1
|
Li X, Ma Y, Xue Y, Zhang X, Lv L, Quan Q, Chen Y, Yu G, Liang Z, Zhang X, Weng D, Chen L, Chen K, Han X, Wang J. High-Throughput and Efficient Intracellular Delivery Method via a Vibration-Assisted Nanoneedle/Microfluidic Composite System. ACS NANO 2023; 17:2101-2113. [PMID: 36479877 DOI: 10.1021/acsnano.2c07852] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Intracellular delivery and genetic modification have brought a significant revolutionary to tumor immunotherapy, yet existing methods are still limited by low delivery efficiency, poor throughput, excessive cell damage, or unsuitability for suspension immune cells, specifically the natural killer cell, which is highly resistant to transfection. Here, we proposed a vibration-assisted nanoneedle/microfluidic composite system that uses large-area nanoneedles to rapidly puncture and detach the fast-moving suspension cells in the microchannel under vibration to achieve continuous high-throughput intracellular delivery. The nanoneedle arrays fabricated based on the large-area self-assembly technique and microchannels can maximize the delivery efficiency. Cas9 ribonucleoprotein complexes (Cas9/RNPs) can be delivered directly into cells due to the sufficient cellular membrane nanoperforation size; for difficult-to-transfect immune cells, the delivery efficiency can be up to 98%, while the cell viability remains at about 80%. Moreover, the throughput is demonstrated to maintain a mL/min level, which is significantly higher than that of conventional delivery techniques. Further, we prepared CD96 knockout NK-92 cells via this platform, and the gene-edited NK-92 cells possessed higher immunity by reversing exhaustion. The high-throughput, high-efficiency, and low-damage performance of our intracellular delivery strategy has great potential for cellular immunotherapy in clinical applications.
Collapse
Affiliation(s)
- Xuan Li
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Yuan Ma
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Yu Xue
- School of Medicine & Holistic Integrative Medicine, University of Chinese Medicine Nanjing, Nanjing 210023, P.R. China
| | - Xuanhe Zhang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Linwen Lv
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Qianghua Quan
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Yiqing Chen
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Guoxu Yu
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Zhenwei Liang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Xinping Zhang
- Beijing University of Civil Engineering and Architecture, Beijing 102616, P.R. China
| | - Ding Weng
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Lei Chen
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Kui Chen
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xin Han
- School of Medicine & Holistic Integrative Medicine, University of Chinese Medicine Nanjing, Nanjing 210023, P.R. China
| | - Jiadao Wang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
2
|
Effects of Intravenous Infusion of Vepoloxamer on Left Ventricular Function in Dogs with Advanced Heart Failure. Cardiovasc Drugs Ther 2020; 34:153-164. [PMID: 32146638 DOI: 10.1007/s10557-020-06953-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE Vepoloxamer (VEPO), a rheologic agent, repairs damaged cell membranes, thus inhibiting unregulated Ca2+ entry into cardiomyocytes. This study examined the effects of i.v. infusion of VEPO on LV function in dogs with coronary microembolization-induced heart failure (HF) (LV ejection fraction, EF ~ 30%). METHODS Thirty-five HF dogs were studied. Study 1: 21 of 35 dogs were randomized to 2-h infusion of VEPO at dose of 450 mg/kg (n = 7) or VEPO at 225 mg/kg (n = 7) or normal saline (control, n = 7). Hemodynamics were measured at 2 h, 24 h, 1 week, and 2 weeks after infusion. Study 2: 14 HF dogs were randomized to 2-h infusions of VEPO (450 mg/kg, n = 7) or normal saline (control, n = 7). Each dog received 2 infusions of VEPO or saline (pulsed therapy) 3 weeks apart and hemodynamics measured at 24 h, and 1, 2, and 3 weeks after each infusion. In both studies, the change between pre-infusion measures and measures at other time points (treatment effect, Δ) was calculated. RESULTS Study 1: compared to pre-infusion, high dose VEPO increased LVEF by 11 ± 2% at 2 h, 8 ± 2% at 24 h (p < 0.05), 8 ± 2% at 1 week (p < 0.05), and 4 ± 2% at 2 weeks. LV EF also increased with low-dose VEPO but not with saline. Study 2: VEPO but not saline significantly increased LVEF by 6.0 ± 0.7% at 2 h (p < 0.05); 7.0 ± 0.7%% at 1 week (p < 0.05); 1.0 ± 0.6% at 3 weeks; 6.0 ± 1.3% at 4 weeks (p < 0.05); and 5.9 ± 1.3% at 6 weeks (p < 0.05). CONCLUSIONS Intravenous VEPO improves LV function for at least 1 week after infusion. The benefits can be extended with pulsed VEPO therapy. The results support development of VEPO for treating patients with acute on chronic HF.
