1
|
Farre JC, Carolino K, Devanneaux L, Subramani S. OXPHOS deficiencies affect peroxisome proliferation by downregulating genes controlled by the SNF1 signaling pathway. eLife 2022; 11:e75143. [PMID: 35467529 PMCID: PMC9094750 DOI: 10.7554/elife.75143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
How environmental cues influence peroxisome proliferation, particularly through organelles, remains largely unknown. Yeast peroxisomes metabolize fatty acids (FA), and methylotrophic yeasts also metabolize methanol. NADH and acetyl-CoA, produced by these pathways enter mitochondria for ATP production and for anabolic reactions. During the metabolism of FA and/or methanol, the mitochondrial oxidative phosphorylation (OXPHOS) pathway accepts NADH for ATP production and maintains cellular redox balance. Remarkably, peroxisome proliferation in Pichia pastoris was abolished in NADH-shuttling- and OXPHOS mutants affecting complex I or III, or by the mitochondrial uncoupler, 2,4-dinitrophenol (DNP), indicating ATP depletion causes the phenotype. We show that mitochondrial OXPHOS deficiency inhibits expression of several peroxisomal proteins implicated in FA and methanol metabolism, as well as in peroxisome division and proliferation. These genes are regulated by the Snf1 complex (SNF1), a pathway generally activated by a high AMP/ATP ratio. In OXPHOS mutants, Snf1 is activated by phosphorylation, but Gal83, its interacting subunit, fails to translocate to the nucleus. Phenotypic defects in peroxisome proliferation observed in the OXPHOS mutants, and phenocopied by the Δgal83 mutant, were rescued by deletion of three transcriptional repressor genes (MIG1, MIG2, and NRG1) controlled by SNF1 signaling. Our results are interpreted in terms of a mechanism by which peroxisomal and mitochondrial proteins and/or metabolites influence redox and energy metabolism, while also influencing peroxisome biogenesis and proliferation, thereby exemplifying interorganellar communication and interplay involving peroxisomes, mitochondria, cytosol, and the nucleus. We discuss the physiological relevance of this work in the context of human OXPHOS deficiencies.
Collapse
Affiliation(s)
- Jean-Claude Farre
- Section of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Krypton Carolino
- Section of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Lou Devanneaux
- Section of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Suresh Subramani
- Section of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
2
|
Yan D, Franzini A, Pomicter AD, Halverson BJ, Antelope O, Mason CC, Ahmann JM, Senina AV, Vellore NA, Jones CL, Zabriskie MS, Than H, Xiao MJ, van Scoyk A, Patel AB, Clair PM, Heaton WL, Owen SC, Andersen JL, Egbert CM, Reisz JA, D'Alessandro A, Cox JE, Gantz KC, Redwine HM, Iyer SM, Khorashad JS, Rajabi N, Olsen CA, O'Hare T, Deininger MW. SIRT5 IS A DRUGGABLE METABOLIC VULNERABILITY IN ACUTE MYELOID LEUKEMIA. Blood Cancer Discov 2019; 2:266-287. [PMID: 34027418 DOI: 10.1158/2643-3230.bcd-20-0168] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We discovered that the survival and growth of many primary acute myeloid leukemia (AML) samples and cell lines, but not normal CD34+ cells, are dependent on SIRT5, a lysine deacylase implicated in regulating multiple metabolic pathways. Dependence on SIRT5 is genotype-agnostic and extends to RAS- and p53-mutated AML. Results were comparable between SIRT5 knockdown and SIRT5 inhibition using NRD167, a potent and selective SIRT5 inhibitor. Apoptosis induced by SIRT5 disruption is preceded by reductions in oxidative phosphorylation and glutamine utilization, and an increase in mitochondrial superoxide that is attenuated by ectopic superoxide dismutase 2. These data indicate that SIRT5 controls and coordinates several key metabolic pathways in AML and implicate SIRT5 as a vulnerability in AML.
