1
|
Bridgeland-Stephens L, Thorpe SKS, Chappell J. Potential resilience treatments for orangutans ( Pongo spp.): Lessons from a scoping review of interventions in humans and other animals. Anim Welf 2023; 32:e77. [PMID: 38487448 PMCID: PMC10937215 DOI: 10.1017/awf.2023.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/25/2023] [Accepted: 11/02/2023] [Indexed: 03/17/2024]
Abstract
Wild orangutans (Pongo spp.) rescued from human-wildlife conflict must be adequately rehabilitated before being returned to the wild. It is essential that released orangutans are able to cope with stressful challenges such as food scarcity, navigating unfamiliar environments, and regaining independence from human support. Although practical skills are taught to orangutans in rehabilitation centres, post-release survival rates are low. Psychological resilience, or the ability to 'bounce back' from stress, may be a key missing piece of the puzzle. However, there is very little knowledge about species-appropriate interventions which could help captive orangutans increase resilience to stress. This scoping review summarises and critically analyses existing human and non-human animal resilience literature and provides suggestions for the development of interventions for orangutans in rehabilitation. Three scientific databases were searched in 2021 and 2023, resulting in 63 human studies and 266 non-human animal studies. The first section brings together human resilience interventions, identifying common themes and assessing the applicability of human interventions to orangutans in rehabilitation. The second section groups animal interventions into categories of direct stress, separation stress, environmental conditions, social stress, and exercise. In each category, interventions are critically analysed to evaluate their potential for orangutans in rehabilitation. The results show that mild and manageable forms of intervention have the greatest potential benefit with the least amount of risk. The study concludes by emphasising the need for further investigation and experimentation, to develop appropriate interventions and measure their effect on the post-release survival rate of orangutans.
Collapse
Affiliation(s)
| | | | - Jackie Chappell
- School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
2
|
Grigoryan GA. The systemic effects of the enriched environment on the conditioned fear reaction. Front Behav Neurosci 2023; 17:1227575. [PMID: 37674611 PMCID: PMC10477375 DOI: 10.3389/fnbeh.2023.1227575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
In this review, a hypothesis is proposed to explain the beneficial effect of an enriched environment (EE) on the conditioned fear reaction (CFR) from the perspective of a functional system of behavioral control. According to the hypothesis, the EE affects all behavioral act components, including the processing of sensory information, memory, motivational and reinforcing systems, and motor activities, which weakens the CFR. Animals raised in the EE have effects that are comparable to those of context (CTX) and CS pre-exposures at latent inhibition. An abundance of stimuli in the EE and constant contact with them provide the formation of CS-noUS and CTX-noUS connections that later, during CFR learning, slow down and diminish fear. The EE also contributes to faster processing of information and habituation to it. As a result, many stimuli in the context lose their significance, and subjects simply ignore them. And finally, the EE affects the motivational and reinforcing brain mechanisms, induces an impairment of search activity, and worsens memory consolidation, which leads to a reduction of CFR.
Collapse
Affiliation(s)
- Grigory A. Grigoryan
- The Laboratory of Conditioned Reflexes and Physiology of Emotions, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Frare C, Pitt SK, Hewett SJ. Sex- and age-dependent contribution of System x c- to cognitive, sensory, and social behaviors revealed by comprehensive behavioral analyses of System x c- null mice. Front Behav Neurosci 2023; 17:1238349. [PMID: 37649973 PMCID: PMC10462982 DOI: 10.3389/fnbeh.2023.1238349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
Background System xc- (Sxc-) is an important heteromeric amino acid cystine/glutamate exchanger that plays a pivotal role in the CNS by importing cystine into cells while exporting glutamate. Although certain behaviors have been identified as altered in Sxc- null mutant mice, our understanding of the comprehensive impact of Sxc- on behavior remains incomplete. Methods To address this gap, we compared motor, sensory and social behaviors of male and female mice in mice null for Sxc- (SLC7A11sut/sut) with wildtype littermates (SLC7A11+/+) in a comprehensive and systematic manner to determine effects of genotype, sex, age, and their potential interactions. Results Motor performance was not affected by loss of Sxc- in both males and females, although it was impacted negatively by age. Motor learning was specifically disrupted in female mice lacking Sxc- at both 2 and 6 months of age. Further, female SLC7A11sut/sut mice at both ages exhibited impaired sociability, but normal spatial and recognition memory, as well as sensorimotor gating. Finally, pronounced open-space anxiety was displayed by female SLC7A11sut/sut when they were young. In contrast, young SLC7A11sut/sut male mice demonstrated normal sociability, delayed spatial learning, increased open-space anxiety and heightened sensitivity to noise. As they aged, anxiety and noise sensitivity abated but hyperactivity emerged. Discussion We find that the behavioral phenotypes of female SLC7A11sut/sut are similar to those observed in mouse models of autism spectrum disorder, while behaviors of male SLC7A11sut/sut resemble those seen in mouse models of attention deficit hyperactivity disorder. These results underscore the need for further investigation of SLC7A11 in neurodevelopment. By expanding our understanding of the potential involvement of Sxc-, we may gain additional insights into the mechanisms underlying complex neurodevelopmental conditions.
