1
|
Schlöder J, Shahneh F, Schneider FJ, Wieschendorf B. Boosting regulatory T cell function for the treatment of autoimmune diseases – That’s only half the battle! Front Immunol 2022; 13:973813. [PMID: 36032121 PMCID: PMC9400058 DOI: 10.3389/fimmu.2022.973813] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 01/04/2023] Open
Abstract
Regulatory T cells (Treg) represent a subset of specialized T cells that are essential for the regulation of immune responses and maintenance of peripheral tolerance. Once activated, Treg exert powerful immunosuppressive properties, for example by inhibiting T cell-mediated immune responses against self-antigens, thereby protecting our body from autoimmunity. Autoimmune diseases such as multiple sclerosis, rheumatoid arthritis or systemic lupus erythematosus, exhibit an immunological imbalance mainly characterized by a reduced frequency and impaired function of Treg. In addition, there has been increasing evidence that – besides Treg dysfunction – immunoregulatory mechanisms fail to control autoreactive T cells due to a reduced responsiveness of T effector cells (Teff) for the suppressive properties of Treg, a process termed Treg resistance. In order to efficiently treat autoimmune diseases and thus fully induce immunological tolerance, a combined therapy aimed at both enhancing Treg function and restoring Teff responsiveness could most likely be beneficial. This review provides an overview of immunomodulating drugs that are currently used to treat various autoimmune diseases in the clinic and have been shown to increase Treg frequency as well as Teff sensitivity to Treg-mediated suppression. Furthermore, we discuss strategies on how to boost Treg activity and function, and their potential use in the treatment of autoimmunity. Finally, we present a humanized mouse model for the preclinical testing of Treg-activating substances in vivo.
Collapse
Affiliation(s)
- Janine Schlöder
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- ActiTrexx GmbH, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- *Correspondence: Janine Schlöder,
| | - Fatemeh Shahneh
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Franz-Joseph Schneider
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- ActiTrexx GmbH, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Björn Wieschendorf
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- ActiTrexx GmbH, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
2
|
Akbari M, Eghtedarian R, Hussen BM, Eslami S, Taheri M, Neishabouri SM, Ghafouri-Fard S. Assessment of Expression of Regulatory T Cell Differentiation Genes in Autism Spectrum Disorder. Front Mol Neurosci 2022; 15:939224. [PMID: 35860502 PMCID: PMC9289514 DOI: 10.3389/fnmol.2022.939224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/08/2022] [Indexed: 12/27/2022] Open
Abstract
Dysfunction of regulatory T cells (Tregs) has been shown to affect the etiology of autism spectrum disorder (ASD). Differentiation of this group of T cells has been found to be regulated by a group of long non-coding RNAs (lncRNAs). In this study, we have examined the expression of five lncRNAs that regulate this process in the blood samples of ASD cases compared with controls. These lncRNAs were FOXP3 regulating long intergenic non-coding RNA (FLICR), MAF transcriptional regulator RNA (MAFTRR), NEST (IFNG-AS1), RNA component of mitochondrial RNA processing endoribonuclease (RMRP), and Th2 cytokine locus control region (TH2-LCR). Expression of RMRP was significantly lower in total ASD cases compared to controls [expression ratio (95% CI) = 0.11 (0.08-0.18), adjusted P-value < 0.0001]. This pattern was also detected in both men and women cases compared with corresponding controls [expression ratio (95% CI) = 0.15 (0.08-0.29) and 0.08 (0.03-0.2), respectively]. Likewise, expression of NEST was reduced in total cases and cases among men and women compared with corresponding controls [expression ratio (95% CI) = 0.2 (0.14-0.28); 0.22 (0.12-0.37); and 0.19 (0.09-0.43), respectively; adjusted P-value < 0.0001]. Lastly, FLICR was downregulated in total cases and cases among both boys and girls compared with matched controls [expression ratio (95% CI) = 0.1 (0.06-0.19); 0.19 (0.08-0.46); and 0.06 (0.01-0.21), respectively; adjusted P-value < 0.0001]. These three lncRNAs had appropriate diagnostic power for differentiation of ASD cases from controls. Cumulatively, our study supports dysregulation of Treg-related lncRNAs in patients with ASD and suggests these lncRNAs as proper peripheral markers for ASD.
Collapse
Affiliation(s)
- Mohammadarian Akbari
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhane Eghtedarian
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Solat Eslami
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | | | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Gertel S, Polachek A, Elkayam O, Furer V. Lymphocyte activation gene-3 (LAG-3) regulatory T cells: An evolving biomarker for treatment response in autoimmune diseases. Autoimmun Rev 2022; 21:103085. [PMID: 35341974 DOI: 10.1016/j.autrev.2022.103085] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/23/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022]
Abstract
Regulatory T cells (Tregs) comprise a CD4+CD25+Foxp3+ T cell subset for maintaining immune tolerance, and their deficits and/or dysfunction are observed in autoimmune diseases. The lymphocyte activation gene 3 (LAG-3, also known as CD223), which is an immunoglobulin superfamily member expressed on peripheral immune cells, is recognized as an inhibitory regulator of Tregs. LAG-3+ T cells represent a novel protective Tregs subset that produces interleukin-10. Alterations in LAG-3+ Tregs have been reported in several autoimmune diseases, suggesting their potential pathogenic role. Recent studies have indicated that LAG-3+ Tregs may be associated not only with immunopathology but also with response to therapy in several autoimmune and autoinflammatory diseases, such as rheumatoid arthritis, psoriasis, psoriatic arthritis and others. We present a review of Tregs phenotypes and functions, with a focus on LAG-3+ Tregs, and discuss their potential role as biomarkers for treatment response in autoimmune diseases.
Collapse
Affiliation(s)
- Smadar Gertel
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Ari Polachek
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ori Elkayam
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Victoria Furer
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
De Giacomo A, Gargano CD, Simone M, Petruzzelli MG, Pedaci C, Giambersio D, Margari L, Ruggieri M. B and T Immunoregulation: A New Insight of B Regulatory Lymphocytes in Autism Spectrum Disorder. Front Neurosci 2021; 15:732611. [PMID: 34776843 PMCID: PMC8581677 DOI: 10.3389/fnins.2021.732611] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Introduction: Autism Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized by a complex pathogenesis, by impairment social communication and interaction, and may also manifest repetitive patterns of behavior. Many studies have recognized an alteration of the immune response as a major etiological component in ASDs. Despite this, it is still unclear the variation of the function of the immune response. Aim: Our aim is to investigate the levels of immunological markers in peripheral blood of children with ASD such as: regulatory B and T cells, memory B and natural killer (NK) cells. Materials and Methods: We assessed various subsets of immune cells in peripheral blood (regulatory B and T cells, B-cell memory and natural killer cells) by multi-parametric flow cytometric analysis in 26 ASD children compared to 16 healthy controls (HCs) who matched age and gender. Results: No significant difference was observed between B-cell memory and NK cells in ASDs and HCs. Instead, regulatory B cells and T cells were decreased (p < 0.05) in ASD subjects when compared to HCs. Discussion: Regulatory B and T cells have a strategic role in maintaining the immune homeostasis. Their functions have been associated with the development of multiple pathologies especially in autoimmune diseases. According to our study, the immunological imbalance of regulatory B and T cells may play a pivotal role in the evolution of the disease, as immune deficiencies could be related to the severity of the ongoing disorder.
Collapse
Affiliation(s)
- Andrea De Giacomo
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Concetta Domenica Gargano
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Marta Simone
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Giuseppina Petruzzelli
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Chiara Pedaci
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Donatella Giambersio
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Lucia Margari
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Maddalena Ruggieri
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
5
|
Insights into the biology and therapeutic implications of TNF and regulatory T cells. Nat Rev Rheumatol 2021; 17:487-504. [PMID: 34226727 DOI: 10.1038/s41584-021-00639-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
Treatments that block tumour necrosis factor (TNF) have major beneficial effects in several autoimmune and rheumatic diseases, including rheumatoid arthritis. However, some patients do not respond to TNF inhibitor treatment and rare occurrences of paradoxical disease exacerbation have been reported. These limitations on the clinical efficacy of TNF inhibitors can be explained by the differences between TNF receptor 1 (TNFR1) and TNFR2 signalling and by the diverse effects of TNF on multiple immune cells, including FOXP3+ regulatory T cells. This basic knowledge sheds light on the consequences of TNF inhibitor therapies on regulatory T cells in treated patients and on the limitations of such treatment in the control of diseases with an autoimmune component. Accordingly, the next generation of drugs targeting TNF is likely to be based on agents that selectively block the binding of TNF to TNFR1 and on TNFR2 agonists. These approaches could improve the treatment of rheumatic diseases in the future.
Collapse
|
6
|
Panfili E, Mondanelli G, Orabona C, Belladonna ML, Gargaro M, Fallarino F, Orecchini E, Prontera P, Proietti E, Frontino G, Tirelli E, Iacono A, Vacca C, Puccetti P, Grohmann U, Esposito S, Pallotta MT. Novel mutations in the WFS1 gene are associated with Wolfram syndrome and systemic inflammation. Hum Mol Genet 2021; 30:265-276. [PMID: 33693650 PMCID: PMC8091036 DOI: 10.1093/hmg/ddab040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations in the WFS1 gene, encoding wolframin (WFS1), cause endoplasmic reticulum (ER) stress and are associated with a rare autosomal-recessive disorder known as Wolfram syndrome (WS). WS is clinically characterized by childhood-onset diabetes mellitus, optic atrophy, deafness, diabetes insipidus and neurological signs. We identified two novel WFS1 mutations in a patient with WS, namely, c.316-1G > A (in intron 3) and c.757A > T (in exon 7). Both mutations, located in the N-terminal region of the protein, were predicted to generate a truncated and inactive form of WFS1. We found that although the WFS1 protein was not expressed in peripheral blood mononuclear cells (PBMCs) of the proband, no constitutive ER stress activation could be detected in those cells. In contrast, WS proband’s PBMCs produced very high levels of proinflammatory cytokines (i.e. TNF-α, IL-1β, and IL-6) in the absence of any stimulus. WFS1 silencing in PBMCs from control subjects by means of small RNA interference also induced a pronounced proinflammatory cytokine profile. The same cytokines were also significantly higher in sera from the WS patient as compared to matched healthy controls. Moreover, the chronic inflammatory state was associated with a dominance of proinflammatory T helper 17 (Th17)-type cells over regulatory T (Treg) lymphocytes in the WS PBMCs. The identification of a state of systemic chronic inflammation associated with WFS1 deficiency may pave the way to innovative and personalized therapeutic interventions in WS.