Collapse
Affiliation(s)
- Dongqing Yan
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Anca Franzini
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | | | - Orlando Antelope
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Clinton C Mason
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Jonathan M Ahmann
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Anna V Senina
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Nadeem A Vellore
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Courtney L Jones
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Hein Than
- Department of Haematology, Singapore General Hospital, Singapore
| | - Michael J Xiao
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | - Ami B Patel
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA
| | - Phillip M Clair
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - William L Heaton
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Shawn C Owen
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Joshua L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Christina M Egbert
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Angelo D'Alessandro
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - James E Cox
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Kevin C Gantz
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Hannah M Redwine
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Siddharth M Iyer
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jamshid S Khorashad
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Nima Rajabi
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Thomas O'Hare
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA
| | - Michael W Deininger
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
3
|
Chen Y, Gao H, Ye W. Mitochondrial DNA Mutations Induced by Carbon Ions Radiation: A Preliminary Study. Dose Response 2018; 16:1559325818789842. [PMID: 30108460 PMCID: PMC6083809 DOI: 10.1177/1559325818789842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 11/15/2022] Open
Abstract
Heavy-ion irradiation-induced nuclear DNA damage and mutations have been studied comprehensively. However, there is no information about the deleterious effect of heavy-ion irradiation on mitochondrial DNA (mtDNA). In this study, 2 typical mtDNA mutations were examined, including 4977 deletions and D310 point mutations. The 4977 deletions were quantified by real-time polymerase chain reaction, and D310 point mutations were analyzed by direct sequencing and a specific enzyme digestion genotyping method. Results showed that carbon ions radiation can induce temporal fluctuation of mtDNA 4977 deletions in 72 hours after irradiation, while survived clones were free from this deletion. Carbon ions induced more D310 mutations than X-rays, and the single-cell heteroplasmy was eliminated. This is the first study investigating mtDNA mutations induced by carbon ions irradiation in vitro. These findings would provide fundamental information for further investigation of radiation-induced mitochondrial biogenesis.
Collapse
Affiliation(s)
- Yong Chen
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | | | - Wenling Ye
- School of Medicine, Henan University, Kaifeng, China
| |
Collapse
|
4
|
Dzien P, Tee S, Kettunen MI, Lyons SK, Larkin TJ, Timm KN, Hu D, Wright A, Rodrigues TB, Serrao EM, Marco‐Rius I, Mannion E, D'Santos P, Kennedy BWC, Brindle KM. (13) C magnetic resonance spectroscopy measurements with hyperpolarized [1-(13) C] pyruvate can be used to detect the expression of transgenic pyruvate decarboxylase activity in vivo. Magn Reson Med 2016; 76:391-401. [PMID: 26388418 PMCID: PMC5025726 DOI: 10.1002/mrm.25879] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 12/03/2022]
Abstract
PURPOSE Dissolution dynamic nuclear polarization can increase the sensitivity of the (13) C magnetic resonance spectroscopy experiment by at least four orders of magnitude and offers a novel approach to the development of MRI gene reporters based on enzymes that metabolize (13) C-labeled tracers. We describe here a gene reporter based on the enzyme pyruvate decarboxylase (EC 4.1.1.1), which catalyzes the decarboxylation of pyruvate to produce acetaldehyde and carbon dioxide. METHODS Pyruvate decarboxylase from Zymomonas mobilis (zmPDC) and a mutant that lacked enzyme activity were expressed using an inducible promoter in human embryonic kidney (HEK293T) cells. Enzyme activity was measured in the cells and in xenografts derived from the cells using (13) C MRS measurements of the conversion of hyperpolarized [1-(13) C] pyruvate to H(13) CO3-. RESULTS Induction of zmPDC expression in the cells and in the xenografts derived from them resulted in an approximately two-fold increase in the H(13) CO3-/[1-(13) C] pyruvate signal ratio following intravenous injection of hyperpolarized [1-(13) C] pyruvate. CONCLUSION We have demonstrated the feasibility of using zmPDC as an in vivo reporter gene for use with hyperpolarized (13) C MRS. Magn Reson Med 76:391-401, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Piotr Dzien
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreCambridgeUK.
| | - Sui‐Seng Tee
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreCambridgeUK.
| | - Mikko I. Kettunen
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreCambridgeUK.