Collapse
Affiliation(s)
| | | | - Sandra J. Hewett
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
4
|
Prematurely aging female mice improve their behavioural response, immunity, redox state, and lifespan after a short social interaction with non-prematurely aging mice. Biogerontology 2022; 23:307-324. [DOI: 10.1007/s10522-022-09968-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/09/2022] [Indexed: 12/25/2022]
|
5
|
Early environmental enrichment and impoverishment differentially affect addiction-related behavioral traits, cocaine-taking, and dopamine D 2/3 receptor signaling in a rat model of vulnerability to drug abuse. Psychopharmacology (Berl) 2021; 238:3543-3557. [PMID: 34463825 PMCID: PMC8629910 DOI: 10.1007/s00213-021-05971-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/23/2021] [Indexed: 11/03/2022]
Abstract
RATIONALE Risk factors for drug addiction include genetics, environment, and behavioral traits such as impulsivity and novelty preference (NP), which have been related to deficits in striatal dopamine (DA) D2/3-receptors (D2/3R) and heightened amphetamine (AMPH)-induced DA release. However, the influence of the early rearing environment on these behavioral and neurochemical variables is not clear. OBJECTIVES We investigated the influence of early rearing environment on striatal D2/3R availabilities and AMPH-induced DA release in relation to impulsivity, NP, and propensity to drug self-administration (SA) in "addiction-prone" Roman high- (RHA) and "addiction-resistant" Roman low-avoidance (RLA) rats. METHODS Animals were reared post-weaning in either environmental enrichment (EE) or impoverishment (EI) and were assessed at adulthood for impulsivity, NP, and propensity to cocaine SA. EE and EI rats were also scanned using single-photon emission computed tomography to concurrently measure in vivo striatal D2/3R availability and AMPH-induced DA release. RESULTS EE vs. EI was associated with heightened impulsivity and a lack of NP in both rat lines. Higher dorsal striatal D2/3R densities were found in RHA EE and higher AMPH-induced DA release in RLA EE. Both impulsivity and NP were negatively correlated to dorsal striatal D2/3R availabilities and positively correlated with AMPH-induced DA release in EI but not in EE. EE vs. EI was related to a faster rate of cocaine intake and elevated active timeout responses in RHAs. CONCLUSION Our results suggest non-monotonic, environment-dependent, relationships between impulsivity, NP, and D2/3R-mediated signaling, and suggest that EI vs. EE may decrease the reinforcing effects of psychostimulants in predisposed individuals.
Collapse
|
6
|
Parental behavior and anxiety in isogenic and outbred mice given access to two types of nesting materials. Appl Anim Behav Sci 2019. [DOI: 10.1016/j.applanim.2019.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
McMurphy T, Huang W, Queen NJ, Ali S, Widstrom KJ, Liu X, Xiao R, Siu JJ, Cao L. Implementation of environmental enrichment after middle age promotes healthy aging. Aging (Albany NY) 2018; 10:1698-1721. [PMID: 30036185 PMCID: PMC6075449 DOI: 10.18632/aging.101502] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/15/2018] [Indexed: 12/19/2022]
Abstract
With increases in life expectancy, it is vital to understand the dynamics of aging, their interaction with lifestyle factors, and the connections to age-related disease processes. Our work on environmental enrichment (EE), a housing environment boosting mental health, has revealed a novel anticancer and anti-obesity phenotype mediated by a brain-fat axis: the hypothalamic-sympathoneural-adipocyte (HSA) axis in young animals. Here we investigated EE effects on healthspan and lifespan when initiated after middle age. Short-term EE for six weeks activated the HSA axis in 10-month-old mice. Long-term EE for twelve months reduced adiposity, improved glucose tolerance, decreased leptin levels, enhanced motor abilities, and inhibited anxiety. In addition to adipose remodeling, EE decreased age-related liver steatosis, reduced hepatic glucose production, and increased glucose uptake by liver and adipose tissue contributing to the improved glycemic control. The EE-induced liver modulation was associated with a suppression of protein kinase Cε. Moreover, EE down-regulated the expression of inflammatory genes in the brain, adipose, and liver. EE initiated at 18-month of age significantly improved glycemic control and showed a trend of positive impact on mean lifespan. These data suggest that EE induces metabolic and behavioral adaptations that are shared by factors known to increase healthspan and lifespan.