Collapse
Affiliation(s)
- Eleonora Panfili
- Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy
| | - Giada Mondanelli
- Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy
| | - Ciriana Orabona
- Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy
| | - Maria L Belladonna
- Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy
| | - Marco Gargaro
- Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy
| | - Francesca Fallarino
- Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy
| | - Elena Orecchini
- Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy
| | - Paolo Prontera
- Medical Genetics Unit, University-Hospital "Santa Maria della Misericordia", Perugia, 06132, Italy
| | - Elisa Proietti
- Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy
| | - Giulio Frontino
- Department of Pediatrics, Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, 20132, Italy
| | - Eva Tirelli
- Department of Pediatrics, Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, 20132, Italy
| | - Alberta Iacono
- Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy
| | - Carmine Vacca
- Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy
| | - Paolo Puccetti
- Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy
| | - Ursula Grohmann
- Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy.,Visiting Professor, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Susanna Esposito
- Pediatric Clinic Pietro Barilla Children's Hospital, Department of Medicine and Surgery, Università di Parma, Parma, 43126, Italy
| | - Maria T Pallotta
- Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy
| |
Collapse
|
7
|
Khalil F, Rafat MN, Lotfy A, Hemida MH, Sayed M, Attia M. Study of FoxP3+ CD4+ CD25+ in systemic lupus erythematosus and rheumatoid arthritis. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2018. [DOI: 10.4103/ejim.ejim_44_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
8
|
Hughes HK, Mills Ko E, Rose D, Ashwood P. Immune Dysfunction and Autoimmunity as Pathological Mechanisms in Autism Spectrum Disorders. Front Cell Neurosci 2018; 12:405. [PMID: 30483058 PMCID: PMC6242891 DOI: 10.3389/fncel.2018.00405] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of heterogeneous neurological disorders that are highly variable and are clinically characterized by deficits in social interactions, communication, and stereotypical behaviors. Prevalence has risen from 1 in 10,000 in 1972 to 1 in 59 children in the United States in 2014. This rise in prevalence could be due in part to better diagnoses and awareness, however, these together cannot solely account for such a significant rise. While causative connections have not been proven in the majority of cases, many current studies focus on the combined effects of genetics and environment. Strikingly, a distinct picture of immune dysfunction has emerged and been supported by many independent studies over the past decade. Many players in the immune-ASD puzzle may be mechanistically contributing to pathogenesis of these disorders, including skewed cytokine responses, differences in total numbers and frequencies of immune cells and their subsets, neuroinflammation, and adaptive and innate immune dysfunction, as well as altered levels of immunoglobulin and the presence of autoantibodies which have been found in a substantial number of individuals with ASD. This review summarizes the latest research linking ASD, autoimmunity and immune dysfunction, and discusses evidence of a potential autoimmune component of ASD.
Collapse
Affiliation(s)
- Heather K. Hughes
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| | - Emily Mills Ko
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| | - Destanie Rose
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| |
Collapse
|
9
|
Roh YS, Kim JW, Park S, Shon C, Kim S, Eo SK, Kwon JK, Lim CW, Kim B. Toll-Like Receptor-7 Signaling Promotes Nonalcoholic Steatohepatitis by Inhibiting Regulatory T Cells in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2574-2588. [PMID: 30125542 DOI: 10.1016/j.ajpath.2018.07.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 06/09/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022]
Abstract
Toll-like receptor 7 (TLR7) signaling regulates the production of type 1 interferons (IFNs) and proinflammatory cytokines, such as tumor necrosis factor (TNF)-α, implicated in the control of regulatory T (Treg) cell activity. However, the mechanistic interplay between TLR7 signaling and Treg cells in nonalcoholic steatohepatitis (NASH) has not been elucidated. Our aim was to clarify the role of TLR7 signaling in the pathogenesis of NASH. Steatohepatitis was induced in wild-type (WT), TLR7-deficient, IFN-α/β receptor 1-deficient, and Treg cell-depleted mice. TLR7-deficient and IFN-α/β receptor 1-deficient mice were more protective to steatohepatitis than WT mice. Of interest, both TNF-α and type 1 IFN promoted apoptosis of Treg cells involved in the prevention of NASH. Indeed, Treg cell-depleted mice had aggravated steatohepatitis compared with WT mice. Finally, treatment with immunoregulatory sequence 661, an antagonist of TLR7, efficiently ameliorated NASH in vivo. These results demonstrate that TLR7 signaling can induce TNF-α production in Kupffer cells and type I IFN production in dendritic cells. These cytokines subsequently induce hepatocyte death and inhibit Treg cells activities, leading to the progression of NASH. Thus, manipulating the TLR7-Treg cell axis might be used as a novel therapeutic strategy to treat NASH.
Collapse
|
10
|
Davignon JL, Rauwel B, Degboé Y, Constantin A, Boyer JF, Kruglov A, Cantagrel A. Modulation of T-cell responses by anti-tumor necrosis factor treatments in rheumatoid arthritis: a review. Arthritis Res Ther 2018; 20:229. [PMID: 30314507 PMCID: PMC6235207 DOI: 10.1186/s13075-018-1725-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor (TNF) is a pleiotropic cytokine involved in many aspects of immune regulation. Anti-TNF biological therapy has been considered a breakthrough in the treatment of chronic autoimmune diseases, such as rheumatoid arthritis (RA). In this review, because of the major involvement of T cells in RA pathogenesis, we discuss the effects of anti-TNF biotherapy on T-cell responses in RA patients. We also outline the potential fields for future research in the area of anti-TNF therapy in RA.This could be useful to better understand the therapeutic efficiency and the side effects that are encountered in RA patients. Better targeting of T cells in RA could help set more specific anti-TNF strategies and develop prediction tools for response.
Collapse
Affiliation(s)
- Jean-Luc Davignon
- Centre de Physiopathologie Toulouse Purpan, INSERM-CNRS-UPS, UMR 1043, CHU Purpan, 1 Place Baylac, 31024, Toulouse Cedex, France. .,Centre de Rhumatologie, CHU de Toulouse, 31059, Toulouse, France.
| | - Benjamin Rauwel
- Centre de Physiopathologie Toulouse Purpan, INSERM-CNRS-UPS, UMR 1043, CHU Purpan, 1 Place Baylac, 31024, Toulouse Cedex, France
| | - Yannick Degboé
- Centre de Physiopathologie Toulouse Purpan, INSERM-CNRS-UPS, UMR 1043, CHU Purpan, 1 Place Baylac, 31024, Toulouse Cedex, France.,Centre de Rhumatologie, CHU de Toulouse, 31059, Toulouse, France.,Faculté de Médecine, Université Paul Sabatier Toulouse III, 31062, Toulouse, France
| | - Arnaud Constantin
- Centre de Physiopathologie Toulouse Purpan, INSERM-CNRS-UPS, UMR 1043, CHU Purpan, 1 Place Baylac, 31024, Toulouse Cedex, France.,Centre de Rhumatologie, CHU de Toulouse, 31059, Toulouse, France.,Faculté de Médecine, Université Paul Sabatier Toulouse III, 31062, Toulouse, France
| | - Jean-Fredéric Boyer
- Centre de Physiopathologie Toulouse Purpan, INSERM-CNRS-UPS, UMR 1043, CHU Purpan, 1 Place Baylac, 31024, Toulouse Cedex, France.,Centre de Rhumatologie, CHU de Toulouse, 31059, Toulouse, France
| | - Andrey Kruglov
- Lomonosov Moscow State University, 119991, Moscow, Russia.,German Rheumatism Research Center (DRFZ), 10117, Berlin, Germany
| | - Alain Cantagrel
- Centre de Physiopathologie Toulouse Purpan, INSERM-CNRS-UPS, UMR 1043, CHU Purpan, 1 Place Baylac, 31024, Toulouse Cedex, France.,Centre de Rhumatologie, CHU de Toulouse, 31059, Toulouse, France.,Faculté de Médecine, Université Paul Sabatier Toulouse III, 31062, Toulouse, France
| |
Collapse
|
11
|
Yang S, Wang J, Brand DD, Zheng SG. Role of TNF-TNF Receptor 2 Signal in Regulatory T Cells and Its Therapeutic Implications. Front Immunol 2018; 9:784. [PMID: 29725328 PMCID: PMC5916970 DOI: 10.3389/fimmu.2018.00784] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 03/28/2018] [Indexed: 12/24/2022] Open
Abstract
Tumor necrosis factor α (TNFα) is a pleiotropic cytokine which signals through TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2). Emerging evidence has demonstrated that TNFR1 is ubiquitously expressed on almost all cells, while TNFR2 exhibits a limited expression, predominantly on regulatory T cells (Tregs). In addition, the signaling pathway by sTNF via TNFR1 mainly triggers pro-inflammatory pathways, and mTNF binding to TNFR2 usually initiates immune modulation and tissue regeneration. TNFα plays a critical role in upregulation or downregulation of Treg activity. Deficiency in TNFR2 signaling is significant in various autoimmune diseases. An ideal therapeutic strategy for autoimmune diseases would be to selectively block the sTNF/TNFR1 signal through the administration of sTNF inhibitors, or using TNFR1 antagonists while keeping the TNFR2 signaling pathway intact. Another promising strategy would be to rely on TNFR2 agonists which could drive the expansion of Tregs and promote tissue regeneration. Design of these therapeutic strategies targeting the TNFR1 or TNFR2 signaling pathways holds promise for the treatment of diverse inflammatory and degenerative diseases.