- Present address: A. I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandNeulaniementieKuopioFinland.
| | - Scott K. Lyons
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreCambridgeUK.
| | | | - Kerstin N. Timm
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - De‐En Hu
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreCambridgeUK.
| | - Alan Wright
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreCambridgeUK.
| | - Tiago B. Rodrigues
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreCambridgeUK.
| | - Eva M. Serrao
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreCambridgeUK.
| | | | - Elizabeth Mannion
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreCambridgeUK.
| | - Paula D'Santos
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreCambridgeUK.
| | | | - Kevin M. Brindle
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing CentreCambridgeUK.
| |
Collapse
|
5
|
PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion. Proc Natl Acad Sci U S A 2015; 112:8638-43. [PMID: 26124089 DOI: 10.1073/pnas.1500722112] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Molecular therapies are hallmarks of "personalized" medicine, but how tumors adapt to these agents is not well-understood. Here we show that small-molecule inhibitors of phosphatidylinositol 3-kinase (PI3K) currently in the clinic induce global transcriptional reprogramming in tumors, with activation of growth factor receptors, (re)phosphorylation of Akt and mammalian target of rapamycin (mTOR), and increased tumor cell motility and invasion. This response involves redistribution of energetically active mitochondria to the cortical cytoskeleton, where they support membrane dynamics, turnover of focal adhesion complexes, and random cell motility. Blocking oxidative phosphorylation prevents adaptive mitochondrial trafficking, impairs membrane dynamics, and suppresses tumor cell invasion. Therefore, "spatiotemporal" mitochondrial respiration adaptively induced by PI3K therapy fuels tumor cell invasion, and may provide an important antimetastatic target.
Collapse
|
6
|
Lee SR, Heo HJ, Jeong SH, Kim HK, Song IS, Ko KS, Rhee BD, Kim N, Han J. Low abundance of mitochondrial DNA changes mitochondrial status and renders cells resistant to serum starvation and sodium nitroprusside insult. Cell Biol Int 2015; 39:865-72. [DOI: 10.1002/cbin.10473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/16/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Sung Ryul Lee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology; College of Medicine; Cardiovascular and Metabolic Disease Center; Inje University; Bokji-Ro 75 Busanjin-gu Busan 614 735 Republic of Korea
| | - Hye Jin Heo
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology; College of Medicine; Cardiovascular and Metabolic Disease Center; Inje University; Bokji-Ro 75 Busanjin-gu Busan 614 735 Republic of Korea
| | - Seung Hun Jeong
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology; College of Medicine; Cardiovascular and Metabolic Disease Center; Inje University; Bokji-Ro 75 Busanjin-gu Busan 614 735 Republic of Korea
| | - Hyoung Kyu Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology; College of Medicine; Cardiovascular and Metabolic Disease Center; Inje University; Bokji-Ro 75 Busanjin-gu Busan 614 735 Republic of Korea
| | - In Sung Song
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology; College of Medicine; Cardiovascular and Metabolic Disease Center; Inje University; Bokji-Ro 75 Busanjin-gu Busan 614 735 Republic of Korea
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology; College of Medicine; Cardiovascular and Metabolic Disease Center; Inje University; Bokji-Ro 75 Busanjin-gu Busan 614 735 Republic of Korea
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology; College of Medicine; Cardiovascular and Metabolic Disease Center; Inje University; Bokji-Ro 75 Busanjin-gu Busan 614 735 Republic of Korea
| | - Nari Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology; College of Medicine; Cardiovascular and Metabolic Disease Center; Inje University; Bokji-Ro 75 Busanjin-gu Busan 614 735 Republic of Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology; College of Medicine; Cardiovascular and Metabolic Disease Center; Inje University; Bokji-Ro 75 Busanjin-gu Busan 614 735 Republic of Korea
| |
Collapse
|
7
|
Nacarelli T, Azar A, Sell C. Inhibition of mTOR Prevents ROS Production Initiated by Ethidium Bromide-Induced Mitochondrial DNA Depletion. Front Endocrinol (Lausanne) 2014; 5:122. [PMID: 25104948 PMCID: PMC4109433 DOI: 10.3389/fendo.2014.00122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/11/2014] [Indexed: 11/30/2022] Open
Abstract
The regulation of mitochondrial mass and DNA content involves a complex interaction between mitochondrial DNA replication machinery, functional components of the electron transport chain, selective clearance of mitochondria, and nuclear gene expression. In order to gain insight into cellular responses to mitochondrial stress, we treated human diploid fibroblasts with ethidium bromide at concentrations that induced loss of mitochondrial DNA over a period of 7 days. The decrease in mitochondrial DNA was accompanied by a reduction in steady state levels of the mitochondrial DNA binding protein, TFAM, a reduction in several electron transport chain protein levels, increased mitochondrial and total cellular ROS, and activation of p38 MAPK. However, there was an increase in mitochondrial mass and voltage dependent anion channel levels. In addition, mechanistic target of rapamycin (mTOR) activity, as judged by p70S6K targets, was decreased while steady state levels of p62/SQSTM1 and Parkin were increased. Treatment of cells with rapamycin created a situation in which cells were better able to adapt to the mitochondrial dysfunction, resulting in decreased ROS and increased cell viability but did not prevent the reduction in mitochondrial DNA. These effects may be due to a more efficient flux through the electron transport chain, increased autophagy, or enhanced AKT signaling, coupled with a reduced growth rate. Together, the results suggest that mTOR activity is affected by mitochondrial stress, which may be part of the retrograde signal system required for normal mitochondrial homeostasis.
