1
|
Cao Y, Wang S, Liu J, Xu J, Liang Y, Ao F, Wei Z, Wang L. CARF regulates the alternative splicing and piwi/piRNA complexes during mouse spermatogenesis through PABPC1. Acta Biochim Biophys Sin (Shanghai) 2024; 57:656-666. [PMID: 39696987 PMCID: PMC12040762 DOI: 10.3724/abbs.2024224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/02/2024] [Indexed: 12/20/2024] Open
Abstract
ADP-ribosylation factor collaborator (CARF), which is also known as CDKN2AIP, was first recognized as an ADP-ribosylation factor-interacting protein that participates in the activation of the ARF-p53-p21 (WAF1) signaling pathway under different conditions, such as oxidative and oncogenic stresses. The activation of this pathway often leads to cell growth arrest and apoptosis as well as senescence. Previous studies revealed that CARF, an RNA-binding protein, is critical for maintaining stem cell pluripotency and somatic differentiation. Nevertheless, its involvement in spermatogenesis has not been well examined. In this study, we show that male mice deficient in Carf expression present impaired spermatogenesis and fertility. IP-MS and RNA-seq analyses reveal that CARF/ Carf interacts with multiple key splicing factors, such as PABPC1, and directly targets 356 different types of mRNAs in spermatocytes. Carf-associated mRNAs display aberrant splicing patterns when Carf expression is deficient. In addition, our results demonstrate that PIWIL1 expression and localization are altered in the Carf -/ - mouse model through the downregulation of PABPC1, which further affects the ratio of pachytene-piRNA. Our study suggests that CARF is critical for regulating alternative splicing in mammalian spermatogenesis and determining infertility in male mice.
Collapse
Affiliation(s)
- Yuming Cao
- />Department of Obstetrics and GynecologyPerinatal Medical Centerthe Fifth Affiliated Hospital of Sun Yat-sen UniversityZhuhai519000China
| | - Shengnan Wang
- />Department of Obstetrics and GynecologyPerinatal Medical Centerthe Fifth Affiliated Hospital of Sun Yat-sen UniversityZhuhai519000China
| | - Jie Liu
- />Department of Obstetrics and GynecologyPerinatal Medical Centerthe Fifth Affiliated Hospital of Sun Yat-sen UniversityZhuhai519000China
| | - Jinfeng Xu
- />Department of Obstetrics and GynecologyPerinatal Medical Centerthe Fifth Affiliated Hospital of Sun Yat-sen UniversityZhuhai519000China
| | - Yan Liang
- />Department of Obstetrics and GynecologyPerinatal Medical Centerthe Fifth Affiliated Hospital of Sun Yat-sen UniversityZhuhai519000China
| | - Fei Ao
- />Department of Obstetrics and GynecologyPerinatal Medical Centerthe Fifth Affiliated Hospital of Sun Yat-sen UniversityZhuhai519000China
| | - Zexiao Wei
- />Department of Obstetrics and GynecologyPerinatal Medical Centerthe Fifth Affiliated Hospital of Sun Yat-sen UniversityZhuhai519000China
| | - Li Wang
- />Department of Obstetrics and GynecologyPerinatal Medical Centerthe Fifth Affiliated Hospital of Sun Yat-sen UniversityZhuhai519000China
| |
Collapse
|
2
|
Huifu H, Shefrin S, Yang S, Zhang Z, Kaul SC, Sundar D, Wadhwa R. Cucurbitacin-B inhibits cancer cell migration by targeting mortalin and HDM2: computational and in vitro experimental evidence. J Biomol Struct Dyn 2024; 42:2643-2652. [PMID: 37129211 DOI: 10.1080/07391102.2023.2206914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Cancer metastasis, a highly complex process wherein cancer cells move from the primary site to other sites in the body, is a major hurdle in its therapeutics. A large array of synthetic chemotherapeutic molecules used for the treatment of metastatic cancers, besides being extremely expensive and unaffordable, are known to cause severe adverse effects leading to poor quality of life (QOL) of the patients. In this premise, natural compounds (considered safe, easily available and economic) that possess the potential to inhibit migration of cancer cells are deemed useful and hence are on demand. Cucurbitacin-B (19-(10→9β)-abeo-10-lanost-5-ene triterpene, called Cuc-B) is a steroid mostly found in plants of Cucurbitaceae family. It has been shown to possess anticancer activity although the molecular mechanism remains poorly defined. We present evidence that Cuc-B has the ability to interact with mortalin and HDM2 proteins that are enriched in cancer cells, suppress wild type p53 function and promote cancer cell migration. Computational analyses showed that Cuc-B interacts with mortalin similar to MKT077 and Withanone, both have been shown to reactivate p53 function and inhibit cell migration. Furthermore, Cuc-B interacted with HDM2 similar to Y30, a well-known inhibitor of HDM2. Experimental cell and molecular analyses demonstrated the downregulation of several proteins, critically involved in cell migration in Cuc-B (low non-toxic doses)-treated cancer cells and exhibited inhibition of cell migration. The data suggested that Cuc-B is a potential natural drug that warrants further mechanistic and clinical studies for its use in the management of metastatic cancers.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- He Huifu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Seyad Shefrin
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT)-Delhi, New Delhi, India
| | - Shi Yang
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, Japan
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Zhenya Zhang
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, Japan
| | - Sunil C Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Durai Sundar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT)-Delhi, New Delhi, India
| | - Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| |
Collapse
|
3
|
Kalra RS, Chaudhary A, Omar A, Li X, Khurana M, Kaul SC, Wadhwa R. Stress-induced changes in CARF expression serve as a quantitative predictive measure of cell proliferation fate. Exp Cell Res 2023:113669. [PMID: 37276997 DOI: 10.1016/j.yexcr.2023.113669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/07/2023]
Abstract
Discovery of CARF (Collaborator of ARF)/CDKN2AIP as an ARF-interacting protein that promotes ARF-p53-p21WAF1 signaling and cellular senescence, initially established its role in genomic stress. Multiple reports further unraveled its role in regulation of senescence, growth arrest, apoptosis, or malignant transformation of cells in response to a variety of stress conditions in cultured human cells. It has been established as an essential protein. Whereas CARF-compromised cells undergo apoptosis, its enrichment has been recorded in a variety of cancer cells and has been associated with malignant transformation. We earlier demonstrated its role in stress-induced cell phenotypes that ranged from growth arrest, apoptosis, or malignant transformation. In the present study, we assessed the molecular mechanism of quantitative impact of change in CARF expression level on these cell fates. Stress-induced changes in CARF expression were assessed quantitatively with proteins involved in proteotoxicity, oxidative, genotoxic, and cytotoxic stress. These comparative quantitative analyses confirmed that (i) CARF responds to diverse stresses in a quantitative manner, (ii) its expression level serves as a reliable predictive measure of cell fates (iii) it correlates more with the DNA damage and MDA levels than the oxidative and proteotoxic signatures and (iv) CARF-expression based quantitative assay may be recruited for stress diagnostic applications.
Collapse
Affiliation(s)
- Rajkumar Singh Kalra
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 5-41, Tsukuba, 305-8565, Japan
| | - Anupama Chaudhary
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 5-41, Tsukuba, 305-8565, Japan
| | - Amr Omar
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 5-41, Tsukuba, 305-8565, Japan
| | - Xiaoshuai Li
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 5-41, Tsukuba, 305-8565, Japan
| | - Mallika Khurana
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 5-41, Tsukuba, 305-8565, Japan
| | - Sunil C Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 5-41, Tsukuba, 305-8565, Japan.
| | - Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 5-41, Tsukuba, 305-8565, Japan.
| |
Collapse
|
4
|
Kalra RS, Chaudhary A, Omar A, Cheung CT, Garg S, Kaul SC, Wadhwa R. Stress-induced changes in CARF expression determine cell fate to death, survival, or malignant transformation. Cell Stress Chaperones 2020; 25:481-494. [PMID: 32221864 PMCID: PMC7193007 DOI: 10.1007/s12192-020-01088-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/01/2020] [Accepted: 03/06/2020] [Indexed: 12/31/2022] Open
Abstract
CARF (Collaborator of ARF) was discovered as an ARF-interacting protein that activated ARF-p53-p21WAF1 signaling involved in cellular response to a variety of stresses, including oxidative, genotoxic, oncogenic, or telomere deprotection stresses, leading to senescence, growth arrest, or apoptosis. Of note, whereas suppression of CARF was lethal, its enrichment was associated with increased proliferation and malignant transformation of cells. These reports have predicted that CARF could serve as a multi-stress marker with a predictive value for cell fates. Here, we recruited various in vitro stress models and examined their effect on CARF expression using human normal fibroblasts. We demonstrate that CARF levels in stress and post-stress conditions could predict the fate of cells towards either death or enhanced proliferation and malignant transformation. We provide extensive molecular evidence that (i) CARF expression changes in response to stress, (ii) it modulates cell death or survival signaling and determines the fate of cells, and (iii) it may serve as a predictive measure of cellular response to stress and an important marker for biosafety.
Collapse
Affiliation(s)
- Rajkumar S Kalra
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Anupama Chaudhary
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Amr Omar
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Caroline T Cheung
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Sukant Garg
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Sunil C Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan.
| | - Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan.
| |
Collapse
|
5
|
CARF is a multi-module regulator of cell proliferation and a molecular bridge between cellular senescence and carcinogenesis. Mech Ageing Dev 2017; 166:64-68. [DOI: 10.1016/j.mad.2017.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/02/2017] [Accepted: 07/20/2017] [Indexed: 12/17/2022]
|
6
|
Fan X, Ma X, Cui L, Dang S, Qu J, Zhang J, Wang X, Mao Z. CARF activates beta-catenin/TCF signaling in the hepatocellular carcinoma. Oncotarget 2016; 7:80404-80414. [PMID: 27829235 PMCID: PMC5348329 DOI: 10.18632/oncotarget.13138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 10/14/2016] [Indexed: 11/25/2022] Open
Abstract
Overactivation of Ras signaling is very common in the hepatocellular carcinoma (HCC) due to its constitutive active mutation, which makes it a big challenge to target Ras signaling. Therefore, identifying effectors downstream of Ras signaling would benefit the development of novel therapeutic strategies. In this study, it was found that the expression of CARF (collaborate of ARF) was induced by oncogenic RasV12. The expression of CARF was up-regulated in both HCC mouse model (Alb-Cre; P53f/f; Loxp-Stop-Loxp-RasG12D) and human HCC clinical samples. Overexpression of CARF promoted the growth and migration of HCC cells, while knocking down the expression of CARF inhibited the growth and migration of HCC cells. In the mechanism study, CARF was found to interact with beta-catenin, impaired the interaction between beta-catenin and ICAT, and activated beta-catenin/TCF signaling. Moreover, knocking down the expression of CARF inhibited the tumorigenesis in the HCC mouse model. Taken together, this study revealed the oncogenic functions of CARF in the tumorigenesis of HCC by activating beta-catenin/TCF signaling, and suggested CARF might be a therapeutic target in the treatment of HCC.
Collapse
Affiliation(s)
- Xin Fan
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, PR China
| | - Xiaoyan Ma
- Department of Gynecology and Obstetrics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, PR China
| | - Lei Cui
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, PR China
| | - Shengchun Dang
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, PR China
| | - Jianguo Qu
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, PR China
| | - Jianxin Zhang
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, PR China
| | - Xuqing Wang
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, PR China
| | - Zhengfa Mao
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, PR China
| |
Collapse
|
7
|
Sato S, Ishikawa H, Yoshikawa H, Izumikawa K, Simpson RJ, Takahashi N. Collaborator of alternative reading frame protein (CARF) regulates early processing of pre-ribosomal RNA by retaining XRN2 (5'-3' exoribonuclease) in the nucleoplasm. Nucleic Acids Res 2015; 43:10397-410. [PMID: 26531822 PMCID: PMC4666357 DOI: 10.1093/nar/gkv1069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/05/2015] [Indexed: 11/17/2022] Open
Abstract
Collaborator of alternative reading frame protein (CARF) associates directly with ARF, p53, and/or human double minute 2 protein (HDM2), a ubiquitin-protein ligase, without cofactors and regulates cell proliferation by forming a negative feedback loop. Although ARF, p53, and HDM2 also participate in the regulation of ribosome biogenesis, the involvement of CARF in this process remains unexplored. In this study, we demonstrate that CARF associates with 5′-3′ exoribonuclease 2 (XRN2), which plays a major role in both the maturation of rRNA and the degradation of a variety of discarded pre-rRNA species. We show that overexpression of CARF increases the localization of XRN2 in the nucleoplasm and a concomitant suppression of pre-rRNA processing that leads to accumulation of the 5′ extended from of 45S/47S pre-rRNA and 5′-01, A0-1 and E-2 fragments of pre-rRNA transcript in the nucleolus. This was also observed upon XRN2 knockdown. Knockdown of CARF increased the amount of XRN2 in the nucleolar fraction as determined by cell fractionation and by immnocytochemical analysis. These observations suggest that CARF regulates early steps of pre-rRNA processing during ribosome biogenesis by controlling spatial distribution of XRN2 between the nucleoplasm and nucleolus.
Collapse
Affiliation(s)
- Shigeko Sato
- Department of Applied Biological Science, United-graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Hideaki Ishikawa
- Department of Applied Biological Science, United-graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan The Genome Science human resource development program, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Harunori Yoshikawa
- Department of Applied Biological Science, United-graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan Centre for Gene Regulation & Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Keiichi Izumikawa
- Department of Applied Biological Science, United-graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan The Genome Science human resource development program, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Richard J Simpson
- La Trobe Institute for Molecular Science (LIMS) LIMS Building 1, Room 412 La Trobe University, Bundoora Victoria 3086, Australia
| | - Nobuhiro Takahashi
- Department of Applied Biological Science, United-graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan The Genome Science human resource development program, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
8
|
Singh R, Kalra RS, Hasan K, Kaul Z, Cheung CT, Huschtscha L, Reddel RR, Kaul SC, Wadhwa R. Molecular characterization of collaborator of ARF (CARF) as a DNA damage response and cell cycle checkpoint regulatory protein. Exp Cell Res 2014; 322:324-34. [PMID: 24485912 DOI: 10.1016/j.yexcr.2014.01.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 01/06/2014] [Accepted: 01/21/2014] [Indexed: 12/11/2022]
Abstract
CARF is an ARF-binding protein that has been shown to regulate the p53-p21-HDM2 pathway. CARF overexpression was shown to cause growth arrest of human cancer cells and premature senescence of normal cells through activation of the p53 pathway. Because replicative senescence involves permanent withdrawal from the cell cycle in response to DNA damage response-mediated signaling, in the present study we investigated the relationship between CARF and the cell cycle and whether it is involved in the DNA damage response. We demonstrate that the half-life of CARF protein is less than 60 min, and that in cycling cells CARF levels are highest in G2 and early prophase. Serially passaged normal human skin and stromal fibroblasts showed upregulation of CARF during replicative senescence. Induction of G1 growth arrest and senescence by a variety of drugs was associated with increase in CARF expression at the transcriptional and translational level and was seen to correlate with increase in DNA damage response and checkpoint proteins, ATM, ATR, CHK1, CHK2, γH2AX, p53 and p21. Induction of growth arrest by oncogenic RAS and shRNA-mediated knockdown of TRF2 in cancer cells also caused upregulation of CARF. We conclude that CARF is associated with DNA damage response and checkpoint signaling pathways.
Collapse
Affiliation(s)
- Rumani Singh
- Cell Proliferation Research Group and DBT-AIST International Laboratory for Advanced Biomedicine, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan
| | - Rajkumar S Kalra
- Cell Proliferation Research Group and DBT-AIST International Laboratory for Advanced Biomedicine, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan
| | - Kamrul Hasan
- Cell Proliferation Research Group and DBT-AIST International Laboratory for Advanced Biomedicine, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan
| | - Zeenia Kaul
- Children׳s Medical Research Institute, 214 Hawkesbury Road, Westmead, New South Wales 2145, Australia; Department of Molecular Virology, Immunology and Medical Genetics, 960 Biomedical Research Tower, The Ohio State University, Columbus, OH 43210, USA
| | - Caroline T Cheung
- Cell Proliferation Research Group and DBT-AIST International Laboratory for Advanced Biomedicine, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan
| | - Lily Huschtscha
- Children׳s Medical Research Institute, 214 Hawkesbury Road, Westmead, New South Wales 2145, Australia
| | - Roger R Reddel
- Children׳s Medical Research Institute, 214 Hawkesbury Road, Westmead, New South Wales 2145, Australia
| | - Sunil C Kaul
- Cell Proliferation Research Group and DBT-AIST International Laboratory for Advanced Biomedicine, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan.
| | - Renu Wadhwa
- Cell Proliferation Research Group and DBT-AIST International Laboratory for Advanced Biomedicine, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan.
| |
Collapse
|
9
|
Røe OD, Anderssen E, Helge E, Pettersen CH, Olsen KS, Sandeck H, Haaverstad R, Lundgren S, Larsson E. Genome-wide profile of pleural mesothelioma versus parietal and visceral pleura: the emerging gene portrait of the mesothelioma phenotype. PLoS One 2009; 4:e6554. [PMID: 19662092 PMCID: PMC2717215 DOI: 10.1371/journal.pone.0006554] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 07/01/2009] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Malignant pleural mesothelioma is considered an almost incurable tumour with increasing incidence worldwide. It usually develops in the parietal pleura, from mesothelial lining or submesothelial cells, subsequently invading the visceral pleura. Chromosomal and genomic aberrations of mesothelioma are diverse and heterogenous. Genome-wide profiling of mesothelioma versus parietal and visceral normal pleural tissue could thus reveal novel genes and pathways explaining its aggressive phenotype. METHODOLOGY AND PRINCIPAL FINDINGS Well-characterised tissue from five mesothelioma patients and normal parietal and visceral pleural samples from six non-cancer patients were profiled by Affymetrix oligoarray of 38 500 genes. The lists of differentially expressed genes tested for overrepresentation in KEGG PATHWAYS (Kyoto Encyclopedia of Genes and Genomes) and GO (gene ontology) terms revealed large differences of expression between visceral and parietal pleura, and both tissues differed from mesothelioma. Cell growth and intrinsic resistance in tumour versus parietal pleura was reflected in highly overexpressed cell cycle, mitosis, replication, DNA repair and anti-apoptosis genes. Several genes of the "salvage pathway" that recycle nucleobases were overexpressed, among them TYMS, encoding thymidylate synthase, the main target of the antifolate drug pemetrexed that is active in mesothelioma. Circadian rhythm genes were expressed in favour of tumour growth. The local invasive, non-metastatic phenotype of mesothelioma, could partly be due to overexpression of the known metastasis suppressors NME1 and NME2. Down-regulation of several tumour suppressor genes could contribute to mesothelioma progression. Genes involved in cell communication were down-regulated, indicating that mesothelioma may shield itself from the immune system. Similarly, in non-cancer parietal versus visceral pleura signal transduction, soluble transporter and adhesion genes were down-regulated. This could represent a genetical platform of the parietal pleura propensity to develop mesothelioma. CONCLUSIONS Genome-wide microarray approach using complex human tissue samples revealed novel expression patterns, reflecting some important features of mesothelioma biology that should be further explored.
Collapse
Affiliation(s)
- Oluf Dimitri Røe
- Department of Oncology, St Olavs Hospital, University Hospital of Trondheim, Trondheim, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yi CH, Zheng T, Leaderer D, Hoffman A, Zhu Y. Cancer-related transcriptional targets of the circadian gene NPAS2 identified by genome-wide ChIP-on-chip analysis. Cancer Lett 2009; 284:149-56. [PMID: 19457610 DOI: 10.1016/j.canlet.2009.04.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 03/24/2009] [Accepted: 04/15/2009] [Indexed: 12/27/2022]
Abstract
The transcription factor NPAS2 is one of nine human core circadian genes that influence a variety of biological processes by regulating the 24-h circadian rhythm. Recently, it has been shown that NPAS2 is a risk biomarker in human cancers and plays a role in tumorigenesis by affecting cancer-related gene expression, and relevant biological pathways. However, it is difficult to study the biological involvement of NPAS2 in cancer development, as little is known about its direct transcriptional targets. The aim of the current study is to create a transcriptional profile of genes regulated by NPAS2, using a human binding ChIP-on-chip analysis of NPAS2 in MCF-7 cells. This genome-wide mapping approach identified 26 genes that contain potential NPAS2 binding regions. Subsequent real-time PCR assays confirmed 16 of these targets, and 9 of these genes (ARHGAP29, CDC25A, CDKN2AIP, CX3CL1, ELF4, GNAL, KDELR1, POU4F2, and THRA) have a known role in tumorigenesis. In addition, a networking analysis of these validated NPAS2 targets revealed that all nine genes, together with REN, are involved in a "Cancer, Cell cycle, Neurological Disease" network. These results report the first list of direct transcriptional targets of NPAS2 and will shed light on the role of circadian genes in tumorigenesis.
Collapse
Affiliation(s)
- Chun-Hui Yi
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT 06520, United States
| | | | | | | | | |
Collapse
|
11
|
Cheung CTY, Hasan MK, Widodo N, Kaul SC, Wadhwa R. CARF: an emerging regulator of p53 tumor suppressor and senescence pathway. Mech Ageing Dev 2008; 130:18-23. [PMID: 18555516 DOI: 10.1016/j.mad.2008.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 04/08/2008] [Accepted: 05/02/2008] [Indexed: 10/22/2022]
Abstract
Replicative senescence, a major outcome of normal cells with finite lifespan, is a widely accepted in vitro model for ageing studies. Limited repair and defense mechanisms of normal cells, in addition to DNA alterations and oncogene inductions under stress, are believed to result in senescence as a protective mechanism to prevent undesirable proliferation of cells. The ARF/p53/p21(cip1/waf1) tumor suppression pathway acts as a molecular sensor and regulator of cellular stress, senescence, and immortalization. Understanding the molecular regulation of this pathway by intrinsic and extrinsic signals is extremely important to address unsolved questions in senescence and cancer. CARF was first discovered as a binding partner of ARF and has since been shown to have both ARF-dependent and -independent functions that converge to regulate p53 pathway. CARF directly binds to p53 and HDM2, and functions in a negative feedback pathway. Whereas CARF transcriptionally represses HDM2 to increase p53 activity, HDM2 in return degrades CARF. Thus, CARF may act as a novel key regulator of the p53 pathway at multiple checkpoints. The aim of this article is to discuss the current knowledge about functions of CARF and its impact on p53 pathway in regulation of senescence and carcinogenesis.
Collapse
Affiliation(s)
- Caroline T Y Cheung
- National Institute of Advanced Industrial Science & Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan
| | | | | | | | | |
Collapse
|
12
|
Matsuoka S, Oike Y, Onoyama I, Iwama A, Arai F, Takubo K, Mashimo Y, Oguro H, Nitta E, Ito K, Miyamoto K, Yoshiwara H, Hosokawa K, Nakamura Y, Gomei Y, Iwasaki H, Hayashi Y, Matsuzaki Y, Nakayama K, Ikeda Y, Hata A, Chiba S, Nakayama KI, Suda T. Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. Genes Dev 2008; 22:986-91. [PMID: 18367647 DOI: 10.1101/gad.1621808] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Common molecular machineries between hematopoietic stem cell (HSC) maintenance and leukemia prevention have been highlighted. The tumor suppressor Fbxw7 (F-box and WD-40 domain protein 7), a subunit of an SCF-type ubiquitin ligase complex, induces the degradation of positive regulators of the cell cycle. We demonstrate that inactivation of Fbxw7 in hematopoietic cells causes premature depletion of HSCs due to active cell cycling and p53-dependent apoptosis. Interestingly, Fbxw7 deletion also confers a selective advantage to cells with suppressed p53 function, eventually leading to development of T-cell acute lymphoblastic leukemia (T-ALL). Thus, Fbxw7 functions as a fail-safe mechanism against both premature HSC loss and leukemogenesis.
Collapse
Affiliation(s)
- Sahoko Matsuoka
- Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|