Collapse
Affiliation(s)
- Sujuan Yang
- Department of Clinical Immunology, Third Hospital at Sun Yat-sen University, Guangzhou, China.,Division of Rheumatology, Milton S. Hershey Medical Center at Penn State University, Hershey, PA, United States
| | - Julie Wang
- Division of Rheumatology, Milton S. Hershey Medical Center at Penn State University, Hershey, PA, United States
| | | | - Song Guo Zheng
- Division of Rheumatology, Milton S. Hershey Medical Center at Penn State University, Hershey, PA, United States
| |
Collapse
|
12
|
Schramm-Luc A, Schramm J, Siedliński M, Guzik TJ, Batko B. Age determines response to anti-TNFα treatment in patients with ankylosing spondylitis and is related to TNFα-producing CD8 cells. Clin Rheumatol 2018; 37:1597-1604. [PMID: 29546695 PMCID: PMC5948268 DOI: 10.1007/s10067-018-4061-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/04/2018] [Accepted: 03/01/2018] [Indexed: 11/28/2022]
Abstract
Younger age is a predictor of good clinical response to treatment with tumour necrosis factor (TNF) α inhibitors in ankylosing spondylitis (AS) patients; therefore, the aim of the study was to determine age-related differences in cellular functions, which can predict the response. High disease activity AS patients were treated with TNFα inhibitors for 12 weeks. Based on the percentage of Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) improvement, patients were divided into responding or non-responding groups. Cytometric and clinical assessment were determined at baseline, 4, and 12 weeks after initiation of anti-TNFα treatment. Expression of activation markers on T cells and intracellular cytokine staining was performed. Baseline percentage of TNFα-producing CD8 cells was lower in responders than in non-responders (20.8 ± 2.9 vs 40.7 ± 8.2; P = 0.04 in T test) and increased in the responding group during the first month of treatment (20.8 ± 2.9 vs 30.3 ± 2.5; P = 0.02). Moreover, its baseline level correlated with age (r = 0.7; P = 0.0009) but not with BASDAI improvement adjusted for age. There were no differences in the baseline percentage of IL-4, IL-17A, and IFNγ within CD4 and CD8 cells nor in the expression of CD25, CD28, and CD69 on these cells between responders and non-responders. However, baseline level of CD4+CD28null cells correlated with the percentage of BASDAI improvement while analysed as a continuous variable adjusted for age (r = − 0.4; P = 0.048). Clinical predictors of response were also determined. Influence of age on the response to anti-TNFα treatment in AS patients could be mediated by TNFα-producing CD8 cells.
Collapse
Affiliation(s)
- Agata Schramm-Luc
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Medical College, Jagiellonian University, Cracow, Poland
| | - Jolanta Schramm
- Department of Rheumatology, J. Dietl Specialist Hospital, ul. Skarbowa 1, 31-121, Cracow, Poland
| | - Mateusz Siedliński
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Medical College, Jagiellonian University, Cracow, Poland
| | - Tomasz J Guzik
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Medical College, Jagiellonian University, Cracow, Poland
| | - Bogdan Batko
- Department of Rheumatology, J. Dietl Specialist Hospital, ul. Skarbowa 1, 31-121, Cracow, Poland.
| |
Collapse
|
13
|
Qiao YC, Pan YH, Ling W, Tian F, Chen YL, Zhang XX, Zhao HL. The Yin and Yang of regulatory T cell and therapy progress in autoimmune disease. Autoimmun Rev 2017; 16:1058-1070. [PMID: 28778708 DOI: 10.1016/j.autrev.2017.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 07/13/2017] [Indexed: 12/13/2022]
Abstract
Autoimmune diseases (ADs) are primarily mediated by the failure of immunological self-tolerance. Regulatory T cells (Tregs) play a critical role in the maintenance of induced tolerance to peripheral self-antigens, suppressing immoderate immune responses deleterious to the host and preventing the AD development. Tregs and suppressive cytokines are homeostatic with effective cells plus pro-inflammatory cytokines in healthy hosts which is defined as "Yang", and ADs are usually induced in case of disturbed homeostasis, which is defined as "Yin". Indeed, the Yin-Yang balance could explain the pathogenic mechanism of ADs. Tregs not only suppress CD4+ and CD8+ T cells but also can suppress other immune cells such as B cell, natural killer cell, DC and other antigen-presenting cell through cell-cell contact or secreting suppressive cytokines. In Tregs, Foxp3 as an intracellular protein displays a more specific marker than currently used other cell-surface markers (such as CD25, CD40L, CTLA-4, ICOS and GITR) in defining the naturally occurring CD4+ Tregs. Though the precise mechanism for the opposite effects of Tregs has not been fully elucidated, the importance of Tregs in ADs has been proved to be associated with kinds of immunocytes. At present, the surface marker, frequency and function of Tregs existed conflicts and hence the Tregs therapy in ADs faces challenges. Though some success has been achieved with Tregs therapy in few ADs both in murine models and humans, more effort should paid to meet the future challenges. This review summarizes the progress and discusses the phenotypic, numeric and functional abnormalities of Tregs and is the first time to systematically review the progress of Tregs therapy in kinds of ADs.
Collapse
Affiliation(s)
- Yong-Chao Qiao
- Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China; Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yan-Hong Pan
- Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China; Department of Immunology, Faculty of Basic Medicine, Guilin Medical University, Guilin 541004, China
| | - Wei Ling
- Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China
| | - Fang Tian
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yin-Ling Chen
- Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China
| | - Xiao-Xi Zhang
- Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China
| | - Hai-Lu Zhao
- Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China; Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China; Department of Immunology, Faculty of Basic Medicine, Guilin Medical University, Guilin 541004, China.
| |
Collapse
|
14
|
Effect of Tumor Necrosis Factor Inhibitor Therapy on Osteoclasts Precursors in Rheumatoid Arthritis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2690402. [PMID: 28286757 PMCID: PMC5327780 DOI: 10.1155/2017/2690402] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/04/2017] [Indexed: 12/23/2022]
Abstract
Objective. Tumor necrosis factor (TNF) increases circulating osteoclast (OC) precursors numbers by promoting their proliferation and differentiation. The aim of this study was to assess the effect of TNF inhibitors (TNFi) on the differentiation and activity of OC in rheumatoid arthritis (RA) patients. Methods. Seventeen RA patients treated with TNFi were analyzed at baseline and after a minimum follow-up period of 6 months. Blood samples were collected to assess receptor activator of nuclear factor kappa-B ligand (RANKL) surface expression on circulating leukocytes and frequency and phenotype of monocyte subpopulations. Quantification of serum levels of bone turnover markers, in vitro OC differentiation assays, and qRT-PCR for OC specific genes was performed. Results. After TNFi therapy, patients had reduced RANKL surface expression in B-lymphocytes and the frequency of circulating classical CD14brightCD16− monocytes was decreased. Serum levels of sRANKL, sRANKL/OPG ratio, and CTX-I were reduced in RA patients after TNFi treatment. Moreover, after exposure to TNFi, osteoclast differentiation and activity were decreased, as well as the expression of TRAF6 and cathepsin K. Conclusion. We propose that TNFi arrests bone loss and erosion, through two pathways: direct reduction of osteoclast precursor numbers and inhibition of intracellular signaling pathways acting through TRAF6.
Collapse
|
15
|
Molecular mechanisms of action of anti-TNF-α agents - Comparison among therapeutic TNF-α antagonists. Cytokine 2016; 101:56-63. [PMID: 27567553 DOI: 10.1016/j.cyto.2016.08.014] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 12/13/2022]
Abstract
Tumor necrosis factor (TNF)-α is a potent pro-inflammatory and pathological cytokines in inflammatory diseases such as rheumatoid arthritis and inflammatory bowel diseases. Anti-TNF-α therapy has been established as an efficacious therapeutic strategy in these diseases. In clinical settings, three monoclonal anti-TNF-α full IgG1 antibodies infliximab, adalimumab, and golimumab, PEGylated Fab' fragment of anti-TNF-α antibody certolizumab pegol, extracellular domain of TNF receptor 2/IgG1-Fc fusion protein etanercept, are almost equally effective for rheumatoid arthritis. Although monoclonal full IgG1 antibodies are able to induce clinical and endoscopic remission in inflammatory bowel diseases, certolizumab pegol without Fc portion has been shown to be less effective for inflammatory bowel diseases compared to full IgG1 antibodies. In addition, there are no evidences that etanercept leads clinical remission in inflammatory bowel diseases. Besides the common effect of anti-TNF-α agents on neutralization of soluble TNF-α, each anti-TNF-α agent has its own distinctive pharmacological properties which cause the difference in clinical efficacies. Here we focus on the distinctions of action of anti-TNF-α agents especially in following points; (1) blocking ability against ligands, transmembrane TNF-α and lymphotoxin, (2) effects toward transmembrane TNF-α-expressing cells, (3) effects toward Fcγ receptor-expressing cells, (4) degradation and distribution in inflamed tissue. Accumulating evidence will give us the idea how to modify anti-TNF-α agents to enhance the clinical efficacy in inflammatory diseases.