Collapse
|
3
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 456] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
4
|
Ramesan S, Rezk AR, Dekiwadia C, Cortez-Jugo C, Yeo LY. Acoustically-mediated intracellular delivery. NANOSCALE 2018; 10:13165-13178. [PMID: 29964280 DOI: 10.1039/c8nr02898b] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Recent breakthroughs in gene editing have necessitated practical ex vivo methods to rapidly and efficiently re-engineer patient-harvested cells. Many physical membrane-disruption or pore-forming techniques for intracellular delivery, however, result in poor cell viability, while most carrier-mediated techniques suffer from suboptimal endosomal escape and hence cytoplasmic or nuclear targeting. In this work, we show that short exposure of cells to high frequency (>10 MHz) acoustic excitation facilitates temporal reorganisation of the lipid structure in the cell membrane that enhances translocation of gold nanoparticles and therapeutic molecules into the cell within just ten minutes. Due to its transient nature, rapid cell self-healing is observed, leading to high cellular viabilities (>97%). Moreover, the internalised cargo appears to be uniformly distributed throughout the cytosol, circumventing the need for strategies to facilitate endosomal escape. In the case of siRNA delivery, the method is seen to enhance gene silencing by over twofold, demonstrating its potential for enhancing therapeutic delivery into cells.
Collapse
Affiliation(s)
- Shwathy Ramesan
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.
| | - Amgad R Rezk
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility, RMIT University, Melbourne, VIC 3000, Australia
| | - Christina Cortez-Jugo
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology & Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
5
|
Zhang W, Haman KJ, Metzger JM, Hackel BJ, Bates FS, Lodge TP. Quantifying Binding of Ethylene Oxide-Propylene Oxide Block Copolymers with Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12624-12634. [PMID: 29068209 PMCID: PMC6055234 DOI: 10.1021/acs.langmuir.7b02279] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Block copolymers composed of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) have been widely used in cell membrane stabilization and permeabilization. To explore the mechanism of interaction between PPO-PEO block copolymers and lipid membranes, we have investigated how polymer structure influences the polymer-lipid bilayer association by varying the overall molecular weight, the hydrophobic and hydrophilic block lengths, and the end-group structure systematically, using 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) unilamellar liposomes as model membranes. Pulsed-field-gradient NMR (PFG-NMR) was employed to probe polymer diffusion in the absence and presence of liposomes. The echo decay curves of free polymers in the absence of liposomes are single exponentials, indicative of simple translational diffusion, while in the presence of liposomes, the decays are biexponential, with the slower decay corresponding to polymers bound to liposomes. The binding percentage of polymer to the liposome was quantified by fitting the echo decay curves to a biexponential model. The NMR experiments show that increasing the total molecular weight and hydrophobicity of the polymer can significantly enhance the polymer-lipid bilayer association, as the binding percentage and liposome surface coverage both increase. We hypothesize that the hydrophobic PPO block inserts into the lipid bilayer due to the fact that little molecular exchange between bound and free polymers occurs on the time scale of the diffusion experiments. Additionally, as polymer concentration increases, the liposome surface coverage increases and approaches a limit. These results demonstrate that PFG-NMR is a simple yet powerful method to quantify interactions between polymers and lipid bilayers.