Collapse
Affiliation(s)
- Timothy Nacarelli
- Department of Pathology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Ashley Azar
- Department of Pathology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Christian Sell
- Department of Pathology, Drexel University College of Medicine, Philadelphia, PA, USA
- *Correspondence: Christian Sell, Department of Pathology, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102, USA e-mail:
| |
Collapse
|
8
|
Molecular effects of doxycycline treatment on pterygium as revealed by massive transcriptome sequencing. PLoS One 2012; 7:e39359. [PMID: 22724003 PMCID: PMC3378547 DOI: 10.1371/journal.pone.0039359] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/21/2012] [Indexed: 11/19/2022] Open
Abstract
Pterygium is a lesion of the eye surface which involves cell proliferation, migration, angiogenesis, fibrosis, and extracellular matrix remodelling. Surgery is the only approved method to treat this disorder, but high recurrence rates are common. Recently, it has been shown in a mouse model that treatment with doxycycline resulted in reduction of the pterygium lesions. Here we study the mechanism(s) of action by which doxycycline achieves these results, using massive sequencing techniques. Surgically removed pterygia from 10 consecutive patients were set in short term culture and exposed to 0 (control), 50, 200, and 500 µg/ml doxycycline for 24 h, their mRNA was purified, reverse transcribed and sequenced through Illumina's massive sequencing protocols. Acquired data were subjected to quantile normalization and analyzed using cytoscape plugin software to explore the pathways involved. False discovery rate (FDR) methods were used to identify 332 genes which modified their expression in a dose-dependent manner upon exposure to doxycycline. The more represented cellular pathways included all mitochondrial genes, the endoplasmic reticulum stress response, integrins and extracellular matrix components, and growth factors. A high correlation was obtained when comparing ultrasequencing data with qRT-PCR and ELISA results. Doxycycline significantly modified the expression of important cellular pathways in pterygium cells, in a way which is consistent with the observed efficacy of this antibiotic to reduce pterygium lesions in a mouse model. Clinical trials are under way to demonstrate whether there is a benefit for human patients.