Collapse
|
16
|
Kheirouri S, Hadi V, Alizadeh M. Immunomodulatory Effect of Nigella sativa Oil on T Lymphocytes in Patients with Rheumatoid Arthritis. Immunol Invest 2016; 45:271-83. [PMID: 27100726 DOI: 10.3109/08820139.2016.1153649] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND OBJECTIVES Abundant evidence indicates the involvement of CD4(+), CD8(+), and CD4(+)CD25(+) T lymphocytes in the induction and/or protection of rheumatoid arthritis (RA). We aimed to investigate the modulatory effect of Nigella sativa (NS) oil on the selected T cell subset percentage in females with RA. METHODS A randomized, double-blinded placebo-controlled, 2 months, parallel-group clinical trial was conducted. Forty-three female patients (20-50 years) with mild to moderate RA were recruited and assigned into NS (n = 23) and placebo (n = 20) groups to receive one gram of NS oil, or starch, capsule in two divided doses, respectively. The disease activity scores of 28 joints (DAS28) were calculated and percentages of CD4(+), CD8(+), and CD4(+)CD25(+) T cells were examined using flow cytometry. RESULTS Treatment with NS led to significant reduction of the serum high-sensitivity C-reactive protein (hs-CRP) level and DAS-28 score and an improved number of swollen joints compared with baseline and placebo groups. A relatively comparable CD4(+) T cell percentage was observed in the NS and placebo groups either in baseline or the end of study. The treatment also resulted in reduced CD8(+), and increased CD4(+)CD25(+) T cell percentage and the CD4(+)/CD8(+) ratio as compared to placebo and baseline. A negative significant correlation between changes in CD8(+) and changes in CD4(+)CD25(+) T cells and a positive significant correlation between changes in CD4(+)CD25(+) T cells and changes in the CD4(+)/CD8(+) ratio was observed in the NS group. CONCLUSION This study gives strength to the potential relevance of NS in clinical management of RA through modulation of T lymphocytes.
Collapse
Affiliation(s)
- Sorayya Kheirouri
- a Department of Nutrition , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Vahid Hadi
- a Department of Nutrition , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammad Alizadeh
- a Department of Nutrition , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
17
|
Mukhopadhyay S, Varma S, Mohan Kumar HN, Yusaf J, Goyal M, Mehta V, Tyagi S. Circulating level of regulatory T cells in rheumatic heart disease: An observational study. Indian Heart J 2016; 68:342-8. [PMID: 27316488 DOI: 10.1016/j.ihj.2015.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/01/2015] [Accepted: 08/10/2015] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND The regulatory T cell (Treg) is essential for prevention of autoimmunity. In a preliminary study, we showed significant deficiency of Tregs (CD4CD25 T cells) in rheumatic heart disease (RHD) patients (an autoimmune disease), but the markers used could not reliably differentiate Treg from nonregulatory conventional T cells (Tcon). The study aim was to reassess the level of circulatory Tregs by using more specific markers. METHODS 70 adults of RHD and 35 controls were studied. Patients were subdivided according to the extent of left-sided valvular involvement. 35 patients with significant mitral-valve disease only were enrolled in the univalvular group while 35 patents with significant involvement of both mitral and aortic-valves in the multivalvular group. Circulating Treg cell level was determined by flow-cytometry. RESULTS Level of Tregs (CD4+CD25(med-high)CD127(low) Foxp3(high)) in CD4+ T lymphocyte was significantly lower in RHD patients compared to controls (median 0.6% versus 3.2%; p=0.001) with no significant difference in Tcon cells (p=0.94). Within the study group Treg count was significantly lower in patients with multivalvular-disease only (median 0.1% versus 3.2%; p=0.001) with no significant difference in Treg cell count between the univalvular group and control (median 1.9% versus 3.2%, p=0.10). CONCLUSION There is significant deficiency of circulating Tregs in patients of chronic RHD and the deficiency is greater in patients with multivalvular than univalvular involvement.
Collapse
Affiliation(s)
| | - Saurabh Varma
- Senior Research Scientist, National Institute of Pathology (ICMR), New Delhi, India
| | - H N Mohan Kumar
- Senior Resident, Department of Cardiology, G.B. Pant Hospital, New Delhi, India
| | - Jamal Yusaf
- Professor, Department of Cardiology, G.B. Pant Hospital, New Delhi, India
| | - Mayank Goyal
- Senior Resident, Department of Cardiology, G.B. Pant Hospital, New Delhi, India
| | - Vimal Mehta
- Professor, Department of Cardiology, G.B. Pant Hospital, New Delhi, India
| | - Sanjay Tyagi
- Professor, Department of Cardiology, G.B. Pant Hospital, New Delhi, India
| |
Collapse
|
18
|
Animal models of rheumatoid arthritis: How informative are they? Eur J Pharmacol 2015; 759:278-86. [PMID: 25824900 DOI: 10.1016/j.ejphar.2015.03.047] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/06/2015] [Accepted: 03/12/2015] [Indexed: 12/19/2022]
Abstract
Animal models of arthritis are widely used to de-convolute disease pathways and to identify novel drug targets and therapeutic approaches. However, the high attrition rates of drugs in Phase II/III rates means that a relatively small number of drugs reach the market, despite showing efficacy in pre-clinical models. There is also increasing awareness of the ethical issues surrounding the use of animal models of disease and it is timely, therefore, to review the relevance and translatability of animal models of arthritis. In this paper we review the most commonly used animal models in terms of their pathological similarities to human rheumatoid arthritis as well as their response to drug therapy. In general, the ability of animal models to predict efficacy of biologics in man has been good. However, the predictive power of animal models for small molecules has been variable, probably because of differences in the levels of target knockdown achievable in vivo.
Collapse
|
19
|
Wendling D, Abbas W, Godfrin-Valnet M, Kumar A, Guillot X, Khan KA, Vidon C, Coquard L, Toussirot E, Prati C, Herbein G. Dysregulated serum IL-23 and SIRT1 activity in peripheral blood mononuclear cells of patients with rheumatoid arthritis. PLoS One 2015; 10:e0119981. [PMID: 25799392 PMCID: PMC4370395 DOI: 10.1371/journal.pone.0119981] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 01/16/2015] [Indexed: 12/24/2022] Open
Abstract
Sirtuin 1 (Sirt1) is a class III histone deacetylase (HDAC) that modulates gene expression and is involved in the regulation of proinflammatory cytokines. Interleukin-23 (IL-23) is produced by activated macrophages and dendritic cells and could fuel the progression of rheumatoid arthritis (RA). The goal of our study was to evaluate serum IL-23 levels and both Sirt1 activity and expression in peripheral blood mononuclear cells (PBMCs) in patients with RA compared to healthy controls (HC) and to determine the relationship between Sirt1 activity/expression and IL-23 levels. We assessed apoptosis in PBMCs of RA patients and its association with Sirt1 expression and serum IL-23. Serum IL-23 levels were increased in RA patients in comparison with controls. We found a positive correlation between the levels of serum IL-23 and serum IL-6 in RA patients. Decreased cytoplasmic Sirt1 activity was observed in RA patients with severe disease compared to HC. The expression of Sirt1 protein was significantly decreased in PBMCs of RA patients compared to HC using western blotting. Serum IL-23 levels correlated positively with the cytoplasmic Sirt1 activity in RA patients. Apoptosis rate of PBMCs isolated from RA patients was increased compared to HC and correlated negatively with the expression of Sirt1 protein and serum IL-23 levels. Levels of serum IL-23 and Sirt1 activity and expression were disturbed in RA parallel to increased PBMC apoptosis. Our findings might provide the rationale for the development of new therapeutic approaches in RA.
Collapse
Affiliation(s)
- Daniel Wendling
- Department of Rheumatology, Centre Hospitalier Régional Universitaire, Besançon, France
- Pathogens & Inflammation Laboratory, University of Franche-Comté, Besançon, France
| | - Wasim Abbas
- Pathogens & Inflammation Laboratory, University of Franche-Comté, Besançon, France
| | - Marie Godfrin-Valnet
- Department of Rheumatology, Centre Hospitalier Régional Universitaire, Besançon, France
| | - Amit Kumar
- Pathogens & Inflammation Laboratory, University of Franche-Comté, Besançon, France
| | - Xavier Guillot
- Department of Rheumatology, Centre Hospitalier Régional Universitaire, Besançon, France
| | - Kashif Aziz Khan
- Pathogens & Inflammation Laboratory, University of Franche-Comté, Besançon, France
| | - Claire Vidon
- Department of Rheumatology, Centre Hospitalier Régional Universitaire, Besançon, France
| | - Laurie Coquard
- Pathogens & Inflammation Laboratory, University of Franche-Comté, Besançon, France
| | - Eric Toussirot
- Pathogens & Inflammation Laboratory, University of Franche-Comté, Besançon, France
- Clinical Investigation Biotherapy Center506, Centre Hospitalier Régional Universitaire, Besançon, France
- Department of Therapeutics, University of Franche Comté, Besançon, France
| | - Clément Prati
- Department of Rheumatology, Centre Hospitalier Régional Universitaire, Besançon, France
| | - Georges Herbein
- Pathogens & Inflammation Laboratory, University of Franche-Comté, Besançon, France
- Department of Virology, Centre Hospitalier Régional Universitaire, Besançon, France
- Structure Fédérative de Recherche 4234, University of Franche-Comté, Besançon, France
- * E-mail:
| |
Collapse
|
20
|
Al-Zifzaf DS, El Bakry SA, Mamdouh R, Shawarby LA, Ghaffar AYA, Amer HA, Alim AA, Sakr HM, Rahman RA. FoxP3+T regulatory cells in Rheumatoid arthritis and the imbalance of the Treg/TH17 cytokine axis. EGYPTIAN RHEUMATOLOGIST 2015. [DOI: 10.1016/j.ejr.2014.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
van der Geest KSM, Smigielska-Czepiel K, Park JA, Abdulahad WH, Kim HW, Kroesen BJ, van den Berg A, Boots AMH, Lee EB, Brouwer E. SF Treg cells transcribing high levels of Bcl-2 and microRNA-21 demonstrate limited apoptosis in RA. Rheumatology (Oxford) 2014; 54:950-8. [DOI: 10.1093/rheumatology/keu407] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Indexed: 11/14/2022] Open
|
22
|
McCann FE, Perocheau DP, Ruspi G, Blazek K, Davies ML, Feldmann M, Dean JLE, Stoop AA, Williams RO. Selective Tumor Necrosis Factor Receptor I Blockade Is Antiinflammatory and Reveals Immunoregulatory Role of Tumor Necrosis Factor Receptor II in Collagen-Induced Arthritis. Arthritis Rheumatol 2014; 66:2728-38. [DOI: 10.1002/art.38755] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 06/17/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Fiona E. McCann
- Kennedy Institute of Rheumatology, University of Oxford; Oxford UK
| | | | - Gerhard Ruspi
- Kennedy Institute of Rheumatology, University of Oxford; Oxford UK
| | - Katrina Blazek
- Kennedy Institute of Rheumatology, University of Oxford; Oxford UK
| | - Marie L. Davies
- Innovation Biopharm Discovery Unit, GlaxoSmithKline; Cambridge UK
| | - Marc Feldmann
- Kennedy Institute of Rheumatology, University of Oxford; Oxford UK
| | | | - A. Allart Stoop
- Innovation Biopharm Discovery Unit, GlaxoSmithKline; Cambridge UK
| | | |
Collapse
|
23
|
|
24
|
Bluestone JA, Bour-Jordan H. Current and future immunomodulation strategies to restore tolerance in autoimmune diseases. Cold Spring Harb Perspect Biol 2012; 4:4/11/a007542. [PMID: 23125012 DOI: 10.1101/cshperspect.a007542] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autoimmune diseases reflect a breakdown in self-tolerance that results from defects in thymic deletion of potentially autoreactive T cells (central tolerance) and in T-cell intrinsic and extrinsic mechanisms that normally control potentially autoreactive T cells in the periphery (peripheral tolerance). The mechanisms leading to autoimmune diseases are multifactorial and depend on a complex combination of genetic, epigenetic, molecular, and cellular elements that result in pathogenic inflammatory responses in peripheral tissues driven by self-antigen-specific T cells. In this article, we describe the different checkpoints of tolerance that are defective in autoimmune diseases as well as specific events in the autoimmune response which represent therapeutic opportunities to restore long-term tolerance in autoimmune diseases. We present evidence for the role of different pathways in animal models and the therapeutic strategies targeting these pathways in clinical trials in autoimmune diseases.