Collapse
Affiliation(s)
- Travis McMurphy
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Equal contribution
| | - Wei Huang
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Equal contribution
| | - Nicholas J. Queen
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Seemaab Ali
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kyle J. Widstrom
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Xianglan Liu
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Run Xiao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jason J. Siu
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Lei Cao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Environmental enrichment as a therapeutic avenue for anxiety in aged Wistar rats: Effect on cat odor exposition and GABAergic interneurons. Neuroscience 2016; 330:17-25. [DOI: 10.1016/j.neuroscience.2016.05.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/17/2016] [Accepted: 05/17/2016] [Indexed: 11/22/2022]
|
9
|
Early onset of behavioral alterations in senescence-accelerated mouse prone 8 (SAMP8). Behav Brain Res 2016; 308:187-95. [PMID: 27093926 DOI: 10.1016/j.bbr.2016.04.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/11/2016] [Accepted: 04/14/2016] [Indexed: 12/22/2022]
Abstract
Senescence-accelerated mouse (SAM) is inbred lines of mice originally developed from AKR/J mice. Among the six SAM prone (SAMP) substrains, 8- to 12-month-old SAMP8 have long been used as a model of age-related cognitive impairments. However, little is still known for younger SAMP8 mice. Here, we examined the phenotypical characteristics of 4-month-old SAMP8 using a battery of behavioral tests. Four-month-old SAMP8 mice failed to recognize spatially displaced object in an object recognition task and performed poorly in the probe test of the Morris water maze task compared to SAMR1, suggesting that SAMP8 have impaired spatial memory. In addition, young SAMP8 exhibited enhanced anxiety-like behavior in an open field test and showed depression-like behavior in the forced-swim test. Their circadian rhythm was also disrupted. These abnormal behaviors of young SAMP8 are similar to behavioral alterations also observed in aged mice. In summary, age-related behavioral alterations occur in SAMP8 as young as 4 months old.
Collapse
|
10
|
van Dijk RM, Lazic SE, Slomianka L, Wolfer DP, Amrein I. Large-scale phenotyping links adult hippocampal neurogenesis to the reaction to novelty. Hippocampus 2015; 26:646-57. [DOI: 10.1002/hipo.22548] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/23/2015] [Accepted: 11/02/2015] [Indexed: 01/25/2023]
Affiliation(s)
- R. Maarten van Dijk
- Institute of Anatomy; University of Zürich; Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH Zurich; Zürich Switzerland
- Institute of Human Movement Sciences and Sport; Department of Health Sciences and Technology; ETH Zurich; Zürich Switzerland
| | - Stanley E. Lazic
- In Silico Lead Discovery, Novartis Institutes for Biomedical Research; Basel Switzerland
| | | | - David P. Wolfer
- Institute of Anatomy; University of Zürich; Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH Zurich; Zürich Switzerland
- Institute of Human Movement Sciences and Sport; Department of Health Sciences and Technology; ETH Zurich; Zürich Switzerland
| | - Irmgard Amrein
- Institute of Anatomy; University of Zürich; Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH Zurich; Zürich Switzerland
| |
Collapse
|
11
|
Loss CM, Binder LB, Muccini E, Martins WC, de Oliveira PA, Vandresen-Filho S, Prediger RD, Tasca CI, Zimmer ER, Costa-Schmidt LE, de Oliveira DL, Viola GG. Influence of environmental enrichment vs. time-of-day on behavioral repertoire of male albino Swiss mice. Neurobiol Learn Mem 2015; 125:63-72. [PMID: 26247375 DOI: 10.1016/j.nlm.2015.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/30/2015] [Accepted: 07/24/2015] [Indexed: 11/19/2022]
Abstract
Environmental enrichment (EE) is a non-pharmacological manipulation that promotes diverse forms of benefits in the central nervous system of captive animals. It is thought that EE influences animal behavior in a specie-(strain)-specific manner. Since rodents in general present different behaviors during distinct periods of the day, in this study we aimed to investigate the influence of time-of-day on behavioral repertoire of Swiss mice that reared in EE. Forty male Swiss mice (21days old) were housed in standard (SC) or enriched conditions (EC) for 60days. Behavioral assessments were conducted during the light phase (in presence of light) or dark phase (in absence of light) in the following tasks: open field, object recognition and elevated plus maze. First, we observed that the locomotor and exploratory activities are distinct between SC and EC groups only during the light phase. Second, we observed that "self-protective behaviors" were increased in EC group only when mice were tested during the light phase. However, "less defensive behaviors" were not affected by both housing conditions and time-of-day. Third, we showed that the performance of EE animals in object recognition task was improved in both light and dark conditions. Our findings highlight that EE-induced alterations in exploratory and emotional behaviors are just evident during light conditions. However, EE-induced cognitive benefits are remarkable even during dark conditions, when exploratory and emotional behaviors were similar between groups.
