1
|
Lee KH, Rim DE, Lee JH, Jeong SW. Role of ATP5G3 in sodium nitroprusside-induced cell death in cervical carcinoma cells. J Biochem Mol Toxicol 2023; 37:e23267. [PMID: 36524533 DOI: 10.1002/jbt.23267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 09/20/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
We identified a gene, subunit C3 (ATP5G3) of mitochondrial ATP synthase, that displayed changes in gene expression under oxidative stress. We examined the role of ATP5G3 and its molecular mechanisms in sodium nitroprusside (SNP)-induced cell death using ATP5G3 small interfering RNA (siATP5G3)-transfected HeLa cells. A significant increase in cytotoxicity was observed in the transfected cells treated with SNP, which suggests a protective role of ATP5G3 in SNP-induced cytotoxicity in the cells. The transfected cells treated with photodegraded SNP showed equal cytotoxicity to SNP, and pretreatment with deferoxamine (DFO) completely inhibited this cytotoxicity. Further, cytotoxicity was significantly inhibited by pretreatment with a p38 inhibitor and was accentuated by the p38 activator in cells. Pretreatment with the Bcl-xL inhibitor also significantly accentuated cytotoxicity. The increase in p38 phosphorylation was significantly higher in siATP5G3-transfected cells treated with SNP in immunoblotting, which was inhibited by pretreatment with DFO. The increase in cytotoxicity with siATP5G3 transfection was completely blocked by cotransfection with sip38, and the blocking effect disappeared by cotransfection with additional siBcl-xL, which suggests that the protective role of ATP5G3 is mediated by Bcl-xL via the inhibition of p38 activity. Cytotoxicity was completely blocked by the cotransfection of siATP5G3 with siBax. No change in apoptotic parameters was observed during cytotoxicity. However, pretreatment with lysosomal inhibitors significantly inhibited cytotoxicity and increased p62 protein levels. These findings suggest that ATP5G3 plays a protective role in autophagic cell death/lysosome-associated cell death induced by SNP via the sequential signaling of ROS/p38/Bcl-xL/Bax in HeLa cells.
Collapse
Affiliation(s)
- Kyung Hye Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Do Eun Rim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seong-Whan Jeong
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
2
|
Neilson DE, Zech M, Hufnagel RB, Slone J, Wang X, Homan S, Gutzwiller LM, Leslie EJ, Leslie ND, Xiao J, Hedera P, LeDoux MS, Gebelein B, Wilbert F, Eckenweiler M, Winkelmann J, Gilbert DL, Huang T. A Novel Variant of ATP5MC3 Associated with Both Dystonia and Spastic Paraplegia. Mov Disord 2022; 37:375-383. [PMID: 34636445 PMCID: PMC8840961 DOI: 10.1002/mds.28821] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND In a large pedigree with an unusual phenotype of spastic paraplegia or dystonia and autosomal dominant inheritance, linkage analysis previously mapped the disease to chromosome 2q24-2q31. OBJECTIVE The aim of this study is to identify the genetic cause and molecular basis of an unusual autosomal dominant spastic paraplegia and dystonia. METHODS Whole exome sequencing following linkage analysis was used to identify the genetic cause in a large family. Cosegregation analysis was also performed. An additional 384 individuals with spastic paraplegia or dystonia were screened for pathogenic sequence variants in the adenosine triphosphate (ATP) synthase membrane subunit C locus 3 gene (ATP5MC3). The identified variant was submitted to the "GeneMatcher" program for recruitment of additional subjects. Mitochondrial functions were analyzed in patient-derived fibroblast cell lines. Transgenic Drosophila carrying mutants were studied for movement behavior and mitochondrial function. RESULTS Exome analysis revealed a variant (c.318C > G; p.Asn106Lys) (NM_001689.4) in ATP5MC3 in a large family with autosomal dominant spastic paraplegia and dystonia that cosegregated with affected individuals. No variants were identified in an additional 384 individuals with spastic paraplegia or dystonia. GeneMatcher identified an individual with the same genetic change, acquired de novo, who manifested upper-limb dystonia. Patient fibroblast studies showed impaired complex V activity, ATP generation, and oxygen consumption. Drosophila carrying orthologous mutations also exhibited impaired mitochondrial function and displayed reduced mobility. CONCLUSION A unique form of familial spastic paraplegia and dystonia is associated with a heterozygous ATP5MC3 variant that also reduces mitochondrial complex V activity.
Collapse
Affiliation(s)
- Derek E. Neilson
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Current: Division of Genetics and Metabolism, Phoenix Children’s Hospital, Phoenix, AZ
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Robert B. Hufnagel
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Jesse Slone
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Current: Division of Genetics, Department of Pediatrics, University at Buffalo, NY
| | - Xinjian Wang
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Shelli Homan
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Lisa M. Gutzwiller
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Elizabeth J. Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | - Nancy D. Leslie
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Jianfeng Xiao
- Departments of Neurology and Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN
| | - Peter Hedera
- Department of Neurology, University of Louisville, Louisville, KY
| | - Mark S. LeDoux
- University of Memphis and Veracity Neuroscience LLC, Memphis, TN
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Friederike Wilbert
- Department of Neuropediatrics and Muscle Disorders, University Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Matthias Eckenweiler
- Department of Neuropediatrics and Muscle Disorders, University Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Lehrstuhl für Neurogenetik, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology, SyNergy, Munich, Germany
| | - Donald L. Gilbert
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Current: Division of Genetics, Department of Pediatrics, University at Buffalo, NY
| |
Collapse
|
3
|
Torres Crigna A, Link B, Samec M, Giordano FA, Kubatka P, Golubnitschaja O. Endothelin-1 axes in the framework of predictive, preventive and personalised (3P) medicine. EPMA J 2021; 12:265-305. [PMID: 34367381 PMCID: PMC8334338 DOI: 10.1007/s13167-021-00248-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
Endothelin-1 (ET-1) is involved in the regulation of a myriad of processes highly relevant for physical and mental well-being; female and male health; in the modulation of senses, pain, stress reactions and drug sensitivity as well as healing processes, amongst others. Shifted ET-1 homeostasis may influence and predict the development and progression of suboptimal health conditions, metabolic impairments with cascading complications, ageing and related pathologies, cardiovascular diseases, neurodegenerative pathologies, aggressive malignancies, modulating, therefore, individual outcomes of both non-communicable and infectious diseases such as COVID-19. This article provides an in-depth analysis of the involvement of ET-1 and related regulatory pathways in physiological and pathophysiological processes and estimates its capacity as a predictor of ageing and related pathologies,a sensor of lifestyle quality and progression of suboptimal health conditions to diseases for their targeted preventionand as a potent target for cost-effective treatments tailored to the person.
Collapse
Affiliation(s)
- Adriana Torres Crigna
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Barbara Link
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
4
|
Lekontseva O, Chakrabarti S, Davidge ST. Endothelin in the female vasculature: a role in aging? Am J Physiol Regul Integr Comp Physiol 2010; 298:R509-16. [DOI: 10.1152/ajpregu.00656.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases are the leading cause of morbidity and mortality in the world. Aging is associated with an increased incidence of cardiovascular disease. Premenopausal women are relatively protected from vascular alterations compared with age-matched men, likely due to higher levels of the female sex hormones. However, these vasoprotective effects in women are attenuated after menopause. Thus, the vascular system in aging women is affected by both the aging process as well as loss of hormonal protection, positioning women of this age group at a high risk for cardiovascular diseases such as hypertension, myocardial infarction, and stroke. The endothelin system in general and endothelin-1 (ET-1) in particular plays an important role in the pathogenesis of vascular dysfunction associated with aging. Evidence suggests that the female sex steroids can interfere with the vascular expression and actions of ET-1 via several mechanisms, which may further contribute to pathological processes in the vasculature of aging women. In this review, we have summarized hormone-dependent vascular pathways whereby ET-1 may mediate the deleterious effects of aging in postmenopausal females.
Collapse
Affiliation(s)
- Olga Lekontseva
- Departments of Physiology and
- Women and Children's Health Research Institute and Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | - Subhadeep Chakrabarti
- Obstetrics and Gynecology, University of Alberta; and
- Women and Children's Health Research Institute and Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | - Sandra T. Davidge
- Departments of Physiology and
- Obstetrics and Gynecology, University of Alberta; and
- Women and Children's Health Research Institute and Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| |
Collapse
|