Collapse
Affiliation(s)
- Jeffrey A Bluestone
- UCSF Diabetes Center, University of California at San Francisco, 94143, USA.
| | | |
Collapse
|
25
|
Williams RO. What Have We Learned about the Pathogenesis of Rheumatoid Arthritis from TNF-Targeted Therapy? ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/652739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Studies of cytokine regulation in rheumatoid arthritis led to the development of TNFα inhibitors which are now used for a number of indications, including rheumatoid arthritis, inflammatory bowel disease, psoriasis, psoriatic arthritis, and ankylosing spondylitis. The widespread use of biologics in the clinic offers unique opportunities for probing disease pathogenesis and this paper provides an overview of rheumatoid arthritis, with a particular emphasis on the impact of anti-TNFα therapy on pathogenetic mechanisms. An overview is also provided on the most commonly used animal models that mimic RA, including adjuvant-induced arthritis, collagen-induced arthritis, TNFα-transgenic mice, and the K/BxN and SKG models. These models have led to significant discoveries relating to the importance of pro-inflammatory cytokines in the pathogenesis of rheumatoid arthritis, resulting from disregulation of the normally finely tuned balance of pro- and anti-inflammatory cytokine signalling. In addition, experimental evidence is discussed suggesting how genetic and environmental factors can contribute to disease susceptibility. The role of effector and regulatory T cells is discussed in the light of the relatively disappointing therapeutic effects of T cell modifying agents such as anti-CD4 antibody and cyclosporin. It is concluded that comprehensive analyses of mechanisms of action of biologics and other drugs entering the clinic will be essential to optimise therapy, with the ultimate aim of providing a cure.
Collapse
Affiliation(s)
- Richard O. Williams
- Kennedy Institute of Rheumatology, University of Oxford, 65 Aspenlea Road, London W6 8LH, UK
| |
Collapse
|
26
|
Bockorny B, Dasanu CA. Autoimmune manifestations in large granular lymphocyte leukemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2012; 12:400-5. [PMID: 22999943 DOI: 10.1016/j.clml.2012.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/17/2012] [Accepted: 06/15/2012] [Indexed: 12/16/2022]
Abstract
Large granular lymphocyte (LGL) leukemia features a group of indolent lymphoproliferative diseases that display a strong association with various autoimmune conditions. Notwithstanding, these autoimmune conditions have not been comprehensively characterized or systematized to date. As a result, their clinical implications remain largely unknown. The authors offer a comprehensive review of the existing literature on various autoimmune conditions documented in the course of T-cell LGL (T-LGL) leukemia. Though some of them are thought be secondary to the LGL leukemia, others could be primary and might even play a role in its pathogenesis. A considerable clinico-laboratory overlap between T-LGL leukemia associated with rheumatoid arthritis and Felty's syndrome suggests that they are just different eponyms for the same clinical entity.
Collapse
Affiliation(s)
- Bruno Bockorny
- Department of Medicine, University of Connecticut Medical Center, Farmington, CT 06030-1235, USA.
| | | |
Collapse
|
27
|
Huang Z, Yang B, Shi Y, Cai B, Li Y, Feng W, Fu Y, Luo L, Wang L. Anti-TNF-α therapy improves Treg and suppresses Teff in patients with rheumatoid arthritis. Cell Immunol 2012; 279:25-9. [PMID: 23059810 DOI: 10.1016/j.cellimm.2012.09.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/24/2012] [Accepted: 09/06/2012] [Indexed: 02/05/2023]
Abstract
Anti-TNF-α therapies have been applied in RA treatment, but the regulatory effect of the drug on immune system is not clear. In this study, we included 33 active RA patients and divided them into two groups. One group received anti-TNF-α mAb+methotrexate for 24 weeks, the other group got placebo+methotrexate for the first 12 weeks and anti-TNF-α mAb+methotrexate for another 12 weeks. Circulatory regulatory T cell (Treg) and effector T cell (Teff) frequency was analyzed pre-therapy and week 12 and week 24 for both group patients by flowcytometry. Our results indicated significantly elevated Treg and decreased Teff at week 24 compared with pre-therapy and week 12 for both group patients, and a little higher Treg and lower Teff frequency in anti-TNF-α therapy group than in placebo therapy patients. Our results demonstrated anti-TNF-α therapy has regulatory effect on immune system of RA patients by promoting Treg proportion increase and suppressing Teff.
Collapse
Affiliation(s)
- Zhuochun Huang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Xiang, Chengdu 610041, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kobie JJ, Zheng B, Bryk P, Barnes M, Ritchlin CT, Tabechian DA, Anandarajah AP, Looney RJ, Thiele RG, Anolik JH, Coca A, Wei C, Rosenberg AF, Feng C, Treanor JJ, Lee FEH, Sanz I. Decreased influenza-specific B cell responses in rheumatoid arthritis patients treated with anti-tumor necrosis factor. Arthritis Res Ther 2011; 13:R209. [PMID: 22177419 PMCID: PMC3334662 DOI: 10.1186/ar3542] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 10/21/2011] [Accepted: 12/16/2011] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION As a group, rheumatoid arthritis (RA) patients exhibit increased risk of infection, and those treated with anti-tumor necrosis factor (TNF) therapy are at further risk. This increased susceptibility may result from a compromised humoral immune response. Therefore, we asked if short-term effector (d5-d10) and memory (1 month or later) B cell responses to antigen were compromised in RA patients treated with anti-TNF therapy. METHODS Peripheral blood samples were obtained from RA patients, including a subset treated with anti-TNF, and from healthy controls to examine influenza-specific responses following seasonal influenza vaccination. Serum antibody was measured by hemagglutination inhibition assay. The frequency of influenza vaccine-specific antibody secreting cells and memory B cells was measured by EliSpot. Plasmablast (CD19+IgD-CD27hiCD38hi) induction was measured by flow cytometry. RESULTS Compared with healthy controls, RA patients treated with anti-TNF exhibited significantly decreased influenza-specific serum antibody and memory B cell responses throughout multiple years of the study. The short-term influenza-specific effector B cell response was also significantly decreased in RA patients treated with anti-TNF as compared with healthy controls, and correlated with decreased influenza-specific memory B cells and serum antibody present at one month following vaccination. CONCLUSIONS RA patients treated with anti-TNF exhibit a compromised immune response to influenza vaccine, consisting of impaired effector and consequently memory B cell and antibody responses. The results suggest that the increased incidence and severity of infection observed in this patient population could be a consequence of diminished antigen-responsiveness. Therefore, this patient population would likely benefit from repeat vaccination and from vaccines with enhanced immunogenicity.
Collapse
Affiliation(s)
- James J Kobie
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 695, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kessel A, Haj T, Peri R, Snir A, Melamed D, Sabo E, Toubi E. Human CD19(+)CD25(high) B regulatory cells suppress proliferation of CD4(+) T cells and enhance Foxp3 and CTLA-4 expression in T-regulatory cells. Autoimmun Rev 2011; 11:670-7. [PMID: 22155204 DOI: 10.1016/j.autrev.2011.11.018] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2011] [Indexed: 12/12/2022]
Abstract
Studies in both animal models and humans have shown a subset of B cells behaving as immuno-regulatory cells, being a source of inhibitory cytokines such as IL-10 and TGF-β. Our aims were to establish the presence of human B regulatory (Breg) cells and to assess their ability to suppress proliferation of CD4(+) T cells and to mediate T regulatory (Treg) cells' properties. For this purpose, human Breg, CD4(+) T and Treg cells were purified using magnetic microbeads. CFSE-labeled CD4(+) T cells were stimulated and cultured alone or with Breg cells. Their proliferative response was determined 72 hours later based on the CFSE staining. In parallel, Treg cells were cultured alone or with Breg cells in different conditions for 24 hours, and then stained and analyzed for Foxp3 and CTLA-4 expression. We found that, the co-culture of Breg cells (defined as CD25(high) CD27(high) CD86(high) CD1d(high) IL-10(high) TGF-β(high)) with autologous stimulated CD4(+) T cells decreased significantly (in a dose-dependent way) the proliferative capacity of CD4(+) T cells. Furthermore, Foxp3 and CTLA-4 expression in Treg cells were enhanced by non-stimulated and further by ODN-CD40L stimulated Breg cells. The regulatory function of Breg cells on Treg cells was mainly dependent on a direct contact between Breg and Treg cells, but was also TGF-β but not IL-10 dependent. In conclusion, human Breg cells decrease the proliferation of CD4(+) T cells and also enhance the expression of Foxp3 and CTLA-4 in Treg cells by cell-to-cell contact.