Collapse
Affiliation(s)
- Cássio Morais Loss
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Luisa Bandeira Binder
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Eduarda Muccini
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Wagner Carbolin Martins
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | | | - Samuel Vandresen-Filho
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| | - Rui Daniel Prediger
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Carla Inês Tasca
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Eduardo R Zimmer
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Luiz Ernesto Costa-Schmidt
- Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal - IDEA/CONICET, Universidad Nacional de Córdoba - UNC, Vélez Sarsfield 299, 5000 Córdoba, Argentina; Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos - UNISINOS, São Leopoldo, RS, Brazil.
| | - Diogo Losch de Oliveira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Giordano Gubert Viola
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Universidade Federal de Santa Catarina, Campus Curitibanos, Curitibanos, SC, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas, Centro de Ciências Biológica, Universidade Federal do Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
12
|
Mesa-Gresa P, Ramos-Campos M, Redolat R. Behavioral effects of different enriched environments in mice treated with the cholinergic agonist PNU-282987. Behav Processes 2013; 103:117-24. [PMID: 24321613 DOI: 10.1016/j.beproc.2013.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 11/27/2013] [Accepted: 12/01/2013] [Indexed: 12/20/2022]
Abstract
Environmental enrichment is an experimental model in which rodents are housed in complex environments that favor lower levels of anxiety-like behavior. PNU-282987 (PNU) is a α7 nicotinic acetylcholine receptor agonist with beneficial effects on learning though its effects on anxiety are unclear. Our main aim was to carry out a study of its effects in NMRI (n=96) mice reared in different environments: environmental enrichment (EE), Marlau™ cages (MC) and standard environment (SE). After a 4-month period, mice received acute treatment of PNU (2.5, 5 and 10mg/kg) and were evaluated in the elevated plus-maze (EPM) and hole-board (HB). In the EPM, both EE and MC reared mice showed an increase in percentage of entries into open arms while those from EE group differed from SE in time spent on open arms. Mice treated with 2.5 and 10 mg/kg of PNU devoted less time to rearing into open arms. In the HB task, MC mice displayed higher exploratory activity reflected in more head-dips (HD) during the first minute than EE and SE, whereas EE displayed low exploration levels reflected in total HD (5 min). Further research is needed in order to clarify the behavioral effects of this nicotinic agonist in interaction with different environmental conditions. This article is part of a Special Issue entitled: insert SI title.
Collapse
Affiliation(s)
- Patricia Mesa-Gresa
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Blasco Ibáñez, 21, 46010 Valencia, Spain.
| | - Marta Ramos-Campos
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Blasco Ibáñez, 21, 46010 Valencia, Spain.
| | - Rosa Redolat
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Blasco Ibáñez, 21, 46010 Valencia, Spain.