Collapse
|
9
|
Zhou X, Li N, Wang Y, Wang Y, Zhang X, Zhang H. Effects of X-irradiation on mitochondrial DNA damage and its supercoiling formation change. Mitochondrion 2011; 11:886-92. [DOI: 10.1016/j.mito.2011.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 05/04/2011] [Accepted: 07/22/2011] [Indexed: 01/18/2023]
|
10
|
Biogerontology in Turkey: a brief report. Biogerontology 2011; 12:83-6. [DOI: 10.1007/s10522-010-9319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Accepted: 12/22/2010] [Indexed: 10/18/2022]
|
11
|
Amante DJ, Kim J, Carreiro ST, Cooper AC, Jones SW, Li T, Moody JP, Edgerly CK, Bordiuk OL, Cormier K, Smith K, Ferrante RJ, Rusche J. Uridine ameliorates the pathological phenotype in transgenic G93A-ALS mice. ACTA ACUST UNITED AC 2010; 11:520-30. [PMID: 20565334 DOI: 10.3109/17482968.2010.491867] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is strong evidence from studies in humans and animal models to suggest the involvement of energy metabolism defects in neurodegenerative diseases. Uridine, a pyrimidine nucleoside, has been suggested to be neuroprotective in neurological disorders by improving bioenergetic effects, increasing ATP levels and enhancing glycolytic energy production. We assessed whether uridine treatment extended survival and improved the behavioral and neuropathological phenotype observed in G93A-ALS mice. In vitro and in vivo pharmacokinetic analyses in mutant SOD models provided optimal dose and assurance that uridine entered the brain. A dose-ranging efficacy trial in G93A mice was performed using survival, body weight, open-field analysis, and neuropathology as outcome measures. Urinary levels of 8-hydroxy-2'-deoxyguanosine, identifying DNA oxidative damage, were measured and used as a pharmacodynamic biomarker. Uridine administration significantly extended survival in a dose-dependent manner in G93A mice, while improving the behavioral and neuropathological phenotype. Uridine increased survival by 17.4%, ameliorated body weight loss, enhanced motor performance, reduced gross lumbar and ventral horn atrophy, attenuated lumbar ventral horn neuronal cell death, and decreased reactive astrogliosis. Consistent with a therapeutic effect, uridine significantly reduced urinary 8-hydroxy-2'-deoxyguanosine in G93A mice. These data suggest that uridine may be a therapeutic candidate in ALS patients.
Collapse
Affiliation(s)
- Daniel J Amante
- Geriatric Research Education Clinical Center, New England Veterans Administration, 200 Springs Road, Bedford, MA 01730, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Garcia N, Hernandez-Esquivel L, Zazueta C, Martinez-Abundis E, Pavon N, Chavez E. Induction of Mitochondrial Permeability Transition by the DNA-intercalating Cationic Dye Ethidium Bromide. J Biochem 2009; 146:887-94. [DOI: 10.1093/jb/mvp137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
13
|
Old mice present increased levels of succinate dehydrogenase activity and lower vulnerability to dyskinetic effects of 3-nitropropionic acid. Pharmacol Biochem Behav 2009; 91:327-32. [DOI: 10.1016/j.pbb.2008.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 07/24/2008] [Accepted: 08/04/2008] [Indexed: 11/20/2022]
|
14
|
Olgun A. Converting NADH to NAD+ by nicotinamide nucleotide transhydrogenase as a novel strategy against mitochondrial pathologies during aging. Biogerontology 2008; 10:531-4. [PMID: 18932012 DOI: 10.1007/s10522-008-9190-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 10/07/2008] [Indexed: 02/02/2023]
Abstract
Mitochondrial DNA defects are involved supposedly via free radicals in many pathologies including aging and cancer. But, interestingly, free radical production was not found increased in prematurely aging mice having higher mutation rate in mtDNA. Therefore, some other mechanisms like the increase of mitochondrial NADH/NAD(+) and ubiquinol/ubiquinone ratios, can be in action in respiratory chain defects. NADH/NAD(+) ratio can be normalized by the activation or overexpression of nicotinamide nucleotide transhydrogenase (NNT), a mitochondrial enzyme catalyzing the following very important reaction: NADH + NADP(+ )<--> NADPH + NAD(+). The products NAD(+) and NADPH are required in many critical biological processes, e.g., NAD(+) is used by histone deacetylase Sir2 which regulates longevity in different species. NADPH is used in a number of biosynthesis reactions (e.g., reduced glutathione synthesis), and processes like apoptosis. Increased ubiquinol/ubiquinone ratio interferes the function of dihydroorotate dehydrogenase, the only mitochondrial enzyme involved in ubiquinone mediated de novo pyrimidine synthesis. Uridine and its prodrug triacetyluridine are used to compensate pyrimidine deficiency but their bioavailability is limited. Therefore, the normalization of the ubiquinol/ubiquinone ratio can be accomplished by allotopic expression of alternative oxidase, a mitochondrial ubiquinol oxidase which converts ubiquinol to ubiquinone.
Collapse
Affiliation(s)
- Abdullah Olgun
- Biochemistry Laboratory, Erzincan Mil. Hospital, Erzincan, Turkey.
| |
Collapse
|