Collapse
Affiliation(s)
- Aharon Kessel
- Division of Allergy and Clinical Immunology, Bnai Zion Medical Center, Haifa, Israel
| | | | | | | | | | | | | |
Collapse
|
30
|
Chen X, Oppenheim JJ. Contrasting effects of TNF and anti-TNF on the activation of effector T cells and regulatory T cells in autoimmunity. FEBS Lett 2011; 585:3611-8. [PMID: 21513711 PMCID: PMC3164898 DOI: 10.1016/j.febslet.2011.04.025] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/08/2011] [Accepted: 04/12/2011] [Indexed: 12/23/2022]
Abstract
Anti-TNF treatment is effective in a majority of rheumatoid arthritis (RA), however, this treatment can unexpectedly trigger the onset or exacerbate multiple sclerosis (MS). Recent progress in cellular immunology research provides a new framework to analyze the possible mechanism underlying these puzzling contradictory effects. The delicate balance of protective CD4(+)FoxP3(+) regulatory T cells (Tregs) and pathogenic CD4(+)FoxP3(-) effector T cells (Teffs) is crucial for the outcome of anti-TNF treatment of autoimmune disease. There is convincing evidence that TNF, in addition to stimulating Teffs, is able to activate and expand Tregs through TNFR2, which is preferentially expressed by Tregs. Therefore, the contrasting effects of TNF on Tregs and Teffs are likely to determine the therapeutic effect of anti-TNF treatment. In this review, we discuss the current understanding of the general effect of TNF on the activation of T cells, and the impact of TNF on the function of Teffs and Tregs. Understanding the differential effects of TNF on Teffs and Tregs is fundamentally required for the design of more effective and safer anti-TNF or anti-TNF receptor(s) therapeutic strategy for autoimmune diseases.
Collapse
Affiliation(s)
- Xin Chen
- Basic Science Program, SAIC-Frederick, Inc., Laboratory of Molecular Immunoregulation, NCI-Frederick, Frederick, MD 21702, USA
| | | |
Collapse
|
31
|
Michels-van Amelsfort JMR, Walter GJ, Taams LS. CD4+CD25+ regulatory T cells in systemic sclerosis and other rheumatic diseases. Expert Rev Clin Immunol 2011; 7:499-514. [PMID: 21790293 DOI: 10.1586/eci.11.28] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Systemic sclerosis (SSc) is a generalized connective tissue disorder, characterized by a wide spectrum of microvascular and immunological abnormalities, leading to a progressive thickening and fibrosis of the skin and other organs, such as the lungs, GI tract, heart and kidneys. SSc is thought to be an autoimmune disease owing to the presence of high affinity antibodies and possible clinical overlap with other autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis. Autoimmune diseases arise because of a breakdown in immunological self tolerance. Self tolerance is maintained via multiple regulatory mechanisms within the immune system, including the thymic deletion of self-reactive T cells and mechanisms of peripheral tolerance. In recent years, the presence of CD4(+)CD25(+)FOXP3(+) Tregs has been identified as a major mechanism of peripheral tolerance, and accumulating evidence indicates that alterations in Treg frequencies and/or function may contribute to autoimmune diseases. Here, we will review recent data on the percentage, function and phenotype of CD4(+)CD25(+) Tregs in rheumatic disease, and discuss how recent developments may guide research in this area in SSc.
Collapse
|
32
|
Chavele KM, Ehrenstein MR. Regulatory T-cells in systemic lupus erythematosus and rheumatoid arthritis. FEBS Lett 2011; 585:3603-10. [PMID: 21827750 DOI: 10.1016/j.febslet.2011.07.043] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 07/28/2011] [Indexed: 12/18/2022]
Abstract
Regulatory T-cells (Tregs) are the guardians of peripheral tolerance acting to prevent autoimmune diseases such as systemic lupus erythomatosus (SLE) and rheumatoid arthritis (RA). Defects in Tregs have been reported in these two diseases despite significant differences in their clinical phenotype and pathogenesis. In both diseases the potency of Treg fails to keep pace with the activation of effector cells and are unable to resist the ensuing inflammation. This review will discuss the phenotypic, numeric, and functional abnormalities in Tregs and their role in patients and murine models of SLE and RA.
Collapse
|
33
|
Foxp3high and Foxp3low Treg cells differentially correlate with T helper 1 and natural killer cells in peripheral blood. Hum Immunol 2011; 72:621-6. [DOI: 10.1016/j.humimm.2011.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/07/2011] [Accepted: 03/31/2011] [Indexed: 01/01/2023]
|
34
|
Chen X, Oppenheim JJ. The phenotypic and functional consequences of tumour necrosis factor receptor type 2 expression on CD4(+) FoxP3(+) regulatory T cells. Immunology 2011; 133:426-33. [PMID: 21631498 PMCID: PMC3143354 DOI: 10.1111/j.1365-2567.2011.03460.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 05/05/2011] [Accepted: 05/06/2011] [Indexed: 01/15/2023] Open
Abstract
Cytokine receptors expressed by CD4(+) FoxP3(+) regulatory T cells (Treg cells) not only serve as a phenotypic marker for the identification of this important population of immunosuppressive cells, they also promote the function of Treg cells. CD25, the α-chain of interleukin-2 receptor, is a prototype of such a receptor, which enables Treg cells to be activated by interleukin-2. We and others have found that tumour necrosis factor receptor type 2 (TNFR2) is another important cytokine receptor preferentially expressed by Treg cells with important phenotypic and functional roles. TNFR2 is preferentially expressed by highly functional human and mouse Treg cells, and mediates the activating effect of TNF on Treg cells. We review here the studies of the regulation of expression of TNFR2 on functional Treg cells as well as on CD4(+) FoxP3(-) effector T cells (Teff cells). We document the critical role of this receptor in the activation, proliferative expansion and survival of Treg cells. The contribution of TNFR2 expression on Treg and Teff cells to the beneficial and detrimental effects of anti-TNF treatment in autoimmune disorders will also be discussed.
Collapse
Affiliation(s)
- Xin Chen
- Basic Science Program, SAIC-Frederick, Inc., Laboratory of Molecular Immunoregulation, Cancer Inflammation Program, Center for Cancer Research, NCI-Frederick, Frederick, MD, USA.
| | | |
Collapse
|
35
|
Miyara M, Gorochov G, Ehrenstein M, Musset L, Sakaguchi S, Amoura Z. Human FoxP3+ regulatory T cells in systemic autoimmune diseases. Autoimmun Rev 2011; 10:744-55. [PMID: 21621000 DOI: 10.1016/j.autrev.2011.05.004] [Citation(s) in RCA: 259] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2011] [Indexed: 12/16/2022]
Abstract
Since the characterization of CD4(+)CD25(+) regulatory T (Treg) cells in mice, significant progress has been made in the definitions of the phenotype and the function of human Treg cells in health and in pathological conditions. Recent advances in the field leading to a better molecular definition of Treg subsets in humans and the description of the dynamics of differentiation of Treg cells should bring new insights in the understanding of human chronic systemic autoimmune diseases. How Treg cells are compromised in these diseases is a challenging issue because the elucidation of the mechanisms leading to such anomaly might lead to promising novel therapeutic approaches.
Collapse
Affiliation(s)
- Makoto Miyara
- Internal Medicine Department, French national Reference center for SLE and antiphospholipid syndrome AP-HP Hôpital Pitié-Salpêtrière, 75013 Paris, France.
| | | | | | | | | | | |
Collapse
|
36
|
Effector T cells in rheumatoid arthritis: Lessons from animal models. FEBS Lett 2011; 585:3649-59. [DOI: 10.1016/j.febslet.2011.04.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 04/13/2011] [Accepted: 04/14/2011] [Indexed: 01/19/2023]
|
37
|
Kotlan B, Stroncek DF, Marincola FM. Intravenous immunoglobulin-based immunotherapy: an arsenal of possibilities for patients and science. Immunotherapy 2011; 1:995-1015. [PMID: 20635915 DOI: 10.2217/imt.09.67] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The use of intravenous immunoglobulin (IVIG) concentrated from pooled healthy donors' plasma has gained increasing popularity. IVIG therapy has become important as a replacement therapy in primary and acquired humoral immunodeficiencies, and it has been extended to autoimmune, neurodegenerative and inflammatory conditions and transplantation therapy. Recurrent pregnancy failure and cancer are rather new platforms, where IVIG has shown its beneficial effects. This manuscript is focused on these two off-labelled usages. The immunomodulatory mechanisms of IVIG therapy appear as a coordinated orchestration of different functions, resulting in a synergistic effect. Treatment monitoring and detailed molecular analyses reveal how such treatments may interfere with disease pathogenesis. These finding may foster the development of novel therapeutic and/or preventive strategies. Studying this field with bidirectional bench-to-bedside and bedside-to-bench approaches fit well into 'the two-way road' paradigm of translational medicine.
Collapse
Affiliation(s)
- Beatrix Kotlan
- Center of Surgical & Molecular Tumorpathology National Institute of Oncology, Rath Gy street 7-9, Budapest 1122, Hungary.
| | | | | |
Collapse
|
38
|
Boschetti G, Nancey S, Sardi F, Roblin X, Flourié B, Kaiserlian D. Therapy with anti-TNFα antibody enhances number and function of Foxp3(+) regulatory T cells in inflammatory bowel diseases. Inflamm Bowel Dis 2011; 17:160-70. [PMID: 20848510 DOI: 10.1002/ibd.21308] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Inflammatory bowel diseases (IBDs) are associated with up-regulation of TNFα, hyperactivation of proinflammatory effector T cells (Teffs) and inefficient control by regulatory CD4(+) CD25(+) Foxp3(+) T cells (Tregs). The aim of this prospective study was to investigate the short-term impact of treatment of IBD patients with anti-TNFα antibodies (infliximab or adalimumab) on the frequency, phenotype, and suppressive function of Tregs. METHODS Active IBD patients including 16 with Crohn's disease and 9 with ulcerative colitis were treated with anti-TNFα mAb. PBMCs were harvested immediately before and 2 weeks after the first injection. The frequency and phenotype of circulating CD4(+) CD25(+) Foxp3(+) Tregs were analyzed by flow cytometry, and their suppressive function was assessed by the ability of purified CD4(+) CD25(+) CD127(-) Tregs to inhibit the proliferation of allogenic CD4(+) CD25(-) Teffs. RESULTS CD4(+) CD25(+) Foxp3(+) Treg frequency was significantly lower in active IBD patients than in controls (2.8% ± 0.4% vs. 4.6% ± 0.6%, respectively; P = 0.01). On day 14 following the first anti-TNFα infusion, the frequency of circulating Tregs was significantly enhanced in IBD patients (4.0% ± 0.5% vs. 2.8% ± 0.4%, before treatment; P = 0.001), with a 2- to 3-fold increase in the intensity of Foxp3 expression. In addition, infliximab treatment enhanced the suppressive function of circulating Tregs, as shown by inhibition of Teff proliferation at a 1:8 Treg/Teff ratio (28% ± 5% vs. 66% ± 10%, after treatment; P = 0.04). CONCLUSIONS These data demonstrate that anti-TNFα treatment of active IBD rapidly enhances the frequency of functional Foxp3(+) Tregs in blood and potentiates their suppressive function. This indicates that Treg potentiation may represent an unanticipated outcome of anti-TNFα biotherapy in IBD.
Collapse
Affiliation(s)
- Gilles Boschetti
- INSERM U 851 Immunité et Vaccination, CERVI, IFR 128 Biosciences Lyon Gerland, Lyon, France
| | | | | | | | | | | |
Collapse
|
39
|
Bogdándi EN, Balogh A, Felgyinszki N, Szatmári T, Persa E, Hildebrandt G, Sáfrány G, Lumniczky K. Effects of Low-Dose Radiation on the Immune System of Mice after Total-Body Irradiation. Radiat Res 2010; 174:480-9. [DOI: 10.1667/rr2160.1] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
40
|
Role of regulatory T cells in rheumatoid arthritis: facts and hypothesis. AUTOIMMUNITY HIGHLIGHTS 2010; 1:45-51. [PMID: 26000107 PMCID: PMC4389058 DOI: 10.1007/s13317-010-0008-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 04/06/2010] [Indexed: 01/22/2023]
Abstract
Regulatory T cells (Treg) are a CD4+ lymphocyte subset involved in self-tolerance and autoimmunity prevention. There is evidence for a phenotypic and/or functional impairment of this cell subset during the natural history of several chronic autoimmune/inflammatory diseases, including rheumatoid arthritis (RA). Although the intracellular transcription factor FoxP3 is thought to be the master regulator of Treg cell function, a number of other molecules expressed on the cell surface have been proposed for the identification of Treg cells. This is important in order to favour their possible selective isolation and in the development of new therapeutic strategies. In the present paper, available data on phenotypic and functional characterization of Treg cells in both peripheral blood and synovial fluid from RA patients are reviewed and their possible pathogenic role in triggering and perpetuating rheumatoid joint inflammation is discussed.
Collapse
|
41
|
Kleijwegt FS, Laban S, Duinkerken G, Joosten AM, Zaldumbide A, Nikolic T, Roep BO. Critical role for TNF in the induction of human antigen-specific regulatory T cells by tolerogenic dendritic cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:1412-8. [PMID: 20574005 DOI: 10.4049/jimmunol.1000560] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
TNF is a pleiotropic cytokine with differential effects on immune cells and diseases. Anti-TNF therapy was shown to be effective in rheumatoid arthritis but proved inefficient or even detrimental in other autoimmune diseases. We studied the role of TNF in the induction of Ag-specific regulatory T cells (Tregs) by tolerogenic vitamin D3-modulated human dendritic cells (VD3-DCs), which previously were shown to release high amounts of soluble TNF (sTNF) upon maturation with LPS. First, production of TNF by modulated VD3-DCs was analyzed upon maturation with LPS or CD40L with respect to both secreted (cleaved) TNF (sTNF) and expression of the membrane-bound (uncleaved) form of TNF (mTNF). Next, TNF antagonists were tested for their effect on induction of Ag-specific Tregs by modulated DCs and the subsequent functionality of these Tregs. VD3-DCs expressed greater amounts of mTNF than did control DCs (nontreated DCs), independent of the maturation protocol. Inhibition of TNF with anti-TNF Ab (blocking both sTNF and mTNF) during the priming of Tregs with VD3-DCs prevented generation of Tregs and their suppression of proliferation of CD4(+) T cells. In contrast, sTNF receptor II (sTNFRII), mainly blocking sTNF, did not change the suppressive capacity of Tregs. Blocking of TNFRII by anti-CD120b Ab during Treg induction similarly abrogated their subsequent suppressive function. These data point to a specific role for mTNF on VD3-DCs in the induction of Ag-specific Tregs. Interaction between mTNF and TNFRII instructs the induction of suppressive Tregs by VD3-DCs. Anti-TNF therapy may therefore act adversely in different patients or disease pathways.
Collapse
Affiliation(s)
- Fleur S Kleijwegt
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
42
|
Effects of infliximab in the treatment of refractory posterior uveitis of Behçet’s disease after withdrawal of infusions. Int Ophthalmol 2010; 30:577-81. [DOI: 10.1007/s10792-010-9372-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 05/02/2010] [Indexed: 10/19/2022]
|
43
|
Underexpression and overexpression of Fas and Fas ligand: a double-edged sword. Ann Allergy Asthma Immunol 2010; 104:286-92. [PMID: 20408337 DOI: 10.1016/j.anai.2010.01.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To compare autoimmune lymphoproliferative syndrome (ALPS) and Stevens-Johnson syndrome (SJS) with respect to the defects in Fas- and Fas ligand (FasL)-mediated apoptosis. DATA SOURCES Selected reviews, case reports, and original studies were searched in PubMed and MEDLINE for the keywords ALPS, SJS, Fas, FasL, and apoptosis. STUDY SELECTION Case reports of ALPS and SJS were selected as examples of Fas- and FasL-mediated diseases. In addition, we selected articles that examined the pathophysiology of apoptosis in the context of Fas-FasL interaction. RESULTS Failure to initiate apoptosis of abnormal T lymphocytes occurs in such diseases as ALPS, leading to the accumulation of double negative T cells with an increase in autoimmunity. In contrast to apoptotic failure, SJS is associated with a pathological increase in programmed keratinocyte cell death. CONCLUSION The consequences of dysregulated Fas- and FasL-mediated apoptosis leads to self-reactivity, malignant transformation, and immune dysfunction. An understanding of underlying mechanisms and qualitative assessment of Fas and FasL may have clinical benefits when control of these homeostatic mechanisms is in question.
Collapse
|
44
|
Possible Association between Th1 Immune Polarization and Epithelial Permeability with Toll-Like Receptors 2 Dysfunction in the Pathogenesis of the Recurrent Aphthous Ulceration. ACTA ACUST UNITED AC 2010. [DOI: 10.1155/2010/163804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recurrent Aphthous Ulceration (RAU) is a chronic oral inflammatory disease that affects approximately 25% of the general population. The etiology of the disease is unknown; however, factors that favor the onset of RAU have been correlated with a Th1 immune polarization, while factors that reduce RAU episodes have been associated with down regulation of immune reaction or stimulation of the peripheral tolerance. In this context, the integrity of the epithelial barrier is also fundamental for the prevention of the disease and conditions that augment its permeability or produce disruption are considered potential triggers. The key factor responsible for increased susceptibility is unclear, though a deficiency of Toll-like receptor (TLR) activity seems to be a good candidate. TLRs are a group of membrane proteins that recognize conserved molecules derived from bacterial, virus, fungal, or host tissues. Particularly, the TLR2 is involved in both immune regulation and control of epithelial barrier integrity. Thus, based on literature review, we showed evidences that correlate the TLR2 dysfunction and the diverse predisposing factors with the elements considered critical for disease pathogenesis: the Th1 immune reaction and the increased epithelial permeability.
Collapse
|
45
|
Haque R, Lei F, Xiong X, Wu Y, Song J. FoxP3 and Bcl-xL cooperatively promote regulatory T cell persistence and prevention of arthritis development. Arthritis Res Ther 2010; 12:R66. [PMID: 20384988 PMCID: PMC2888221 DOI: 10.1186/ar2983] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 02/16/2010] [Accepted: 04/12/2010] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Forkhead box p3 (FoxP3)-expressing regulatory T cells (Tregs) have been clearly implicated in the control of autoimmune disease in murine models. In addition, ectopic expression of FoxP3 conveys a Treg phenotype to CD4(+) T cells, lending itself to therapeutic use in the prevention of rheumatoid arthritis (RA). In this study, we generated therapeutically active Tregs with an increased life span and hence greater therapeutic potential. METHODS We used retrovirus-mediated transduction to introduce FoxP3 or FoxP3 with anti-apoptotic Bcl-2 family molecule Bcl-xL linked by a 2A picornavirus self-cleaving peptide into CD4(+) T cells to generate Tregs. In addition, by using in vitro functional analyses and adoptive immunotherapy in a murine model of RA, we demonstrated that these Tregs were highly reactive. RESULTS We found that CD4(+) T cells expressing both FoxP3 and Bcl-xL were able to differentiate into functional Tregs, which have a long-term survival advantage over cells transduced with FoxP3 alone. In an in vivo murine model, adoptive transfer of Tregs expressing both FoxP3 and Bcl-xL demonstrated more effective suppression of RA than CD4(+) T cells expressing FoxP3 alone. CONCLUSIONS FoxP3 and Bcl-xL can cooperatively promote the differentiation and persistence of Tregs, with the capacity to prevent arthritis. Our results provide a novel approach for generating highly reactive Tregs for augmenting cellular immunotherapy for autoimmune disease.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- Arthritis, Experimental/prevention & control
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/prevention & control
- Forkhead Transcription Factors/genetics
- Immunotherapy, Adoptive
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Transduction, Genetic
- bcl-X Protein/genetics
Collapse
Affiliation(s)
- Rizwanul Haque
- Department of Microbiology & Immunology and Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Fengyang Lei
- Department of Microbiology & Immunology and Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Xiaofang Xiong
- Department of Microbiology & Immunology and Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Yuzhang Wu
- Institute of Immunology, The Third Military Medical University, 30 Gaotanyan Street, Chongqing 400038, PR China
| | - Jianxun Song
- Department of Microbiology & Immunology and Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Institute of Immunology, The Third Military Medical University, 30 Gaotanyan Street, Chongqing 400038, PR China
| |
Collapse
|
46
|
Mostafa GA, Al Shehab A, Fouad NR. Frequency of CD4+CD25high regulatory T cells in the peripheral blood of Egyptian children with autism. J Child Neurol 2010; 25:328-35. [PMID: 19713552 DOI: 10.1177/0883073809339393] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Autoimmunity may have a role in autism, although the origins of autoimmunity in autism are unknown. CD4( +)CD25(high) regulatory T cells play an important role in the establishment of immunological self-tolerance, thereby preventing autoimmunity. The authors are the first to study the frequency of CD4(+)CD25( high) regulatory T cells in the blood of 30 autistic and 30 age- and sex-matched healthy children. Patients with autism had significantly lower frequency of CD4(+)CD25(high) regulatory T cells than healthy children (P < .001). These cells were deficient in 73.3% of children with autism. Autistic patients with allergic manifestations (40%) and those with a family history of autoimmunity (53.3%) had a significantly lower frequency of CD4(+)CD25(high) regulatory T cells than those without (P < .01 and P < .001, respectively). In conclusion, CD4(+)CD25( high) regulatory T cells are deficient in many children with autism. Deficiency of these cells may contribute to autoimmunity in a subgroup of children with autism. Consequently, CD4(+)CD25(high) regulatory T cells could be new potential therapeutic targets in these patients.
Collapse
Affiliation(s)
- Gehan A Mostafa
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Nasr City, Cairo, Egypt.
| | | | | |
Collapse
|
47
|
Bernard F, Romano A, Granel B. [Regulatory T cells and systemic autoimmune diseases: systemic lupus erythematosus, rheumatoid arthritis, primary Sjögren's syndrome]. Rev Med Interne 2009; 31:116-27. [PMID: 19962219 DOI: 10.1016/j.revmed.2009.03.364] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 02/06/2009] [Accepted: 03/07/2009] [Indexed: 12/14/2022]
Abstract
Regulatory/suppressor T cells (Tregs) maintain immunologic homeostasis and prevent autoimmunity. They are the guardians of dominant tolerance. Recent research reveals quantitative and/or functional defect of Tregs in systemic autoimmune diseases. In this article, past and recent studies of Tregs in human systemic lupus erythematosus (SLE), rheumatoid arthritis (RA) and primary Sjögren's syndrome (pGSS) are reviewed. Most studies report that Tregs are decreased in peripheral blood of subjects with active SLE. A population of CD4+CD25-Foxp3+ is specifically described in SLE. Tregs functions are still discussed. Tregs counts in peripheral blood of RA patients vary across studies. Enrichment of synovial fluid in Tregs contrasts with inflammation. Tregs suppressive effects are altered in vivo in RA secondary to proinflammatory cytokines environment and resistance of effector T cells to Tregs. In pGSS, the conflicting place of Tregs in the balance prevention of autoimmunity/antitumor immunity is unspecified. Immunosuppressive treatments, like corticosteroids and anti-TNF, modulate Tregs cells population. There is increasing interest in the use of Tregs as a biological therapy to preserve and restore tolerance to self-antigen. However, difficulties to characterize these lymphocytes and controversies in the results of studies refrain their use in current clinical practice.
Collapse
Affiliation(s)
- F Bernard
- Service de médecine interne, hôpital Nord, Assistance publique-Hôpitaux de Marseille (AP-HM), université de la Méditerranée, chemin des Bourrely, 13015 Marseille cedex 15, France
| | | | | |
Collapse
|
48
|
Tack CJ, Kleijwegt FS, Van Riel PLCM, Roep BO. Development of type 1 diabetes in a patient treated with anti-TNF-alpha therapy for active rheumatoid arthritis. Diabetologia 2009; 52:1442-4. [PMID: 19440690 PMCID: PMC2688610 DOI: 10.1007/s00125-009-1381-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/01/2009] [Accepted: 04/06/2009] [Indexed: 12/24/2022]
Affiliation(s)
- C J Tack
- Department of Internal Medicine, 463, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands.
| | | | | | | |
Collapse
|
49
|
Tabbara KF, Al-Hemidan AI. Infliximab effects compared to conventional therapy in the management of retinal vasculitis in Behçet disease. Am J Ophthalmol 2008; 146:845-50.e1. [PMID: 18929351 DOI: 10.1016/j.ajo.2008.09.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 09/03/2008] [Accepted: 09/04/2008] [Indexed: 11/15/2022]
Abstract
PURPOSE To assess the outcome of retinal vasculitis in patients with Behçet disease treated with infliximab compared to treatment with conventional therapy. DESIGN Nonrandomized, retrospective comparative clinical study. METHODS Patients with Behçet disease with all four major criteria were included in this study. Patients had recurrent episodes of uveitis and retinal vasculitis. Thirty-three patients (Group 1) were treated with oral prednisone, cyclosporine, and azathioprine or methotrexate for a minimum period of three months. Ten patients (Group 2) who failed to respond to conventional therapy were given infliximab at a dose of 5 mg/kg in a single intravenous infusion on day 1 and every two weeks for a total of six doses. Patients were given the same treatment during each subsequent relapse. The main outcome measures were the number of relapses, visual outcome, and ocular complications. RESULTS The mean follow-up period was 36 months in Group 1 and 30 months in Group 2. The mean number of relapses was significantly reduced and the duration of remission was longer in the infliximab therapy group compared to conventional therapy group (P < .0001). The visual acuity at 24 months follow-up was significantly better in patients treated with infliximab (Group 2) when compared to conventional therapy (Group 1) (P = .0059). CONCLUSIONS Patients with Behçet disease had significant decrease in inflammation, improvement of visual acuity, and reduced ocular complications following infliximab when compared to conventional therapy. The number of relapses was less in the infliximab treatment group than the conventional therapy group.
Collapse
Affiliation(s)
- Khalid F Tabbara
- The Eye Center and The Eye Foundation for Research in Ophthalmology, Riyadh, Saudi Arabia.
| | | |
Collapse
|
50
|
Ria F, Penitente R, De Santis M, Nicolò C, Di Sante G, Orsini M, Arzani D, Fattorossi A, Battaglia A, Ferraccioli GF. Collagen-specific T-cell repertoire in blood and synovial fluid varies with disease activity in early rheumatoid arthritis. Arthritis Res Ther 2008; 10:R135. [PMID: 19014626 PMCID: PMC2656238 DOI: 10.1186/ar2553] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 10/28/2008] [Accepted: 11/17/2008] [Indexed: 12/20/2022] Open
Abstract
Introduction Type II collagen is a DR4/DR1 restricted target of self-reactive T cells that sustain rheumatoid arthritis. The aim of the present study was to analyze the T-cell receptor repertoire at the onset of and at different phases in rheumatoid arthritis. Methods We used the CDR3 BV-BJ spectratyping to study the response to human collagen peptide 261–273 in 12 patients with DR4+ rheumatoid arthritis (six at the onset of disease and six during the course of disease) and in five healthy DR4+ relatives. Results The collagen-specific T-cell repertoire is quite restricted at the onset of disease, involving approximately 10 rearrangements. Within the studied collagen-specific rearrangements, nearly 75% is shared among patients. Although the size of the repertoire used by control individuals is comparable to that of patients, it is characterized by different T-cell receptors. Part of the antigen-specific T-cell repertoire is spontaneously enriched in synovial fluid. The specific T-cell repertoire in the periphery was modulated by therapy and decreased with the remission of the disease. Failure of immunoscopy to detect this repertoire was not due to suppression of collagen-driven proliferation in vitro by CD4+ CD25+ T cells. Clinical relapse of the disease was associated with the appearance of the original collagen-specific T cells. Conclusions The collagen-specific T-cell receptor repertoire in peripheral blood and synovial fluid is restricted to a limited number of rearrangements in rheumatoid arthritis. The majority of the repertoire is shared between patients with early rheumatoid arthritis and it is modulated by therapy.
Collapse
Affiliation(s)
- Francesco Ria
- Institute of General Pathology, Catholic University, Largo F Vito, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|