| |
Collapse
|
13
|
Behavioral effects of combined environmental enrichment and chronic nicotine administration in male NMRI mice. Physiol Behav 2013; 114-115:65-76. [DOI: 10.1016/j.physbeh.2013.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 09/27/2012] [Accepted: 03/12/2013] [Indexed: 12/18/2022]
|
14
|
Giménez-Llort L, Maté I, Manassra R, Vida C, De la Fuente M. Peripheral immune system and neuroimmune communication impairment in a mouse model of Alzheimer's disease. Ann N Y Acad Sci 2012; 1262:74-84. [PMID: 22823438 DOI: 10.1111/j.1749-6632.2012.06639.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD) can be understood in the context of the aging of neuroimmune communication. Although the contribution to AD of the immune cells present in the brain is accepted, the role of the peripheral immune system is less well known. The present review examines the behavior and the function and redox state of peripheral immune cells in a triple-transgenic mouse model (3×Tg-AD). These animals develop both beta-amyloid plaques and neurofibrillary tangles with a temporal- and regional-specific profile that closely mimics their development in the human AD brain. We have observed age and sex-related changes in several aspects of behavior and immune cell functions, which demonstrate premature aging. Lifestyle strategies such as physical exercise and environmental enrichment can improve these aspects. We propose that the analysis of the function and redox state of peripheral immune cells can be a useful tool for measuring the progression of AD.
Collapse
Affiliation(s)
- Lydia Giménez-Llort
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | |
Collapse
|
15
|
Transient enriched housing before amyloidosis onset sustains cognitive improvement in Tg2576 mice. Neurobiol Aging 2012; 34:211-25. [PMID: 22727275 DOI: 10.1016/j.neurobiolaging.2012.05.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 04/17/2012] [Accepted: 05/22/2012] [Indexed: 01/15/2023]
Abstract
Levels of educational and occupational attainment, as components of cognitive reserve, may modify the relationship between the pathological hallmarks and cognition in Alzheimer's disease (AD). We examined whether exposure of a Tg2576 transgenic mouse model of AD to environmental enrichment (EE) at a specific period during the amyloidogenic process favored the establishment of a cognitive reserve. We found that exposure to EE during early adulthood of Tg2576 mice--before amyloidogenesis has started--reduced the severity of AD-related cognitive deficits more efficiently than exposure later in life, when the pathology is already present. Interestingly, early-life exposure to EE, while slightly reducing forebrain surface covered by amyloid plaques, did not significantly impact aberrant inhibitory remodeling in the hippocampus of Tg2576 mice. Thus, transient early-life exposure to EE exerts long-lasting protection against cognitive impairment during AD pathology. In addition, these data define the existence of a specific life time frame during which stimulatory activity most efficiently builds a cognitive reserve, limiting AD progression and favoring successful aging.
Collapse
|
16
|
Freret T, Billard JM, Schumann-Bard P, Dutar P, Dauphin F, Boulouard M, Bouet V. Rescue of cognitive aging by long-lasting environmental enrichment exposure initiated before median lifespan. Neurobiol Aging 2012; 33:1005.e1-10. [DOI: 10.1016/j.neurobiolaging.2011.09.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/12/2011] [Accepted: 09/17/2011] [Indexed: 11/25/2022]
|
17
|
Bouet V, Freret T, Dutar P, Billard JM, Boulouard M. Continuous enriched environment improves learning and memory in adult NMRI mice through theta burst-related-LTP independent mechanisms but is not efficient in advanced aged animals. Mech Ageing Dev 2011; 132:240-8. [PMID: 21530571 DOI: 10.1016/j.mad.2011.04.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 02/18/2011] [Accepted: 04/08/2011] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Effects of 3-month continuous environmental enrichment (EE) on cognitive abilities and on theta burst-related synaptic plasticity of CA1 hippocampal neuronal networks have been assessed in 6- and 20-month old NMRI female mice. RESULTS EE decreased anxiety-like behavior and improved learning and memory performances in adult but not in aged mice. Electrophysiological results in CA1 hippocampal slices showed that basal synaptic transmission was not affected by EE in adult mice whereas it was partially improved in aged animals, even though not sufficient to rescue the decrease related to aging. Besides, no effect of EE on N-methyl-d-aspartate receptor activation and theta-burst-induced long-term potentiation was found in adult or aged animals. DISCUSSION These results indicate that continuous EE is able to improve cognitive abilities in adult NMRI female mice, that does not correlate with changes in theta burst-related synaptic plasticity within neuronal networks. In addition, the lack of effects in aged animals suggests the existence of a critical delay for the beneficial effects of EE on cognitive aging.
Collapse
Affiliation(s)
- