1
|
Müller-Calleja N, Ruf W, Lackner KJ. Lipid-binding antiphospholipid antibodies: significance for pathophysiology and diagnosis of the antiphospholipid syndrome. Crit Rev Clin Lab Sci 2024; 61:370-387. [PMID: 38293818 DOI: 10.1080/10408363.2024.2305121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/13/2023] [Accepted: 01/10/2024] [Indexed: 02/01/2024]
Abstract
The antiphospholipid syndrome (APS) is an autoimmune disease characterized by the presence of pathogenic antiphospholipid antibodies (aPL). Since approximately 30 years ago, lipid-binding aPL, which do not require a protein cofactor, have been regarded as irrelevant for APS pathogenesis even though anticardiolipin are a diagnostic criterion of APS. In this review, we will summarize the available evidence from in vitro studies, animal models, and epidemiologic studies, which suggest that this concept is no longer tenable. Accordingly, we will only briefly touch on the role of other aPL in APS. This topic has been amply reviewed in detail elsewhere. We will discuss the consequences for laboratory diagnostics and future research required to resolve open questions related to the pathogenic role of different aPL specificities.
Collapse
Affiliation(s)
- Nadine Müller-Calleja
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Karl J Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
2
|
Müller-Calleja N, Hollerbach A, Royce J, Ritter S, Pedrosa D, Madhusudhan T, Teifel S, Meineck M, Häuser F, Canisius A, Nguyen TS, Braun J, Bruns K, Etzold A, Zechner U, Strand S, Radsak M, Strand D, Gu JM, Weinmann-Menke J, Esmon CT, Teyton L, Lackner KJ, Ruf W. Lipid presentation by the protein C receptor links coagulation with autoimmunity. Science 2021; 371:371/6534/eabc0956. [PMID: 33707237 DOI: 10.1126/science.abc0956] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/15/2020] [Accepted: 01/15/2021] [Indexed: 12/17/2022]
Abstract
Antiphospholipid antibodies (aPLs) cause severe autoimmune disease characterized by vascular pathologies and pregnancy complications. Here, we identify endosomal lysobisphosphatidic acid (LBPA) presented by the CD1d-like endothelial protein C receptor (EPCR) as a pathogenic cell surface antigen recognized by aPLs for induction of thrombosis and endosomal inflammatory signaling. The engagement of aPLs with EPCR-LBPA expressed on innate immune cells sustains interferon- and toll-like receptor 7-dependent B1a cell expansion and autoantibody production. Specific pharmacological interruption of EPCR-LBPA signaling attenuates major aPL-elicited pathologies and the development of autoimmunity in a mouse model of systemic lupus erythematosus. Thus, aPLs recognize a single cell surface lipid-protein receptor complex to perpetuate a self-amplifying autoimmune signaling loop dependent on the cooperation with the innate immune complement and coagulation pathways.
Collapse
Affiliation(s)
- Nadine Müller-Calleja
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany.,Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany.,Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Anne Hollerbach
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany.,Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Jennifer Royce
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Svenja Ritter
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Denise Pedrosa
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Thati Madhusudhan
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Sina Teifel
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Myriam Meineck
- Department of Medicine I, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Friederike Häuser
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Antje Canisius
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - T Son Nguyen
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Johannes Braun
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Kai Bruns
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Anna Etzold
- Institute of Human Genetics, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany.,Senckenberg Zentrum für Humangenetik, 60314 Frankfurt, Germany
| | - Ulrich Zechner
- Institute of Human Genetics, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany.,Senckenberg Zentrum für Humangenetik, 60314 Frankfurt, Germany
| | - Susanne Strand
- Department of Medicine I, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Markus Radsak
- Department of Medicine III, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Dennis Strand
- Department of Medicine I, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Jian-Ming Gu
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Julia Weinmann-Menke
- Department of Medicine I, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
| | - Charles T Esmon
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Luc Teyton
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Karl J Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany.
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany. .,Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|
3
|
Tissue factor pathway inhibitor primes monocytes for antiphospholipid antibody-induced thrombosis. Blood 2019; 134:1119-1131. [PMID: 31434703 DOI: 10.1182/blood.2019001530] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/06/2019] [Indexed: 12/28/2022] Open
Abstract
Antiphospholipid antibodies (aPLs) with complex lipid and/or protein reactivities cause complement-dependent thrombosis and pregnancy complications. Although cross-reactivities with coagulation regulatory proteins contribute to the risk for developing thrombosis in patients with antiphospholipid syndrome, the majority of pathogenic aPLs retain reactivity with membrane lipid components and rapidly induce reactive oxygen species-dependent proinflammatory signaling and tissue factor (TF) procoagulant activation. Here, we show that lipid-reactive aPLs activate a common species-conserved TF signaling pathway. aPLs dissociate an inhibited TF coagulation initiation complex on the cell surface of monocytes, thereby liberating factor Xa for thrombin generation and protease activated receptor 1/2 heterodimer signaling. In addition to proteolytic signaling, aPLs promote complement- and protein disulfide isomerase-dependent TF-integrin β1 trafficking that translocates aPLs and NADPH oxidase to the endosome. Cell surface TF pathway inhibitor (TFPI) synthesized by monocytes is required for TF inhibition, and disabling TFPI prevents aPL signaling, indicating a paradoxical prothrombotic role for TFPI. Myeloid cell-specific TFPI inactivation has no effect on models of arterial or venous thrombus development, but remarkably prevents experimental aPL-induced thrombosis in mice. Thus, the physiological control of TF primes monocytes for rapid aPL pathogenic signaling and thrombosis amplification in an unexpected crosstalk between complement activation and coagulation signaling.
Collapse
|
4
|
Complement C5 but not C3 is expendable for tissue factor activation by cofactor-independent antiphospholipid antibodies. Blood Adv 2019; 2:979-986. [PMID: 29716893 DOI: 10.1182/bloodadvances.2018017095] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/31/2018] [Indexed: 11/20/2022] Open
Abstract
The complement and coagulation cascades interact at multiple levels in thrombosis and inflammatory diseases. In venous thrombosis, complement factor 3 (C3) is crucial for platelet and tissue factor (TF) procoagulant activation dependent on protein disulfide isomerase (PDI). Furthermore, C5 selectively contributes to the exposure of leukocyte procoagulant phosphatidylserine (PS), which is a prerequisite for rapid activation of monocyte TF and fibrin formation in thrombosis. Here, we show that monoclonal cofactor-independent antiphospholipid antibodies (aPLs) rapidly activate TF on myelomonocytic cells. TF activation is blocked by PDI inhibitor and an anti-TF antibody interfering with PDI binding to TF, and requires C3 but unexpectedly not C5. Other prothrombotic, complement-fixing antibodies, for example, antithymocyte globulin, typically induce TF activation dependent on C5b-7-mediated PS exposure on the outer membrane of monocytes. We show that aPLs directly induce procoagulant PS exposure independent of C5. Accordingly, mice deficient in C3, but not mice deficient in C5, are protected from in vivo thrombus formation induced by cofactor-independent aPLs. Only immunoglobulin G (IgG) fractions with cofactor-independent anticardiolipin reactivity from patients with antiphospholipid syndrome (APS) induce complement-independent monocyte PS exposure and PDI-dependent TF activation. Neither a human monoclonal aPL directed against β2-glycoprotein I (β2GPI) nor patient IgG with selective reactivity to β2GPI rapidly activated monocyte TF. These results indicate that inhibitors of PDI and TF, but not necessarily clinically available drugs targeting C5, have therapeutic benefit in preventing thrombosis associated with APS caused by pathogenic aPLs primarily reactive with lipid, independent of β2GPI.
Collapse
|
5
|
Manukyan D, Müller-Calleja N, Lackner K. Pathophysiological insights into the antiphospholipid syndrome. Hamostaseologie 2017; 37:202-207. [DOI: 10.5482/hamo-16-07-0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/06/2016] [Indexed: 11/05/2022] Open
Abstract
SummaryThe antiphospholipid syndrome (APS) is characterized by venous and/or arterial thrombosis and severe pregnancy morbidity in presence of antiphospholipid antibodies (aPL). While there is compelling evidence that aPL cause the clinical manifestations of APS, the underlying mechanisms are still a matter of scientific debate. This is mainly related to the broad heterogeneity of aPL. There are three major types of aPL: The first one binds to (anionic) phospholipids, e.g. cardiolipin, in absence of other factors (cofactor independent aPL). The second type binds to phospholipids only in presence of protein cofactors, e.g. ß2-glycoprotein I (ß2GPI) (cofactor dependent aPL). The third type binds to cofactor proteins directly without need for phospholipids. It is widely believed that cofactor independent aPL (type 1) are associated with infections and, more importantly, non-pathogenic, while pathogenic aPL belong to the second and in particular to the third type. This view, in particular with regard to type 1 aPL, has not been undisputed and novel research data have shown that it is in fact untenable. We summarize the available data on the pathogenetic role of aPL and the implications for diagnosis of APS and future research.
Collapse
|
6
|
Müller-Calleja N, Hollerbach A, Häuser F, Canisius A, Orning C, Lackner KJ. Antiphospholipid antibody-induced cellular responses depend on epitope specificity : implications for treatment of antiphospholipid syndrome. J Thromb Haemost 2017; 15:2367-2376. [PMID: 29024318 DOI: 10.1111/jth.13865] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Indexed: 01/18/2023]
Abstract
Essentials Antiphospholipid antibodies (aPL) are heterogeneous and induce different cellular responses. We analyzed signaling events induced by different monoclonal and patient aPL in monocytes. Two major signaling pathways involving either NADPH-oxidase or LRP8 were identified. Our data suggest that these two pathways mediate the majority of aPL effects on monocytes. SUMMARY Background Antiphospholipid antibodies (aPLs) contribute to the pathogenesis of the antiphospholipid syndrome (APS) by induction of an inflammatory and procoagulant state in different cell types, and several signaling pathways have been described. Objectives To investigate whether signaling depends on the epitope specificity of aPLs. Methods Cellular effects of three human monoclonal aPLs with distinctly different epitope specificities were analyzed in vitro. Expression of tumor necrosis factor-α mRNA by mouse and human monocytes was the major readout. Analysis included cells from genetically modified mice, and the use of specific inhibitors in human monocytes. Data were validated with IgG isolated from 20 APS patients. Results Cofactor-independent anticardiolipin aPLs activated monocytes by induction of endosomal NADPH oxidase. Activation could be blocked by hydroxychloroquine (HCQ). Anti-β2 -glycoprotein I aPL activated monocytes by interacting with LDL receptor-related protein 8 (LRP8). This could be blocked by rapamycin. Analysis of 20 APS patients' IgG showed that all IgG fractions activated the same two pathways as the monoclonal aPL, depending on their epitope patterns as determined by ELISA. Monocyte activation by APS IgG could be blocked completely by HCQ and/or rapamycin, suggesting that in most, if not all, APS patients there is no other relevant signaling pathway. Conclusions aPLs activate two major proinflammatory signal transduction pathways, depending on their epitope specificity. HCQ and rapamycin, either alone or in combination, completely suppress signaling by APS IgG. These observations may provide a rationale for specific treatment of APS patients according to their aPL profile.
Collapse
Affiliation(s)
- N Müller-Calleja
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - A Hollerbach
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - F Häuser
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz, Germany
| | - A Canisius
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz, Germany
| | - C Orning
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz, Germany
| | - K J Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
7
|
Müller-Calleja N, Köhler A, Siebald B, Canisius A, Orning C, Radsak M, Stein P, Mönnikes R, Lackner KJ. Cofactor-independent antiphospholipid antibodies activate the NLRP3-inflammasome via endosomal NADPH-oxidase: implications for the antiphospholipid syndrome. Thromb Haemost 2017; 113:1071-83. [DOI: 10.1160/th14-07-0628] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/25/2014] [Indexed: 01/05/2023]
Abstract
SummaryThe antiphospholipid syndrome (APS) is an autoimmune disease characterised by thromboembolic events and/or pregnancy morbidity in the presence of antiphospholipid antibodies (aPL). Here we show that three cofactor independent human monoclonal aPL can induce transcription of NLRP3 and caspase-1 resulting in inflammasome activation specific for NLRP3. This depends fully on activation of endosomal NADPH-oxidase-2 (NOX2) by aPL. Activation of NOX2 and subsequent inflammasome activation by aPL are independent from TLR2 or TLR4. While endosomal superoxide production induces caspase-1 and NLRP3 transcription, it does not affect prae-IL-1β transcription. Therefore, release of IL-1β occurs only after activation of additional pathways like TLR7/8 or TLR2. All effects exerted by the monoclonal aPL can be reproduced with IgG fractions of APS patients proving that the monoclonal aPL are representative for the APS. IgG fractions of healthy controls or patients suffering from systemic lupus erythematosus have no effect. In a mouse model of the APS we can show inflammasome activation in vivo. Furthermore, mononuclear cells isolated from patients with the APS show an increased expression of caspase-1 and NLRP3 which is accompanied by a three-fold increased serum concentration of IL-1β suggesting chronic inflammasome activation in APS patients. In summary, we provide further evidence that endosomal NOX2 can be activated by cofactor independent aPL. This leads to induction of the NLRP3 inflammasome. Our data indicate that cofactor independent aPL might contribute significantly to the pathogenesis of the APS.
Collapse
|
8
|
Antiphospholipid Antibodies: Their Origin and Development. Antibodies (Basel) 2016; 5:antib5020015. [PMID: 31557996 PMCID: PMC6698834 DOI: 10.3390/antib5020015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 11/25/2022] Open
Abstract
Antiphospholipid antibodies (aPL) are a hallmark of the antiphospholipid syndrome (APS), which is the most commonly acquired thrombophilia. To date there is consensus that aPL cause the clinical manifestations of this potentially devastating disorder. However, there is good evidence that not all aPL are pathogenic. For instance, aPL associated with syphilis show no association with the manifestations of APS. While there has been intensive research on the pathogenetic role of aPL, comparably little is known about the origin and development of aPL. This review will summarize the current knowledge and understanding of the origin and development of aPL derived from animal and human studies.
Collapse
|
9
|
Manukyan D, Müller-Calleja N, Jäckel S, Luchmann K, Mönnikes R, Kiouptsi K, Reinhardt C, Jurk K, Walter U, Lackner KJ. Cofactor-independent human antiphospholipid antibodies induce venous thrombosis in mice. J Thromb Haemost 2016; 14:1011-20. [PMID: 26786324 DOI: 10.1111/jth.13263] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/05/2016] [Indexed: 11/29/2022]
Abstract
UNLABELLED Essentials Cofactor-independent antiphospholipid antibodies (CI-aPL) are generally considered non-pathogenic. We analyzed the effects of human monoclonal CI-aPL in a mouse model of venous thrombosis. As shown in vitro, CI-aPL induce a procoagulant state in vivo by activation of endosomal NADPH-oxidase. Contrary to common belief, CI-aPL induce venous thrombosis in vivo. SUMMARY Background There is general consensus that the antiphospholipid syndrome (APS) is caused by antiphospholipid antibodies (aPL) with antibodies against β2-glycoprotein-I being the most relevant. aPL that bind phospholipids in the absence of protein cofactors are generally considered pathogenetically irrelevant. We showed that cofactor-independent human monoclonal aPL isolated from APS patients induce proinflammatory and procoagulant cellular responses by activating endosomal NADPH-oxidase 2 (NOX2). Similar aPL were detected in all IgG fractions from APS patients analyzed. Objectives We aimed to clarify if cofactor-independent aPL can be thrombogenic in vivo and, if so, whether these effects are mediated via activation of NOX2. Methods Two cofactor-independent human monoclonal aPL, HL5B and RR7F, were tested in a mouse model of venous thrombosis. Genetically modified mice and in vitro assays were used to delineate the mechanisms underlying thrombus induction. Results HL5B and RR7F dramatically accelerate thrombus formation in this mouse model. Thrombus formation depends on tissue factor activation. It cannot be induced in NOX2-deficient mice. Bone marrow chimeras of C57BL/6J mice reconstituted with NOX2-deficient bone marrow showed that leukocyte activation plays a major role in thrombus formation. Neither TLR4 signaling nor platelet activation by our aPL is required for venous thrombus formation. Conclusions Cofactor-independent aPL can induce thrombosis in vivo. This effect is mainly mediated by leukocyte activation, which depends on the previously described signal transduction via endosomal NOX2. Because most APS patients have been shown to harbor aPL with similar activity, our data are of general relevance for the APS.
Collapse
Affiliation(s)
- D Manukyan
- Institute of Clinical Chemistry and Laboratory Medicine, Mainz, Germany
- Center for Thrombosis and Haemostasis, University Medical Centre Mainz, Mainz, Germany
| | - N Müller-Calleja
- Institute of Clinical Chemistry and Laboratory Medicine, Mainz, Germany
| | - S Jäckel
- Center for Thrombosis and Haemostasis, University Medical Centre Mainz, Mainz, Germany
| | - K Luchmann
- Center for Thrombosis and Haemostasis, University Medical Centre Mainz, Mainz, Germany
| | - R Mönnikes
- Institute of Clinical Chemistry and Laboratory Medicine, Mainz, Germany
| | - K Kiouptsi
- Center for Thrombosis and Haemostasis, University Medical Centre Mainz, Mainz, Germany
| | - C Reinhardt
- Center for Thrombosis and Haemostasis, University Medical Centre Mainz, Mainz, Germany
| | - K Jurk
- Center for Thrombosis and Haemostasis, University Medical Centre Mainz, Mainz, Germany
| | - U Walter
- Center for Thrombosis and Haemostasis, University Medical Centre Mainz, Mainz, Germany
| | - K J Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, Mainz, Germany
| |
Collapse
|
10
|
B-1 Cell-Derived Monoclonal Antibodies and Costimulatory Molecules. J Surg Res 2009; 154:293-8. [DOI: 10.1016/j.jss.2008.06.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 06/13/2008] [Accepted: 06/19/2008] [Indexed: 01/13/2023]
|
11
|
Giles I, Lambrianides A, Rahman A. Examining the non-linear relationship between monoclonal antiphospholipid antibody sequence, structure and function. Lupus 2008; 17:895-903. [DOI: 10.1177/0961203308091541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the antiphospholipid syndrome (APS), pathogenic antiphospholipid antibodies (aPL) that cause thrombosis or pregnancy morbidity are characterized by binding to anionic phospholipids (PL) and β2-glycoprotein I (β2GPI). Sequence analysis of human monoclonal aPL has shown that high affinity for these antigens is associated with the presence of three particular amino acids: arginine (Arg), asparagine and lysine in the complementarity determining regions (CDRs) of their heavy and light chains. In vitro expression systems have been used to create variants of the antibodies in which these amino acids have been altered. In general, removal of Arg residues reduces affinity for anionic PL and β2GPI. Arg at different positions in the sequence, however, have different effects on binding affinity and effects on binding are not always mirrored by effects on pathogenicity. This review will focus upon the sequence motifs that have been found to distinguish pathogenic from non-pathogenic aPL, and whether these or other properties may help to identify distinct pathogenic subsets of aPL. In particular, we will focus on our recent work in which we are trying to develop a better understanding of the molecular mechanisms involved in activation of target cells by pathogenic aPL. These studies, together with molecular models of antigen/antibody complexes, help us to understand exactly how pathogenic antibodies interact with antigens. Ultimately, this understanding may aid the design of more powerful diagnostic/prognostic assays and targeted therapeutic agents to block the pathogenic effects of these antibodies.
Collapse
Affiliation(s)
- I Giles
- Medical Molecular Biology Unit, Institute of Child Health, University College London, London, UK; Centre for Rheumatology Research, Division of Medicine, University College London, London, UK
| | - A Lambrianides
- Medical Molecular Biology Unit, Institute of Child Health, University College London, London, UK
| | - A Rahman
- Centre for Rheumatology Research, Division of Medicine, University College London, London, UK
| |
Collapse
|
12
|
Reinstein E, Shoenfeld Y. Antiphospholipid syndrome and cancer. Clin Rev Allergy Immunol 2008; 32:184-7. [PMID: 17916991 DOI: 10.1007/s12016-007-0003-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 10/23/2022]
Abstract
Thrombosis is a frequent complication of cancer that is a substantial cause of morbidity and mortality. The association of antiphospholipid antibodies (aPL) and cancer has been under investigation for several years. Recent findings suggest an increased prevalence of certain cancers in aPL-positive patients; thus, an intensive search for an occult malignancy is prompted in these patients. In addition, several studies reported on elevated levels of aPL in various malignancies; it seems, however, that aPL levels do not reflect their pathogenicity; therefore, their pathological significance in these subset of patients is still elusive. Continuing research on the association between the antiphospholipid syndrome/aPL and malignancies is important, given the potential impact on the understanding and treatment of both antiphospholipid syndrome and cancer.
Collapse
Affiliation(s)
- Eyal Reinstein
- Department of Internal Medicine B and Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer 52621, Israel.
| | | |
Collapse
|
13
|
Metzger J, von Landenberg P, Kehrel M, Buhl A, Lackner KJ, Luppa PB. Biosensor analysis of beta2-glycoprotein I-reactive autoantibodies: evidence for isotype-specific binding and differentiation of pathogenic from infection-induced antibodies. Clin Chem 2007; 53:1137-43. [PMID: 17434906 DOI: 10.1373/clinchem.2006.079632] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND For the laboratory diagnosis of the antiphospholipid syndrome (APS) we developed a biosensor with the ability to distinguish between disease-relevant anti-beta2-glycoprotein I (beta2GPI) autoantibodies (anti-beta2GPI) and pathogen-specific beta2GPI cross-reactive antibodies that occur transiently during infections. METHODS We used a surface plasmon resonance (SPR) biosensor device. For the detection of anti-beta2GPI in serum samples, affinity-purified human beta2GPI was covalently attached to a functionalized n-alkanethiol self-assembling monolayer on the biosensor chip. After verifying the specificity of the biosensor system with a panel of monoclonal antibodies to beta2GPI, we analyzed sera from healthy donors and patients suffering from APS, systemic lupus erythematosus (SLE), syphilis, or parvovirus B19 infections. The SPR results were compared with beta2GPI-specific ELISA. RESULTS Using the SPR biosensor, we recorded antigen binding curves with response levels in the range of 50-500, resonance units (RU) for anti-beta2GPI ELISA-positive APS patient sera. The amplitudes of the antiphospholipid antibody (APL) responses in the biosensor correlated with the overall IgG and IgM anti-beta2GPI ELISA titers with a correlation coefficient of 0.87. Moreover, we observed immunoglobulin isotype-specific association and dissociation profiles for APL binding of different APS patient sera to the biosensor-immobilized beta2GPI. In contrast to APS patient samples, no significant anti-beta2GPI binding (response levels <35 RU) was observed in samples from healthy individuals or from patients suffering from SLE, syphilis, or parvovirus B19 infection. CONCLUSIONS The SPR biosensor system enables specific detection of APS-associated beta2GPI-reactive APL and differentiation from beta2GPI cross-reactive antibodies that occur frequently during acute infections. The established association/dissociation plot for anti-beta2GPI responses in APS patient sera gives additional information regarding the influence of anti-beta2GPI IgG and IgM isotype distribution.
Collapse
Affiliation(s)
- Jochen Metzger
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum Rechts der Isar der TU München, München, Germany
| | | | | | | | | | | |
Collapse
|