Collapse
Affiliation(s)
- Wenjia Zhang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Karen J. Haman
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Benjamin J. Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S. Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy P. Lodge
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Poellmann MJ, Lee RC. Repair and Regeneration of the Wounded Cell Membrane. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017. [DOI: 10.1007/s40883-017-0031-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Stewart MP, Sharei A, Ding X, Sahay G, Langer R, Jensen KF. In vitro and ex vivo strategies for intracellular delivery. Nature 2016; 538:183-192. [DOI: 10.1038/nature19764] [Citation(s) in RCA: 537] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/11/2016] [Indexed: 12/11/2022]
|
8
|
Chronic Dosing with Membrane Sealant Poloxamer 188 NF Improves Respiratory Dysfunction in Dystrophic Mdx and Mdx/Utrophin-/- Mice. PLoS One 2015; 10:e0134832. [PMID: 26248188 PMCID: PMC4527695 DOI: 10.1371/journal.pone.0134832] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/14/2015] [Indexed: 01/19/2023] Open
Abstract
Poloxamer 188 NF (national formulary (NF) grade of P-188) improves cardiac muscle function in the mdx mouse and golden retriever muscular dystrophy models. However in vivo effects on skeletal muscle have not been reported. We postulated that P-188 NF might protect diaphragm muscle membranes from contraction-induced injury in mdx and mdx/utrophin-/- (dko) muscular dystrophy models. In the first study 7-month old mdx mice were treated for 22 weeks with subcutaneous (s.c.) injections of saline or P-188 NF at 3 mg/Kg. In the second, dkos were treated with saline or P-188 NF (1 mg/Kg) for 8 weeks beginning at age 3 weeks. Prednisone was the positive control in both studies. Respiratory function was monitored using unrestrained whole body plethysmography. P-188 NF treatment affected several respiratory parameters including tidal volume/BW and minute volume/BW in mdx mice. In the more severe dko model, P-188 NF (1 mg/Kg) significantly slowed the decline in multiple respiratory parameters compared with saline-treated dko mice. Prednisone’s effects were similar to those seen with P-188 NF. Diaphragms from P-188 NF or prednisone treated mdx and dko mice showed signs of muscle fiber protection including less centralized nuclei, less variation in fiber size, greater fiber density, and exhibited a decreased amount of collagen deposition. P-188 NF at 3 mg/Kg s.c. also improved parameters of systolic and diastolic function in mdx mouse hearts. These results suggest that P-188 NF may be useful in treating respiratory and cardiac dysfunction, the leading causes of death in Duchenne muscular dystrophy patients.
Collapse
|
9
|
Gudapati H, Yan J, Huang Y, Chrisey DB. Alginate gelation-induced cell death during laser-assisted cell printing. Biofabrication 2014; 6:035022. [DOI: 10.1088/1758-5082/6/3/035022] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Juneman EB, Saleh L, Lancaster JJ, Thai HM, Markham B, Goldman S. The Effects of Poloxamer-188 on Left Ventricular Function in Chronic Heart Failure After Myocardial Infarction. J Cardiovasc Pharmacol 2012; 60:293-8. [DOI: 10.1097/fjc.0b013e31825f6f88] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
|
12
|
Polymer therapeutics move into the sepsis space*. Crit Care Med 2010; 38:730-1. [DOI: 10.1097/ccm.0b013e3181c8958b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Abstract
Burn injury leads to a direct damaging effect on cells, disrupting the assembly of the cell and denaturing proteins. Although modern medicine has significantly improved the survival of burn victims, a method to treat injury at the cellular level is presented. In particular, the cell membrane is most vulnerable to heat injury. Copolymer surfactants have been shown to repair the cell membrane, and agents such as poloxamer 188 have demonstrated this effect in numerous studies. Furthermore, copolymer surfactants have been shown to act as molecular chaperones, allowing denatured proteins to regain their native confirmation. Pharmaceutical agents may be developed to repair the cell membrane and refold proteins, mimicking endogenous repair mechanisms and salvaging cells that would otherwise be lost.
Collapse
|