERIATRIC MEDICINE AND RESEARCH 2023; 5:e230005. [PMID: 37425648 PMCID: PMC10327608 DOI: 10.20900/agmr20230005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Estrogen receptor alpha (ERα) plays a crucial role in reproductive function in both sexes. It also mediates cellular responses to estrogens in multiple nonreproductive organ systems, many of which regulate systemic metabolic homeostasis and inflammatory processes in mammals. The loss of estrogens and/or ERα agonism during aging is associated with the emergence of several comorbid conditions, particularly in females undergoing the menopausal transition. Emerging data also suggests that male mammals likely benefit from ERα agonism if done in a way that circumvents feminizing characteristics. This has led us, and others, to speculate that tissue-specific ERα agonism may hold therapeutic potential for curtailing aging and chronic disease burden in males and females that are at high-risk of cancer and/or cardiovascular events with traditional estrogen replacement therapies. In this mini-review, we emphasize the role of ERα in the brain and liver, summarizing recent evidence that indicates these two organs systems mediate the beneficial effects of estrogens on metabolism and inflammation during aging. We also discuss how 17α-estradiol administration elicits health benefits in an ERα-dependent manner, which provides proof-of-concept that ERα may be a druggable target for attenuating aging and age-related disease burden.
Collapse
Affiliation(s)
- José V. V. Isola
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Sunghwan Ko
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Sarah R. Ocañas
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Michael B. Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
11
|
Liu JK. Antiaging agents: safe interventions to slow aging and healthy life span extension. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:18. [PMID: 35534591 PMCID: PMC9086005 DOI: 10.1007/s13659-022-00339-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/29/2022] [Indexed: 05/02/2023]
Abstract
Human longevity has increased dramatically during the past century. More than 20% of the 9 billion population of the world will exceed the age of 60 in 2050. Since the last three decades, some interventions and many preclinical studies have been found to show slowing aging and increasing the healthy lifespan of organisms from yeast, flies, rodents to nonhuman primates. The interventions are classified into two groups: lifestyle modifications and pharmacological/genetic manipulations. Some genetic pathways have been characterized to have a specific role in controlling aging and lifespan. Thus, all genes in the pathways are potential antiaging targets. Currently, many antiaging compounds target the calorie-restriction mimetic, autophagy induction, and putative enhancement of cell regeneration, epigenetic modulation of gene activity such as inhibition of histone deacetylases and DNA methyltransferases, are under development. It appears evident that the exploration of new targets for these antiaging agents based on biogerontological research provides an incredible opportunity for the healthcare and pharmaceutical industries. The present review focus on the properties of slow aging and healthy life span extension of natural products from various biological resources, endogenous substances, drugs, and synthetic compounds, as well as the mechanisms of targets for antiaging evaluation. These bioactive compounds that could benefit healthy aging and the potential role of life span extension are discussed.
Collapse
Affiliation(s)
- Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
12
|
Bottero V, Santiago JA, Quinn JP, Potashkin JA. Key Disease Mechanisms Linked to Amyotrophic Lateral Sclerosis in Spinal Cord Motor Neurons. Front Mol Neurosci 2022; 15:825031. [PMID: 35370543 PMCID: PMC8965442 DOI: 10.3389/fnmol.2022.825031] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no modifying treatments available. The molecular mechanisms underpinning disease pathogenesis are not fully understood. Recent studies have employed co-expression networks to identify key genes, known as “switch genes”, responsible for dramatic transcriptional changes in the blood of ALS patients. In this study, we directly investigate the root cause of ALS by examining the changes in gene expression in motor neurons that degenerate in patients. Co-expression networks identified in ALS patients’ spinal cord motor neurons revealed 610 switch genes in seven independent microarrays. Switch genes were enriched in several pathways, including viral carcinogenesis, PI3K-Akt, focal adhesion, proteoglycans in cancer, colorectal cancer, and thyroid hormone signaling. Transcription factors ELK1 and GATA2 were identified as key master regulators of the switch genes. Protein-chemical network analysis identified valproic acid, cyclosporine, estradiol, acetaminophen, quercetin, and carbamazepine as potential therapeutics for ALS. Furthermore, the chemical analysis identified metals and organic compounds including, arsenic, copper, nickel, and benzo(a)pyrene as possible mediators of neurodegeneration. The identification of switch genes provides insights into previously unknown biological pathways associated with ALS.
Collapse
Affiliation(s)
- Virginie Bottero
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, Center for Neurodegenerative Diseases and Therapeutics, Discipline of Cellular and Molecular Pharmacology, North Chicago, IL, United States
| | | | | | - Judith A. Potashkin
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, Center for Neurodegenerative Diseases and Therapeutics, Discipline of Cellular and Molecular Pharmacology, North Chicago, IL, United States
- *Correspondence: Judy A. Potashkin
| |
Collapse
|
13
|
Xu J, Zhou Y, Yan C, Wang X, Lou J, Luo Y, Gao S, Wang J, Wu L, Gao X, Shao A. Neurosteroids: A novel promise for the treatment of stroke and post-stroke complications. J Neurochem 2021; 160:113-127. [PMID: 34482541 DOI: 10.1111/jnc.15503] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 01/14/2023]
Abstract
Stroke is the primary reason for death and disability worldwide, with few treatment strategies to date. Neurosteroids, which are natural molecules in the brain, have aroused great interest in the field of stroke. Neurosteroids are a kind of steroid that acts on the nervous system, and are synthesized in the mitochondria of neurons or glial cells using cholesterol or other steroidal precursors. Neurosteroids mainly include estrogen, progesterone (PROG), allopregnanolone, dehydroepiandrosterone (DHEA), and vitamin D (VD). Most of the preclinical studies have confirmed that neurosteroids can decrease the risk of stroke, and improve stroke outcomes. In the meantime, neurosteroids have been shown to have a positive therapeutic significance in some post-stroke complications, such as epilepsy, depression, anxiety, cardiac complications, movement disorders, and post-stroke pain. In this review, we report the historical background, modulatory mechanisms of neurosteroids in stroke and post-stroke complications, and emphasize on the application prospect of neurosteroids in stroke therapy.
Collapse
Affiliation(s)
- Jiawei Xu
- The First Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Caochong Yan
- The Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianyao Lou
- Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Luo
- The Second Affiliated Hospital of Zhejiang University School of Medicine (Changxing Branch), Changxing, Huzhou, Zhejiang, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junjie Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liang Wu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangfu Gao
- The First Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, Zhejiang, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Debarba LK, Jayarathne HSM, Miller RA, Garratt M, Sadagurski M. 17-a-estradiol has sex-specific effects on neuroinflammation that are partly reversed by gonadectomy. J Gerontol A Biol Sci Med Sci 2021; 77:66-74. [PMID: 34309657 DOI: 10.1093/gerona/glab216] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
17-α-estradiol (17aE2) treatment from 4-months of age extends lifespan in male mice and can reduce neuroinflammatory responses in the hypothalamus of 12-month-old males. Although 17aE2 improves longevity in males, female mice are unaffected, suggesting a sexually dimorphic pattern of lifespan regulation. We tested whether the sex-specific effects of 17aE2 on neuroinflammatory responses are affected by gonadal removal and whether hypothalamic changes extend to other brain regions in old age. We show that sex-specific effects of 17aE2 on age-associated gliosis are brain region-specific and are partially dependent on gonadectomy. 17aE2 treatment started at 4 months of age protected 25-month-old males from hypothalamic inflammation. Castration before 17aE2 exposure reduced the effect of 17aE2 on hypothalamic astrogliosis in males. By contrast, sex-specific inhibition of microgliosis generated by 17aE2 was not significantly affected by castration. In the hippocampus, gonadectomy influenced the severity of gliosis and the responsiveness to 17aE2 in a region-dependent manner. The male-specific effects of 17aE2 correlate with increases in hypothalamic ERα expression, specifically in gonadally intact males, consistent with the idea that 17aE2 might act through this receptor. Our results indicate that neuroinflammatory responses to 17aE2 are partially controlled by the presence of sex-specific gonads. Loss of gonadal function and age-associated neuroinflammation could, therefore, influence late-life health and disease onset, leading to sexual dimorphism in both aging and in response to drugs that modify the pace of aging.
Collapse
Affiliation(s)
- Lucas K Debarba
- Department of Biological Sciences, IBio (Integrative Biosciences Center), Wayne State University, Detroit, Michigan, MI
| | - Hashan S M Jayarathne
- Department of Biological Sciences, IBio (Integrative Biosciences Center), Wayne State University, Detroit, Michigan, MI
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI
| | - Michael Garratt
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, NZ
| | - Marianna Sadagurski
- Department of Biological Sciences, IBio (Integrative Biosciences Center), Wayne State University, Detroit, Michigan, MI
| |
Collapse
|
15
|
Mautschke H, Llabrés i Xamena FX. One-Step Chemo-, Regio- and Stereoselective Reduction of Ketosteroids to Hydroxysteroids over Zr-Containing MOF-808 Metal-Organic Frameworks. Chemistry 2021; 27:10766-10775. [PMID: 33998732 PMCID: PMC8362071 DOI: 10.1002/chem.202100967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Indexed: 11/08/2022]
Abstract
Zr-containing MOF-808 is a very promising heterogeneous catalyst for the selective reduction of ketosteroids to the corresponding hydroxysteroids through a Meerwein-Ponndorf-Verley (MPV) reaction. Interestingly, the process leads to the diastereoselective synthesis of elusive 17α-hydroxy derivatives in one step, whereas most chemical and biological transformations produce the 17β-OH compounds, or they require several additional steps to convert 17β-OH into 17α-OH by inverting the configuration of the 17 center. Moreover, MOF-808 is found to be stable and reusable; it is also chemoselective (only keto groups are reduced, even in the presence of other reducible groups such as C=C bonds) and regioselective (in 3,17-diketosteroids only the keto group in position 17 is reduced, while the 3-keto group remains almost intact). The kinetic rate constant and thermodynamic parameters of estrone reduction to estradiol have been obtained by a detailed temperature-dependent kinetic analysis. The results evidence a major contribution of the entropic term, thus suggesting that the diastereoselectivity of the process is controlled by the confinement of the reaction inside the MOF cavities, where the Zr4+ active sites are located.
Collapse
Affiliation(s)
- H.‐H. Mautschke
- Instituto de Tecnología QuímicaUniversitat Politècnica de ValènciaConsejo Superior de Investigaciones CientíficasAvda. de los Naranjos s/n46022ValenciaSpain
| | - F. X. Llabrés i Xamena
- Instituto de Tecnología QuímicaUniversitat Politècnica de ValènciaConsejo Superior de Investigaciones CientíficasAvda. de los Naranjos s/n46022ValenciaSpain
| |
Collapse
|
16
|
Anti-Apoptotic and Antioxidant Activities of the Mitochondrial Estrogen Receptor Beta in N2A Neuroblastoma Cells. Int J Mol Sci 2021; 22:ijms22147620. [PMID: 34299239 PMCID: PMC8306648 DOI: 10.3390/ijms22147620] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022] Open
Abstract
Estrogens are steroid hormones that play a crucial role in the regulation of the reproductive and non-reproductive system physiology. Among non-reproductive systems, the nervous system is mainly affected by estrogens due to their antioxidant, anti-apoptotic, and anti-inflammatory activities, which are mediated by membranous and nuclear estrogen receptors, and also by non-estrogen receptor-associated estrogen actions. Neuronal viability and functionality are also associated with the maintenance of mitochondrial functions. Recently, the localization of estrogen receptors, especially estrogen receptor beta, in the mitochondria of many types of neuronal cells is documented, indicating the direct involvement of the mitochondrial estrogen receptor beta (mtERβ) in the maintenance of neuronal physiology. In this study, cell lines of N2A cells stably overexpressing a mitochondrial-targeted estrogen receptor beta were generated and further analyzed to study the direct involvement of mtERβ in estrogen neuroprotective antioxidant and anti-apoptotic actions. Results from this study revealed that the presence of estrogen receptor beta in mitochondria render N2A cells more resistant to staurosporine- and H2O2-induced apoptotic stimuli, as indicated by the reduced activation of caspase-9 and -3, the increased cell viability, the increased ATP production, and the increased resistance to mitochondrial impairment in the presence or absence of 17-β estradiol (E2). Thus, the direct involvement of mtERβ in antioxidant and anti-apoptotic activities is documented, rendering mtERβ a promising therapeutic target for mitochondrial dysfunction-associated degenerative diseases.
Collapse
|
17
|
Duran-Ortiz S, List EO, Basu R, Kopchick JJ. Extending lifespan by modulating the growth hormone/insulin-like growth factor-1 axis: coming of age. Pituitary 2021; 24:438-456. [PMID: 33459974 PMCID: PMC8122064 DOI: 10.1007/s11102-020-01117-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
Progress made in the years of aging research have allowed the opportunity to explore potential interventions to slow aging and extend healthy lifespan. Studies performed in yeast, worms, flies and mice subjected to genetic and pharmacological interventions have given insight into the cellular and molecular mechanisms associated with longevity. Furthermore, it is now possible to effectively modulate pathways that slow aging at different stages of life (early life or at an adult age). Interestingly, interventions that extend longevity in adult mice have had sex-specific success, suggesting a potential link between particular pathways that modulate aging and sex. For example, reduction of the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis at an adult age extends lifespan preferentially in females. Moreover, several postnatal dietary interventions tested by the 'Intervention Testing Program (ITP)' from the National Institute of Aging (NIA) have shown that while pharmacological interventions like rapamycin affect the IGF-1/insulin pathway and preferentially extend lifespan in females; dietary compounds that target other cellular pathways are effective only in male mice-indicating mutually exclusive sex-specific pathways. Therefore, a combination of interventions that target non-overlapping aging-related pathways appears to be an effective approach to further extend healthy lifespan in both sexes. Here, we review the germline and postnatal mouse lines that target the GH/IGF-1 axis as a mechanism to extend longevity as well as the dietary compounds that tested positive in the NIA program to increase lifespan. We believe that the interventions reviewed in this paper could constitute feasible combinations for an extended healthy lifespan in both male and female mice.
Collapse
Affiliation(s)
- Silvana Duran-Ortiz
- Edison Biotechnology Institute, Ohio University, Athens, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, USA
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, USA
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, USA.
- Molecular and Cellular Biology Program, Ohio University, Athens, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
18
|
Mann SN, Pitel KS, Nelson-Holte MH, Iwaniec UT, Turner RT, Sathiaseelan R, Kirkland JL, Schneider A, Morris KT, Malayannan S, Hawse JR, Stout MB. 17α-Estradiol prevents ovariectomy-mediated obesity and bone loss. Exp Gerontol 2020; 142:111113. [PMID: 33065227 PMCID: PMC8351143 DOI: 10.1016/j.exger.2020.111113] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022]
Abstract
Menopause is a natural physiological process in older women that is associated with reduced estrogen production and results in increased risk for obesity, diabetes, and osteoporosis. 17α-estradiol (17α-E2) treatment in males, but not females, reverses several metabolic conditions associated with advancing age, highlighting sexually dimorphic actions on age-related pathologies. In this study we sought to determine if 17α-E2 could prevent ovariectomy (OVX)-mediated detriments on adiposity and bone parameters in females. Eight-week-old female C57BL/6J mice were subjected to SHAM or OVX surgery and received dietary 17α-E2 during a six-week intervention period. We observed that 17α-E2 prevented OVX-induced increases in body weight and adiposity. Similarly, uterine weight and luminal cell thickness were decreased by OVX and prevented by 17α-E2 treatment. Interestingly, 17α-E2 prevented OVX-induced declines in tibial metaphysis cancellous bone. And similarly, 17α-E2 improved bone density parameters in both tibia and femur cancellous bone, primarily in OVX mice. In contrast, to the effects on cancellous bone, cortical bone parameters were largely unaffected by OVX or 17α-E2. In the non-weight bearing lumbar vertebrae, OVX reduced trabecular thickness but not spacing, while 17α-E2 increased trabecular thickness and reduced spacing. Despite this, 17α-E2 did improve bone volume/tissue volume in lumbar vertebrae. Overall, we found that 17α-E2 prevented OVX-induced increases in adiposity and changes in bone mass and architecture, with minimal effects in SHAM-operated mice. We also observed that 17α-E2 rescued uterine tissue mass and lining morphology to control levels without inducing hypertrophy, suggesting that 17α-E2 could be considered as an adjunct to traditional hormone replacement therapies.
Collapse
Affiliation(s)
- Shivani N Mann
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Kevin S Pitel
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | - Molly H Nelson-Holte
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | - Urszula T Iwaniec
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA.
| | - Russell T Turner
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA.
| | - Roshini Sathiaseelan
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | | | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| | - Katherine T Morris
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | | | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | - Michael B Stout
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
19
|
Gonzalez-Freire M, Diaz-Ruiz A, Hauser D, Martinez-Romero J, Ferrucci L, Bernier M, de Cabo R. The road ahead for health and lifespan interventions. Ageing Res Rev 2020; 59:101037. [PMID: 32109604 DOI: 10.1016/j.arr.2020.101037] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/21/2020] [Accepted: 02/23/2020] [Indexed: 12/20/2022]
Abstract
Aging is a modifiable risk factor for most chronic diseases and an inevitable process in humans. The development of pharmacological interventions aimed at delaying or preventing the onset of chronic conditions and other age-related diseases has been at the forefront of the aging field. Preclinical findings have demonstrated that species, sex and strain confer significant heterogeneity on reaching the desired health- and lifespan-promoting pharmacological responses in model organisms. Translating the safety and efficacy of these interventions to humans and the lack of reliable biomarkers that serve as predictors of health outcomes remain a challenge. Here, we will survey current pharmacological interventions that promote lifespan extension and/or increased healthspan in animals and humans, and review the various anti-aging interventions selected for inclusion in the NIA's Interventions Testing Program as well as the ClinicalTrials.gov database that target aging or age-related diseases in humans.
Collapse
Affiliation(s)
- Marta Gonzalez-Freire
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA; Cardiovascular and Metabolic Diseases Group, Fundació Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain.
| | - Alberto Diaz-Ruiz
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA; Nutritional Interventions Group, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - David Hauser
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA
| | - Jorge Martinez-Romero
- Molecular Oncology and Nutritional Genomics of Cancer Group, Precision Nutrition and Cancer Program, IMDEA Food, CEI, UAM/CSIC, Madrid, Spain
| | - Luigi Ferrucci
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA
| |
Collapse
|
20
|
Isola JVV, Zanini BM, Sidhom S, Kopchick JJ, Bartke A, Masternak MM, Stout MB, Schneider A. 17α-Estradiol promotes ovarian aging in growth hormone receptor knockout mice, but not wild-type littermates. Exp Gerontol 2020; 129:110769. [PMID: 31698046 PMCID: PMC6911620 DOI: 10.1016/j.exger.2019.110769] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/05/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022]
Abstract
Growth hormone receptor knockout mice (GHRKO) have reduced body size and increased insulin sensitivity. These mice are known for having extended lifespan, healthspan and female reproductive longevity. Seventeen α-estradiol (17α-E2) is reported to increase insulin sensitivity and extend lifespan in male mice, with less robust effects in female mice. The aim of this study was to evaluate the ovarian reserve in wild type and GHRKO mice treated with 17α-E2. The mice were divided into four groups, GHRKO mice receiving a standard chow diet, GHRKO mice treated 17α-E2, wild type mice receiving a standard chow diet and WT mice treated with 17α-E2. 17α-E2 was provided in the diet for four months. IGF1 plasma concentrations and changes in body weight were assessed. Histological slides were prepared from the ovaries and the number of follicles was counted. GHRKO mice receiving the control diet had a greater number of primordial follicles and lower numbers of primary follicles compared to the other groups (p < 0.05). 17α-E2 treatment decreased the number of primordial follicles in GHRKO mice (p < 0.05), however had no effect in wild type mice. Treatment with 17α-E2 had no significant effect on the change in body weight during the experiment (p = 0.75). Plasma IGF1 concentrations were significantly lower in GHRKO mice as compared to wild type. In conclusion, we found that GHRKO mice displayed lesser primordial follicle activation as compared to wild type mice, but this phenotype was reversed by 17α-E2 administration, suggesting that ovarian aging is increased by 17α-E2 in long-living mice with extended reproductive longevity.
Collapse
Affiliation(s)
- José V V Isola
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Bianka M Zanini
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Silvana Sidhom
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA; Department of Physiology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | | | - Michael B Stout
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
21
|
Abstract
Cardiovascular ageing and the atherosclerotic process begin very early in life, most likely in utero. They progress over decades of exposure to suboptimal or abnormal metabolic and hormonal risk factors, eventually culminating in very common, costly, and mostly preventable target-organ pathologies, including coronary heart disease, stroke, heart failure, aortic aneurysm, peripheral artery disease, and vascular dementia. In this Review, we discuss findings from preclinical and clinical studies showing that calorie restriction (CR), intermittent fasting, and adjusted diurnal rhythm of feeding, with adequate intake of specific macronutrients and micronutrients, are powerful interventions not only for the prevention of cardiovascular disease but also for slowing the accumulation of molecular damage leading to cardiometabolic dysfunction. Furthermore, we discuss the mechanisms through which a number of other nondietary interventions, such as regular physical activity, mindfulness-based stress-reduction exercises, and some CR-mimetic drugs that target pro-ageing pathways, can potentiate the beneficial effects of a healthy diet in promoting cardiometabolic health.
Collapse
|
22
|
Morrice JR, Gregory-Evans CY, Shaw CA. Modeling Environmentally-Induced Motor Neuron Degeneration in Zebrafish. Sci Rep 2018; 8:4890. [PMID: 29559645 PMCID: PMC5861069 DOI: 10.1038/s41598-018-23018-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/05/2018] [Indexed: 12/13/2022] Open
Abstract
Zebrafish have been used to investigate motor neuron degeneration, including as a model system to examine the pathogenesis of amyotrophic lateral sclerosis (ALS). The use of zebrafish for this purpose has some advantages over other in vivo model systems. In the current paper, we show that bisphenol A (BPA) exposure in zebrafish embryos results in motor neuron degeneration with affected motor function, reduced motor axon length and branching, reduced neuromuscular junction integrity, motor neuron cell death and the presence of activated microglia. In zebrafish, motor axon length is the conventional method for estimating motor neuron degeneration, yet this measurement has not been confirmed as a valid surrogate marker. We also show that reduced motor axon length as measured from the sagittal plane is correlated with increased motor neuron cell death. Our preliminary timeline studies suggest that axonopathy precedes motor cell death. This outcome may have implications for early phase treatments of motor neuron degeneration.
Collapse
Affiliation(s)
- Jessica R Morrice
- Experimental Medicine Program, University of British Columbia, Vancouver, Canada
| | - Cheryl Y Gregory-Evans
- Experimental Medicine Program, University of British Columbia, Vancouver, Canada.,Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada.,Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
| | - Christopher A Shaw
- Experimental Medicine Program, University of British Columbia, Vancouver, Canada. .,Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada. .,Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
23
|
Sørvik IB, Solum EJ, Labba NA, Hansen TV, Paulsen RE. Differential effects of some novel synthetic oestrogen analogs on oxidative PC12 cell death caused by serum deprivation. Free Radic Res 2018; 52:273-287. [DOI: 10.1080/10715762.2018.1430363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Irene B. Sørvik
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Eirik Johansson Solum
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Nils A. Labba
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Trond Vidar Hansen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Ragnhild E. Paulsen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
24
|
Santos RS, de Fatima LA, Frank AP, Carneiro EM, Clegg DJ. The effects of 17 alpha-estradiol to inhibit inflammation in vitro. Biol Sex Differ 2017; 8:30. [PMID: 28877759 PMCID: PMC5586055 DOI: 10.1186/s13293-017-0151-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/29/2017] [Indexed: 01/01/2023] Open
Abstract
Background 17 Alpha-estradiol (17 α-E2) is a natural, non-feminizing stereoisomer of 17 beta-estradiol (17 β-E2). Whereas much is known about the physiological effects of 17 β-E2, much less is known about 17 α-E2. For example, 17 β-E2 exerts anti-inflammatory effects in neurons and adipocytes through binding and activation of estrogen receptor alpha (ERα); however, if 17 α-E2 has similar effects on inflammation is currently unknown. Methods To begin to address this, we analyzed the ability of 17 α-E2 and 17 β-E2 to suppress lipopolysaccharide (LPS)-induced inflammation in vitro using embryonic fibroblast cells (MEF) from wild type and total body ERα (ERKO) male and female mice. Additionally, we further probed if there were sex differences with respect to the effects of E2s using primary pre-adipocyte cells from C57BL/6J male and female mice. Also, we probed mechanistically the effects of E2s in fully differentiated 3T3-L1 cells. Results Both E2s decreased LPS-induced markers of inflammation Tnf-α and Il-6, and increased the anti-inflammatory markers Il-4 and IL-6 receptor (Il-6ra) in MEF cells. To begin to understand the mechanisms by which both E2’s mediate their anti-inflammatory effects, we probed the role of ERα using two methods. First, we used MEF cells from ERKO mice and found reductions in ERα diminished the ability of 17 α-E2 to suppress Tnf-α in female but not in male cells, demonstrating a sexual dimorphism in regard to the role of ERα to mediate 17 α-E2’s effects. Second, we selectively reduced the expression of ERα in 3T3-L1 cells using siRNA and found reductions in ERα diminished the ability of both E2s to suppress Tnf-α and Il-6 expression. Lastly, to determine the mechanisms by which E2s reduce inflammation, we explored the role of NFκB-p65 and found both E2s decreased NFκB-p65 expression. Conclusions In conclusion, we demonstrate for the first time that 17 α-E2, as well as 17 β-E2, suppresses inflammation through their effects on ERα and NFκB-p65. Electronic supplementary material The online version of this article (10.1186/s13293-017-0151-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roberta S Santos
- Biomedical Sciences Dept, Diabetes and Obesity Research Division, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Luciana A de Fatima
- Biomedical Sciences Dept, Diabetes and Obesity Research Division, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Aaron P Frank
- Biomedical Sciences Dept, Diabetes and Obesity Research Division, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Everardo M Carneiro
- Obesity and Comorbidities Research Center (OCRC), Institute of Biology, State University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Deborah J Clegg
- Biomedical Sciences Dept, Diabetes and Obesity Research Division, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| |
Collapse
|
25
|
James ML, Christianson T, Woo D, Kon NKK. Gonadal hormone regulation as therapeutic strategy after acute intracerebral hemorrhage. PROCEEDINGS OF SINGAPORE HEALTHCARE 2017. [DOI: 10.1177/2010105817725081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | | | - Daniel Woo
- Department of Neurology, University of Cincinnati, USA
| | | |
Collapse
|
26
|
Sadagurski M, Cady G, Miller RA. Anti-aging drugs reduce hypothalamic inflammation in a sex-specific manner. Aging Cell 2017; 16:652-660. [PMID: 28544365 PMCID: PMC5506421 DOI: 10.1111/acel.12590] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2017] [Indexed: 12/22/2022] Open
Abstract
Aging leads to hypothalamic inflammation, but does so more slowly in mice whose lifespan has been extended by mutations that affect GH/IGF‐1 signals. Early‐life exposure to GH by injection, or to nutrient restriction in the first 3 weeks of life, also modulate both lifespan and the pace of hypothalamic inflammation. Three drugs extend lifespan of UM‐HET3 mice in a sex‐specific way: acarbose (ACA), 17‐α‐estradiol (17αE2), and nordihydroguaiaretic acid (NDGA), with more dramatic longevity increases in males in each case. In this study, we examined the effect of these anti‐aging drugs on neuro‐inflammation in hypothalamus and hippocampus. We found that age‐associated hypothalamic inflammation is reduced in males but not in females at 12 months of age by ACA and 17αE2 and at 22 months of age in NDGA‐treated mice. The three drugs blocked indices of hypothalamic reactive gliosis associated with aging, such as Iba‐1‐positive microglia and GFAP‐positive astrocytes, as well as age‐associated overproduction of TNF‐α. This effect was not observed in drug‐treated female mice or in the hippocampus of the drug‐treated animals. On the other hand, caloric restriction (CR; an intervention that extends the lifespan in both sexes) significantly reduced hypothalamic microglia and TNF‐α in both sexes at 12 months of age. Together, these results suggest that the extent of drug‐induced changes in hypothalamic inflammatory processes is sexually dimorphic in a pattern that parallels the effects of these agents on mouse longevity and that mimics the changes seen, in both sexes, of long‐lived nutrient restricted or mutant mice.
Collapse
Affiliation(s)
- Marianna Sadagurski
- Division of Geriatric and Palliative Medicine; Department of Internal Medicine; University of Michigan; Ann Arbor MI USA
| | - Gillian Cady
- Department of Pathology and Geriatrics Center; University of Michigan; Ann Arbor MI USA
| | - Richard A. Miller
- Department of Pathology and Geriatrics Center; University of Michigan; Ann Arbor MI USA
| |
Collapse
|
27
|
Strong R, Miller RA, Antebi A, Astle CM, Bogue M, Denzel MS, Fernandez E, Flurkey K, Hamilton KL, Lamming DW, Javors MA, de Magalhães JP, Martinez PA, McCord JM, Miller BF, Müller M, Nelson JF, Ndukum J, Rainger GE, Richardson A, Sabatini DM, Salmon AB, Simpkins JW, Steegenga WT, Nadon NL, Harrison DE. Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an α-glucosidase inhibitor or a Nrf2-inducer. Aging Cell 2016; 15:872-84. [PMID: 27312235 PMCID: PMC5013015 DOI: 10.1111/acel.12496] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2016] [Indexed: 12/25/2022] Open
Abstract
The National Institute on Aging Interventions Testing Program (ITP) evaluates agents hypothesized to increase healthy lifespan in genetically heterogeneous mice. Each compound is tested in parallel at three sites, and all results are published. We report the effects of lifelong treatment of mice with four agents not previously tested: Protandim, fish oil, ursodeoxycholic acid (UDCA) and metformin - the latter with and without rapamycin, and two drugs previously examined: 17-α-estradiol and nordihydroguaiaretic acid (NDGA), at doses greater and less than used previously. 17-α-estradiol at a threefold higher dose robustly extended both median and maximal lifespan, but still only in males. The male-specific extension of median lifespan by NDGA was replicated at the original dose, and using doses threefold lower and higher. The effects of NDGA were dose dependent and male specific but without an effect on maximal lifespan. Protandim, a mixture of botanical extracts that activate Nrf2, extended median lifespan in males only. Metformin alone, at a dose of 0.1% in the diet, did not significantly extend lifespan. Metformin (0.1%) combined with rapamycin (14 ppm) robustly extended lifespan, suggestive of an added benefit, based on historical comparison with earlier studies of rapamycin given alone. The α-glucosidase inhibitor, acarbose, at a concentration previously tested (1000 ppm), significantly increased median longevity in males and 90th percentile lifespan in both sexes, even when treatment was started at 16 months. Neither fish oil nor UDCA extended lifespan. These results underscore the reproducibility of ITP longevity studies and illustrate the importance of identifying optimal doses in lifespan studies.
Collapse
Affiliation(s)
- Randy Strong
- Geriatric Research, Education and Clinical Center and Research Service, South Texas Veterans Health Care System, Department of PharmacologyThe University of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Barshop Institute for Longevity and Aging StudiesThe University of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Richard A. Miller
- Department of Pathology and Geriatrics CenterUniversity of MichiganAnn ArborMI48109‐2200USA
| | - Adam Antebi
- Max Planck Institute for Biology of AgeingCologneD‐50931Germany
| | | | | | | | - Elizabeth Fernandez
- Geriatric Research, Education and Clinical Center and Research Service, South Texas Veterans Health Care System, Department of PharmacologyThe University of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Barshop Institute for Longevity and Aging StudiesThe University of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | | | | | - Dudley W. Lamming
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWI53705USA
| | - Martin A. Javors
- Department of PsychiatryUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - João Pedro de Magalhães
- School of Biological SciencesUniversity of LiverpoolCrown StreetLiverpoolL69 7ZBUK
- Present address: Integrative Genomics of Ageing GroupInstitute of Ageing and Chronic DiseaseUniversity of LiverpoolL7 8TX, LiverpoolUnited Kingdom
| | - Paul Anthony Martinez
- Geriatric Research, Education and Clinical Center and Research Service, South Texas Veterans Health Care System, Department of PharmacologyThe University of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Barshop Institute for Longevity and Aging StudiesThe University of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - Joe M. McCord
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of ColoradoAuroraCOUSA
| | | | - Michael Müller
- Norwich Medical SchoolUniversity of East AngliaNorwichUK
| | - James F. Nelson
- Department of Physiology and Barshop Center for Longevity and Aging StudiesThe University of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | | | - G. Ed. Rainger
- Centre for Cardiovascular SciencesSchool of Clinical and Experimental MedicineThe Medical SchoolThe University of BirminghamBirminghamUK
| | - Arlan Richardson
- Department of Geriatric MedicineUniversity of Oklahoma Health Science CenterOklahoma CityOK73104USA
- VA Medical CenterOklahoma CityOK73104USA
| | - David M. Sabatini
- Whitehead Institute for Biomedical ResearchCambridgeMA02142USA
- Department of BiologyMITCambridgeMA02139USA
- Howard Hughes Medical InstituteMITCambridgeMA02139USA
- Broad Institute of Harvard and MITSeven Cambridge CenterCambridgeMA02142USA
- The David H. Koch Institute for Integrative Cancer Research at MITCambridgeMA02139USA
| | - Adam B. Salmon
- Department of Molecular Medicine and Barshop Institute for Longevity and Aging StudiesThe University of Texas Health Science Center at San AntonioSan AntonioTX78229USA
| | - James W. Simpkins
- Center for Basic & Translational Stroke ResearchWest Virginia UniversityMorgantownWV26506USA
| | - Wilma T. Steegenga
- Division of Human NutritionWageningen University and Research CentreWageningenThe Netherlands
| | - Nancy L. Nadon
- Division of Aging BiologyNational Institute on AgingBethesdaMD20892USA
| | | |
Collapse
|
28
|
Mitrović N, Guševac I, Drakulić D, Stanojlović M, Zlatković J, Sévigny J, Horvat A, Nedeljković N, Grković I. Regional and sex-related differences in modulating effects of female sex steroids on ecto-5'-nucleotidase expression in the rat cerebral cortex and hippocampus. Gen Comp Endocrinol 2016; 235:100-107. [PMID: 27296672 DOI: 10.1016/j.ygcen.2016.06.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 11/03/2015] [Accepted: 06/09/2016] [Indexed: 12/20/2022]
Abstract
Ecto-5'-nucleotidase (eN), a membrane rate-limiting enzyme of the purine catabolic pathway, catalyzes the conversion of AMP to adenosine involved in the regulation of many brain physiological and pathological processes. Since gender fundamentally determines hormonal milieu in the body and brain, it is reasonable to assume that sex differences in the activity of various signaling systems, including adenosine, may be generated by gonadal steroids. Thus, we examined expression of eN as a component of adenosine signaling system in the basal state in cerebral cortex and hippocampus of male and female rats at gene, protein and functional level, as well as in the state of gonadal hormone deprivation, induced by ovariectomy (OVX), whereas impact of steroid hormones was explored after repeated administration of 17α-estradiol, 17β-estradiol and progesterone for seven consecutive days. Results showed regional and sex-related differences in basal eN activity level, with the highest AMP hydrolysis observed in the hippocampus of male rats. Furthermore, ovarian steroids do not contribute to basal gene eN expression or the activity in cortical and hippocampal region of female rats. However, protein eN expression was increased in OVX rats in both investigated region. Investigated exogenous steroids had no influence on eN expression in male brain, while in OVX females alterations in eN activity were induced. The observed effects in female rats were different between examined regions e.g. in cortex, applied treatments predominantly decreased whereas in hippocampus increased eN activity. Based on the presented results, eN exerts regional and sex-related response in basal state as well as after treatment with female gonadal hormones, however the exact mechanisms of sex steroids actions on eN remain unclear and should be fully explored.
Collapse
Affiliation(s)
- Nataša Mitrović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Ivana Guševac
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Dunja Drakulić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Miloš Stanojlović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Jelena Zlatković
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Jean Sévigny
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec G1V 0A6, QC, Canada; Centre de recherche du CHU de Québec, G1V 4G2 QC, Canada
| | - Anica Horvat
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Nadežda Nedeljković
- Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Studentski trg 3, 11000 Belgrade, Serbia
| | - Ivana Grković
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia.
| |
Collapse
|
29
|
Lopez Sanchez M, Crowston J, Mackey D, Trounce I. Emerging Mitochondrial Therapeutic Targets in Optic Neuropathies. Pharmacol Ther 2016; 165:132-52. [DOI: 10.1016/j.pharmthera.2016.06.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Indexed: 12/14/2022]
|
30
|
Newman JC, Milman S, Hashmi SK, Austad SN, Kirkland JL, Halter JB, Barzilai N. Strategies and Challenges in Clinical Trials Targeting Human Aging. J Gerontol A Biol Sci Med Sci 2016; 71:1424-1434. [PMID: 27535968 PMCID: PMC5055653 DOI: 10.1093/gerona/glw149] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/12/2016] [Indexed: 12/21/2022] Open
Abstract
Interventions that target fundamental aging processes have the potential to transform human health and health care. A variety of candidate drugs have emerged from basic and translational research that may target aging processes. Some of these drugs are already in clinical use for other purposes, such as metformin and rapamycin. However, designing clinical trials to test interventions that target the aging process poses a unique set of challenges. This paper summarizes the outcomes of an international meeting co-ordinated by the NIH-funded Geroscience Network to further the goal of developing a translational pipeline to move candidate compounds through clinical trials and ultimately into use. We review the evidence that some drugs already in clinical use may target fundamental aging processes. We discuss the design principles of clinical trials to test such interventions in humans, including study populations, interventions, and outcomes. As examples, we offer several scenarios for potential clinical trials centered on the concepts of health span (delayed multimorbidity and functional decline) and resilience (response to or recovery from an acute health stress). Finally, we describe how this discussion helped inform the design of the proposed Targeting Aging with Metformin study.
Collapse
Affiliation(s)
- John C Newman
- Division of Geriatrics, University of California San Francisco
| | - Sofiya Milman
- Department of Medicine, Division of Endocrinology and.,Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York
| | - Shahrukh K Hashmi
- Department of Hematology and Transplant Center, Mayo Clinic, Rochester, Minnesota
| | - Steve N Austad
- Department of Biology, University of Alabama at Birmingham
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Jeffrey B Halter
- Geriatrics Center and Institute of Gerontology, University of Michigan, Ann Arbor
| | - Nir Barzilai
- Department of Medicine, Division of Endocrinology and .,Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
31
|
Gonzalez-Freire M, Diaz-Ruiz A, de Cabo R. 17α-Estradiol: A Novel Therapeutic Intervention to Target Age-related Chronic Inflammation. J Gerontol A Biol Sci Med Sci 2016; 72:1-2. [PMID: 27034507 DOI: 10.1093/gerona/glw041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 02/17/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marta Gonzalez-Freire
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Alberto Diaz-Ruiz
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland.
| |
Collapse
|
32
|
Abstract
Aging is characterized by the progressive accumulation of degenerative changes, culminating in impaired function and increased probability of death. It is the major risk factor for many human pathologies - including cancer, type 2 diabetes, and cardiovascular and neurodegenerative diseases - and consequently exerts an enormous social and economic toll. The major goal of aging research is to develop interventions that can delay the onset of multiple age-related diseases and prolong healthy lifespan (healthspan). The observation that enhanced longevity and health can be achieved in model organisms by dietary restriction or simple genetic manipulations has prompted the hunt for chemical compounds that can increase lifespan. Most of the pathways that modulate the rate of aging in mammals have homologs in yeast, flies, and worms, suggesting that initial screening to identify such pharmacological interventions may be possible using invertebrate models. In recent years, several compounds have been identified that can extend lifespan in invertebrates, and even in rodents. Here, we summarize the strategies employed, and the progress made, in identifying compounds capable of extending lifespan in organisms ranging from invertebrates to mice and discuss the formidable challenges in translating this work to human therapies.
Collapse
Affiliation(s)
- Surinder Kumar
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David B Lombard
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA; Institute of Gerontology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
33
|
Kirkland JL. Translating the Science of Aging into Therapeutic Interventions. Cold Spring Harb Perspect Med 2016; 6:a025908. [PMID: 26931808 DOI: 10.1101/cshperspect.a025908] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Life and health span have been extended in experimental animals using drugs that are potentially translatable into humans. Considerable effort is needed beyond the usual steps in drug development to devise the models, and realistic preclinical and clinical trial strategies are required to advance these agents into clinical application. It will be important to focus on subjects who already have symptoms or are at imminent risk of developing disorders related to fundamental aging processes, to use short-term, clinically relevant outcomes, as opposed to long-term outcomes, such as health span or life span, and to validate endpoint measures so they are acceptable to regulatory agencies. Funding is a roadblock, as is shortage of investigators with combined expertise in the basic biology of aging, clinical geriatrics, and investigational new drug clinical trials. Strategies for developing a path from the bench to the bedside are reviewed for interventions that target fundamental aging mechanisms.
Collapse
Affiliation(s)
- James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota 55905
| |
Collapse
|
34
|
Cardoso FSP, Mickle GE, da Silva MA, Baraldi PT, Ferreira FB. Application of In Situ FTIR for the Preparation of 17-α-Estradiol via Mitsunobu Reaction. Org Process Res Dev 2016. [DOI: 10.1021/acs.oprd.5b00394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Flávio S. P. Cardoso
- Libbs Farmacêutica Ltda., Rua Alberto Correia Francfort, 88, Embu das
Artes, São Paulo 06807461, Brazil
| | - Gregory E. Mickle
- Libbs Farmacêutica Ltda., Rua Alberto Correia Francfort, 88, Embu das
Artes, São Paulo 06807461, Brazil
| | - Marco A. da Silva
- Libbs Farmacêutica Ltda., Rua Alberto Correia Francfort, 88, Embu das
Artes, São Paulo 06807461, Brazil
| | - Patricia T. Baraldi
- Libbs Farmacêutica Ltda., Rua Alberto Correia Francfort, 88, Embu das
Artes, São Paulo 06807461, Brazil
| | - Fabio B. Ferreira
- Mettler Toledo Ind. e Com. Ltda, Av. Tamboré, 418, Barueri, São Paulo 06460000, Brazil
| |
Collapse
|
35
|
Stout MB, Steyn FJ, Jurczak MJ, Camporez JPG, Zhu Y, Hawse JR, Jurk D, Palmer AK, Xu M, Pirtskhalava T, Evans GL, de Souza Santos R, Frank AP, White TA, Monroe DG, Singh RJ, Casaclang-Verzosa G, Miller JD, Clegg DJ, LeBrasseur NK, von Zglinicki T, Shulman GI, Tchkonia T, Kirkland JL. 17α-Estradiol Alleviates Age-related Metabolic and Inflammatory Dysfunction in Male Mice Without Inducing Feminization. J Gerontol A Biol Sci Med Sci 2016; 72:3-15. [PMID: 26809497 PMCID: PMC5155656 DOI: 10.1093/gerona/glv309] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/15/2015] [Indexed: 12/20/2022] Open
Abstract
Aging is associated with visceral adiposity, metabolic disorders, and chronic low-grade inflammation. 17α-estradiol (17α-E2), a naturally occurring enantiomer of 17β-estradiol (17β-E2), extends life span in male mice through unresolved mechanisms. We tested whether 17α-E2 could alleviate age-related metabolic dysfunction and inflammation. 17α-E2 reduced body mass, visceral adiposity, and ectopic lipid deposition without decreasing lean mass. These declines were associated with reductions in energy intake due to the activation of hypothalamic anorexigenic pathways and direct effects of 17α-E2 on nutrient-sensing pathways in visceral adipose tissue. 17α-E2 did not alter energy expenditure or excretion. Fasting glucose, insulin, and glycosylated hemoglobin were also reduced by 17α-E2, and hyperinsulinemic-euglycemic clamps revealed improvements in peripheral glucose disposal and hepatic glucose production. Inflammatory mediators in visceral adipose tissue and the circulation were reduced by 17α-E2. 17α-E2 increased AMPKα and reduced mTOR complex 1 activity in visceral adipose tissue but not in liver or quadriceps muscle, which is in contrast to the generalized systemic effects of caloric restriction. These beneficial phenotypic changes occurred in the absence of feminization or cardiac dysfunction, two commonly observed deleterious effects of exogenous estrogen administration. Thus, 17α-E2 holds potential as a novel therapeutic for alleviating age-related metabolic dysfunction through tissue-specific effects.
Collapse
Affiliation(s)
- Michael B Stout
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Frederik J Steyn
- Center for Clinical Research and School of Biomedical Sciences, University of Queensland, Herston, Australia
| | - Michael J Jurczak
- Division of Endocrinology and Metabolism, University of Pittsburgh, Pennsylvania
| | | | - Yi Zhu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Diana Jurk
- Institutes for Cell & Molecular Biosciences and Ageing, Newcastle University
| | - Allyson K Palmer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Ming Xu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Tamar Pirtskhalava
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Glenda L Evans
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Roberta de Souza Santos
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Beverly Hills, California
| | - Aaron P Frank
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Beverly Hills, California
| | - Thomas A White
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - David G Monroe
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Ravinder J Singh
- Department of Laboratory Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Jordan D Miller
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Deborah J Clegg
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Beverly Hills, California
| | | | | | - Gerald I Shulman
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
36
|
Kaur SP, Bansal S, Chopra K. 17α-Estradiol: a candidate neuroserm and non-feminizing estrogen for postmenopausal neuronal complications. Steroids 2015; 96:7-15. [PMID: 25595449 DOI: 10.1016/j.steroids.2015.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 09/02/2014] [Accepted: 01/06/2015] [Indexed: 02/09/2023]
Abstract
Extensive evidence suggests that decline in ovarian function with menopause is associated with neuronal dysfunction. Major cause of this is rise in oxidative stress and inflammatory cytokines because of estrogen deficiency. 17β-Estradiol (E2, hormone with potent antioxidant and anti-inflammatory activity) has profound protective actions on multiple organ systems, but feminizing side effects of β-estradiol limits its clinical efficacy. 17α-Estradiol (E2α), a non feminizing congener, gives a ray of hope to the scientific community as an alternative strategy to treat menopause associated neuronal pathologies. We assessed the protective actions of 17α-estradiol (5, 10μg/kg) against cognitive deficits, depression and motor coordination after 4weeks of ovariectomy in rats and compared its efficacy with E2 at same doses. After the behavioral assay animals were sacrificed and their brains were harvested for biochemical studies. Uterine weights were also assessed. E2 and E2α (5, 10μg/kg) were equally protective against attenuating cognitive deficits, depressive symptoms and motor incoordination in OVX rats. Both demonstrated significant antioxidant activity and E2, but not E2α, increased serum estradiol levels and proliferated uterine weights, markers of feminizing action. It can thus be concluded that E2α offers safe alternative to E2 in protecting against menopausal neuropathologies.
Collapse
Affiliation(s)
- Sukhneeraj Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Seema Bansal
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Kanwaljit Chopra
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
37
|
Affiliation(s)
- Walter H. Moos
- SRI International; Menlo Park CA USA
- University of California; San Francisco CA USA
| | | |
Collapse
|
38
|
Rakkestad KE, Sørvik IB, Øverby GR, Debernard KAB, Mathisen GH, Paulsen RE. 17α-Estradiol down-regulates glutathione synthesis in serum deprived PC-12 cells. Free Radic Res 2014; 48:1170-8. [DOI: 10.3109/10715762.2014.930455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Pietranera L, Brocca ME, Roig P, Lima A, Garcia-Segura LM, De Nicola AF. 17α-Oestradiol-induced neuroprotection in the brain of spontaneously hypertensive rats. J Neuroendocrinol 2014; 26:310-20. [PMID: 24730417 DOI: 10.1111/jne.12151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/20/2014] [Accepted: 03/16/2014] [Indexed: 11/27/2022]
Abstract
17β-oestradiol is a powerful neuroprotective factor for the brain abnormalities of spontaneously hypertensive rats (SHR). 17α-Oestradiol, a nonfeminising isomer showing low affinity for oestrogen receptors, is also endowed with neuroprotective effects in vivo and in vitro. We therefore investigated whether treatment with 17α-oestradiol prevented pathological changes of the hippocampus and hypothalamus of SHR. We used 20-week-old male SHR with a blood pressure of approximately 170 mmHg receiving s.c. a single 800 μg pellet of 17α-oestradiol dissolved in cholesterol or vehicle only for 2 weeks Normotensive Wistar-Kyoto (WKY) rats were used as controls. 17α-Oestradiol did not modify blood pressure, serum prolactin, 17β-oestradiol levels or the weight of the testis and pituitary of SHR. In the brain, we analysed steroid effects on hippocampus Ki67+ proliferating cells, doublecortin (DCX) positive neuroblasts, glial fibrillary acidic protein (GFAP)+ astrocyte density, aromatase immunostaining and brain-derived neurotrophic factor (BDNF) mRNA. In the hypothalamus, we determined arginine vasopressin (AVP) mRNA. Treatment of SHR with 17α-oestradiol enhanced the number of Ki67+ in the subgranular zone and DCX+ cells in the inner granule cell layer of the dentate gyrus, increased BDNF mRNA in the CA1 region and gyrus dentatus, decreased GFAP+ astrogliosis in the CA1 subfield, and decreased hypothalamic AVP mRNA. Aromatase expression was unmodified. By contrast to SHR, normotensive WKY rats were unresponsive to 17α-oestradiol. These data indicate a role for 17α-oestradiol as a protective factor for the treatment of hypertensive encephalopathy. Furthermore, 17α-oestradiol is weakly oestrogenic in the periphery and can be used in males.
Collapse
Affiliation(s)
- L Pietranera
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina; Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
40
|
Harrison DE, Strong R, Allison DB, Ames BN, Astle CM, Atamna H, Fernandez E, Flurkey K, Javors MA, Nadon NL, Nelson JF, Pletcher S, Simpkins JW, Smith D, Wilkinson JE, Miller RA. Acarbose, 17-α-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell 2014; 13:273-82. [PMID: 24245565 PMCID: PMC3954939 DOI: 10.1111/acel.12170] [Citation(s) in RCA: 323] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2013] [Indexed: 01/09/2023] Open
Abstract
Four agents — acarbose (ACA), 17-α-estradiol (EST), nordihydroguaiaretic acid (NDGA), and methylene blue (MB) — were evaluated for lifespan effects in genetically heterogeneous mice tested at three sites. Acarbose increased male median lifespan by 22% (P < 0.0001), but increased female median lifespan by only 5% (P = 0.01). This sexual dimorphism in ACA lifespan effect could not be explained by differences in effects on weight. Maximum lifespan (90th percentile) increased 11% (P < 0.001) in males and 9% (P = 0.001) in females. EST increased male median lifespan by 12% (P = 0.002), but did not lead to a significant effect on maximum lifespan. The benefits of EST were much stronger at one test site than at the other two and were not explained by effects on body weight. EST did not alter female lifespan. NDGA increased male median lifespan by 8–10% at three different doses, with P-values ranging from 0.04 to 0.005. Females did not show a lifespan benefit from NDGA, even at a dose that produced blood levels similar to those in males, which did show a strong lifespan benefit. MB did not alter median lifespan of males or females, but did produce a small, statistically significant (6%, P = 0.004) increase in female maximum lifespan. These results provide new pharmacological models for exploring processes that regulate the timing of aging and late-life diseases, and in particular for testing hypotheses about sexual dimorphism in aging and health.
Collapse
Affiliation(s)
| | - Randy Strong
- Barshop Institute for Longevity and Aging Studies The University of Texas Health Science Center at San Antonio San Antonio TX 78245USA
- Geriatric Research, Education and Clinical Center South Texas Veterans Health Care System San Antonio TX 78229USA
- Research Service South Texas Veterans Health Care System San Antonio TX 78229USA
- Department of Pharmacology The University of Texas Health Science Center at San Antonio San Antonio TX 78229USA
| | - David B. Allison
- Department of Biostatistics University of Alabama at Birmingham Birmingham AL 35294USA
| | - Bruce N. Ames
- Children's Hospital Oakland Research Institute 5700 Martin Luther King Jr. Way Oakland CA 94609‐1673USA
| | | | - Hani Atamna
- Children's Hospital Oakland Research Institute 5700 Martin Luther King Jr. Way Oakland CA 94609‐1673USA
| | - Elizabeth Fernandez
- Barshop Institute for Longevity and Aging Studies The University of Texas Health Science Center at San Antonio San Antonio TX 78245USA
- Geriatric Research, Education and Clinical Center South Texas Veterans Health Care System San Antonio TX 78229USA
- Research Service South Texas Veterans Health Care System San Antonio TX 78229USA
- Department of Pharmacology The University of Texas Health Science Center at San Antonio San Antonio TX 78229USA
| | | | - Martin A. Javors
- Barshop Institute for Longevity and Aging Studies The University of Texas Health Science Center at San Antonio San Antonio TX 78245USA
- Department of Psychiatry The University of Texas Health Science Center at San Antonio San Antonio TX 78229USA
| | - Nancy L. Nadon
- Division of Aging Biology National Institute on Aging Bethesda MD 20892USA
| | - James F. Nelson
- Barshop Institute for Longevity and Aging Studies The University of Texas Health Science Center at San Antonio San Antonio TX 78245USA
- Department of Physiology The University of Texas Health Science Center at San Antonio San Antonio TX 78229USA
| | - Scott Pletcher
- Department of Molecular and Integrative Physiology, and Geriatrics Center University of Michigan Ann Arbor MI 48109USA
| | - James W. Simpkins
- Department of Pharmacology & Neuroscience University of North Texas Health Science Center Fort Worth TX 76107USA
| | - Daniel Smith
- Department of Nutrition Sciences University of Alabama at Birmingham Birmingham AL 35294USA
| | - J. Erby Wilkinson
- Unit for Laboratory Animal Medicine University of Michigan School of Medicine Ann Arbor MI 48109USA
| | - Richard A. Miller
- Department of Pathology and Geriatrics Center University of Michigan Ann Arbor MI 48109USA
| |
Collapse
|
41
|
Prometaphase arrest-dependent phosphorylation of Bcl-2 family proteins and activation of mitochondrial apoptotic pathway are associated with 17α-estradiol-induced apoptosis in human Jurkat T cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2220-32. [DOI: 10.1016/j.bbamcr.2013.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 05/12/2013] [Accepted: 05/13/2013] [Indexed: 11/18/2022]
|
42
|
WENG CHUNYAN, CAI JINGJING, WEN JUAN, YUAN HONG, YANG KAN, IMPERATO-McGINLEY JULIANNE, ZHU YUANSHAN. Differential effects of estrogen receptor ligands on regulation of dihydrotestosterone-induced cell proliferation in endothelial and prostate cancer cells. Int J Oncol 2013; 42:327-337. [PMID: 23135751 PMCID: PMC3583656 DOI: 10.3892/ijo.2012.1689] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 08/30/2012] [Indexed: 12/02/2022] Open
Abstract
Androgen deprivation therapy of prostate cancer with estrogens shows significant cardiovascular side-effects. To develop effective prostate cancer therapeutic agent(s) with minimal cardiovascular side-effects, we compared the effects of various estrogen receptor (ER) ligands on the modulation of dihydrotestosterone (DHT) actions in LAPC-4 and LNCaP prostate cancer cells and human aortic endothelial cells (HAECs). DHT stimulated the proliferation of HAEC, LAPC-4 and LNCaP cells and induced PSA mRNA expression in LAPC-4 cells. These DHT actions were differentially modulated by ER ligands in a cell-dependent manner. In LAPC-4 cells, knockdown of ERβ expression partially eliminated the βE2 inhibition of DHT-induced LAPC-4 cell proliferation, and a parallel change was observed between ER ligand modulation of DHT-induced cell proliferation and cyclin A expression. The obtained data suggest that it is feasible to develop effective agent(s) for prostate cancer therapy with minimal cardiovascular side-effects and 17α-estradiol and genistein are such potential agents.
Collapse
Affiliation(s)
| | - JINGJING CAI
- Department of Medicine/Endocrinology, Weill Cornell Medical College, New York, NY 10065,
USA
- The Center of Clinical Pharmacology
| | - JUAN WEN
- Department of Medicine/Endocrinology, Weill Cornell Medical College, New York, NY 10065,
USA
- The Center of Clinical Pharmacology
| | | | - KAN YANG
- Department of Cardiology, The Third Xiangya Hospital
| | | | - YUAN-SHAN ZHU
- Department of Medicine/Endocrinology, Weill Cornell Medical College, New York, NY 10065,
USA
- The Center of Clinical Pharmacology
- Institute of Clinical Pharmacology, Central South University, Changsha,
P.R. China
| |
Collapse
|
43
|
Hedges VL, Ebner TJ, Meisel RL, Mermelstein PG. The cerebellum as a target for estrogen action. Front Neuroendocrinol 2012; 33:403-11. [PMID: 22975197 PMCID: PMC3496070 DOI: 10.1016/j.yfrne.2012.08.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 08/20/2012] [Accepted: 08/24/2012] [Indexed: 12/22/2022]
Abstract
This review focuses on the effects of estrogens upon the cerebellum, a brain region long ignored as a site of estrogen action. Highlighted are the diverse effects of estradiol within the cerebellum, emphasizing the importance of estradiol signaling in cerebellar development, modulation of synaptic neurotransmission in the adult, and the potential influence of estrogens on various health and disease states. We also provide new data, consistent with previous studies, in which locally synthesized estradiol modulates cerebellar glutamatergic neurotransmission, providing one underlying mechanism by which the actions of estradiol can affect this brain region.
Collapse
Affiliation(s)
- Valerie L Hedges
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States
| | | | | | | |
Collapse
|
44
|
Arnold S. Cytochrome c oxidase and its role in neurodegeneration and neuroprotection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 748:305-39. [PMID: 22729864 DOI: 10.1007/978-1-4614-3573-0_13] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A hallmark of neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases, and stroke is a malfunction of mitochondria including cytochrome c oxidase (COX), the terminal enzyme complex of the respiratory chain. COX is ascribed a key role based on mainly two regulatory mechanisms. These are the expression of isoforms and the binding of specific allosteric factors to nucleus--encoded subunits. These characteristics represent a unique feature of COX compared with the other respiratory chain complexes. Additional regulatory mechanisms, such as posttranslational modification, substrate availability, and allosteric feedback inhibition by products of the COX reaction, control the enzyme activity in a complex way. In many tissues and cell types, COX represents the rate-limiting enzyme of the respiratory chain which further emphasizes the impact of the regulation of COX as a central site for regulating energy metabolism and oxidative stress. Two of the best-analyzed regulatory mechanisms of COX to date are the allosteric feedback inhibition of the enzyme by its indirect product ATP and the expression of COX subunit IV isoforms. This ATP feedback inhibition of COX requires the expression of COX isoform IV-1. At high ATP/ADP ratios, ADP is exchanged for ATP at the matrix side of COX IV-1 leading to an inhibition of COX activity, thus enabling COX to sense the energy level and to adjust ATP synthesis to energy demand. However, under hypoxic, toxic, and degenerative conditions, COX isoform IV-2 expression is up-regulated and exchanged for COX IV-1 in the enzyme complex. This COX IV isoform switch causes an abolition of the allosteric ATP feedback inhibition of COX and consequently the loss of sensing the energy level. Thus, COX activity is increased leading to higher levels of ATP in neural cells independently of the cellular energy level. Concomitantly, ROS production is increased. Thus, under pathological conditions, neural cells are provided with ATP to meet the energy demand, but at the expense of elevated oxidative stress. This mechanism explains the functional relevance of COX subunit IV isoform expression for cellular energy sensing, ATP production, and oxidative stress levels. This, in turn, affects neural cell function, signaling, and -survival. Thus, COX is a crucial factor in etiology, progression, and prevalence of numerous human neurodegenerative diseases and represents an important target for developing diagnostic and therapeutic tools against those diseases.
Collapse
Affiliation(s)
- Susanne Arnold
- Institute for Neuroanatomy, RWTH Aachen University, Wendlingweg 2, Aachen, Germany.
| |
Collapse
|
45
|
Hormone replacement therapy and risk for neurodegenerative diseases. Int J Alzheimers Dis 2012; 2012:258454. [PMID: 22548198 PMCID: PMC3324889 DOI: 10.1155/2012/258454] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/17/2012] [Accepted: 01/18/2012] [Indexed: 02/02/2023] Open
Abstract
Over the past two decades, there has been a significant amount of research investigating the risks and benefits of hormone replacement therapy (HRT) with regards to neurodegenerative disease. Here, we review basic science studies, randomized clinical trials, and epidemiological studies, and discuss the putative neuroprotective effects of HRT in the context of Alzheimer's disease, Parkinson's disease, frontotemporal dementia, and HIV-associated neurocognitive disorder. Findings to date suggest a reduced risk of Alzheimer's disease and improved cognitive functioning of postmenopausal women who use 17β-estradiol. With regards to Parkinson's disease, there is consistent evidence from basic science studies for a neuroprotective effect of 17β-estradiol; however, results of clinical and epidemiological studies are inconclusive at this time, and there is a paucity of research examining the association between HRT and Parkinson's-related neurocognitive impairment. Even less understood are the effects of HRT on risk for frontotemporal dementia and HIV-associated neurocognitive disorder. Limits to the existing research are discussed, along with proposed future directions for the investigation of HRT and neurodegenerative diseases.
Collapse
|
46
|
Manaye KF, Allard JS, Kalifa S, Drew AC, Xu G, Ingram DK, de Cabo R, Mouton PR. 17α-estradiol attenuates neuron loss in ovariectomized Dtg AβPP/PS1 mice. J Alzheimers Dis 2012; 23:629-39. [PMID: 21157032 DOI: 10.3233/jad-2010-100993] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Quantitative microanalysis of brains from patients with Alzheimer's disease (AD) find neuronal loss and neuroinflammation in structures that control cognitive function. Though historically difficult to recapitulate in experimental models, several groups have recently reported that by middle-age, transgenic mice that co-express high levels of two AD-associated mutations, amyloid-β protein precursor (AβPP(swe)) and presenilin 1 (PS1(ΔE9)), undergo significant AD-type neuron loss in sub-cortical nuclei with heavy catecholaminergic projections to the hippocampal formation. Here we report that by 13 months of age these dtg AβPP(swe)/PS1(ΔE9) mice also show significant loss of pyramidal neuron in a critical region for learning and memory, the CA1 subregion of hippocampus, as a direct function of amyloid-β (Aβ) aggregation. We used these mice to test whether 17α-estradiol (17αE2), a less feminizing and non-carcinogenic enantiomer of 17β-estradiol, protects against this CA1 neuron loss. Female dtg AβPP(swe)/PS1(ΔE9) mice were ovariectomized at 8-9 months of age and treated for 60 days with either 17αE2 or placebo via subcutaneous pellets. Computerized stereology revealed that 17αE2 ameliorated the loss of neurons in CA1 and reduced microglial activation in the hippocampus. These findings support the view that 17αE2, which may act through non-genomic mechanisms independent of traditional estrogen receptors, could prevent or delay the progression of AD in older men and women.
Collapse
Affiliation(s)
- Kebreten F Manaye
- Department of Physiology & Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ayan D, Roy J, Maltais R, Poirier D. Impact of estradiol structural modifications (18-methyl and/or 17-hydroxy inversion of configuration) on the in vitro and in vivo estrogenic activity. J Steroid Biochem Mol Biol 2011; 127:324-30. [PMID: 21827856 DOI: 10.1016/j.jsbmb.2011.07.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/15/2011] [Accepted: 07/26/2011] [Indexed: 12/14/2022]
Abstract
It is well recognized that the majority of breast cancers are initially hormone-dependent and that 17β-estradiol (17β-E2) plays a crucial role in their development and progression. For this reason, using a compound able to block a specific enzyme involved in the last steps of the biosynthesis of 17β-E2 remains a rational way to treat estrogen-dependent diseases such as breast cancer. The present study describes the biological in vitro and in vivo evaluation of a structural modification (inversion of C18-methyl group at position 13 from β to α face) of 17β-E2 (1) and 17α-estradiol (17α-E2; 2). The two epimers 18-epi-17β-E2 (3) and 18-epi-17α-E2 (4) were obtained in two chemical steps by inversion of the C18-methyl of estrone using 1,2-phenylendiamine in refluxing acetic acid and reduction of ketone at position C17 with LiAlH(4). The new E2 isomers were tested on estrogen-sensitive cell lines (MCF-7 and T-47D), on estrogen-sensitive tissues (uterus and vagina of mice) and on estrogen receptor (ER) to determine their estrogenic potency relatively to natural estrogen 17β-E2 (1). The results show that 18-epi-17β-E2 (3) possesses the lower affinity for ER (RBA = 1.2%), the lower estrogenicity on estrogen-sensitive cells (1000 folds less estrogenic than 17β-E2 in MCF-7) and no uterotrophic (estrogenic) activity when tested on mice. In fact, we observed the following order of estrogenicity: 18-epi-17β-E2 (3)<18-epi-17α-E2 (4) << 17α-E2 (2)17β-E2 (1). These results suggest that the inversion of C18-methyl of natural 17β-E2 scaffold could be a useful strategy to decrease the estrogenicity of E2 derivatives used as enzyme inhibitors in the context of a treatment of estrogen-dependent diseases.
Collapse
Affiliation(s)
- Diana Ayan
- Laboratory of Medicinal Chemistry, CHUQ, CHUL-Research Center, Endocrinology and Genomic Unit, and Laval University, Faculty of Medicine, Quebec, Quebec G1V 4G2, Canada
| | | | | | | |
Collapse
|
48
|
Abstract
Estrogens have been shown to have protective effects on a wide range of cell types and animal models for many neurodegenerative diseases. The present study demonstrates the cytoprotective effects of 17β-estradiol (E2) and estrogen-like compounds in an in vitro model of Friedreich's ataxia (FRDA) using human donor FRDA skin fibroblasts. FRDA fibroblasts are extremely sensitive to free radical damage and oxidative stress, produced here using l-buthionine (S,R)-sulfoximine to inhibit de novo glutathione synthesis. We have shown that the protective effect of E2 in the face of l-buthionine (S,R)-sulfoximine -induced oxidative stress is independent of estrogen receptor-α, estrogen receptor-β or G protein-coupled receptor 30 as shown by the inability of either ICI 182,780 or G15 to inhibit the E2-mediated protection. These cytoprotective effects appear to be dependent on antioxidant properties and the phenolic structure of estradiol as demonstrated by the observation that all phenolic compounds tested were protective, whereas all nonphenolic compounds were inactive, and the observation that the phenolic compounds reduced the levels of reactive oxygen species, whereas the nonphenolic compounds did not. These data show for the first time that phenolic E2-like compounds are potent protectors against oxidative stress-induced cell death in FRDA fibroblasts and are possible candidate drugs for the treatment and prevention of FRDA symptoms.
Collapse
Affiliation(s)
- Timothy E Richardson
- Institute for Aging and Alzheimer’s Disease Research, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA.
| | | | | | | |
Collapse
|
49
|
Blanc F, Poisbeau P, Sellal F, Tranchant C, de Seze J, André G. [Alzheimer disease, memory and estrogen]. Rev Neurol (Paris) 2010; 166:377-88. [PMID: 19836813 DOI: 10.1016/j.neurol.2009.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Revised: 04/18/2009] [Accepted: 07/15/2009] [Indexed: 11/19/2022]
Abstract
Epidemiological studies of Alzheimer disease have shown a higher prevalence of women. Some data argue for a link between Alzheimer disease and the decrease of estrogen in post-menopausal women. Animal studies have shown a beneficial effect of estrogen on memory with a decrease of amyloid deposition in models of AD, whereas estrogen has a positive effect on BDNF. Six studies have shown a positive effect of estrogen therapy on memory and studies on structural and functional imaging have shown a beneficial effect of estrogens but the largest study on prevention of dementia with estrogens (WHI) showed a deleterious effect. To better understand this paradoxical situation, we reviewed the literature on estrogens, memory and Alzheimer disease. We first discuss the promnesic effect of estrogen on mice and rats, second the neuroprotector effect of estrogen on animal models of Alzheimer disease, and third the available human studies. We hypothesize a link with the time of instauration of the estrogen treatment. Nevertheless this hypothesis remains to be demonstrated.
Collapse
Affiliation(s)
- F Blanc
- Service de Neuropsychologie, Département de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Mammalian UDP-glycosyltransferases (UGTs) are divided into four families: UGT1, UGT2, UGT3, and UGT8. UGT3 is the last of the gene families to be identified, and until relatively recently, little was known about the function of these enzymes. In this article, we present new analyses of the UGT3 family genes, including the structure of the UGT3A locus, interspecies sequence conservation, single nucleotide polymorphisms, and splice variants. We also review recently published work that has revealed that one member of this family, UGT3A1, has a unique enzymatic function: N-acetylglucosaminidation. Finally, we discuss the possible biological significance of the UGT3A enzymes.
Collapse
Affiliation(s)
- Robyn Meech
- Department of Clinical Pharmacology, Flinders University of South Australia, Bedford Park, South Australia, Australia.
| | | |
Collapse
|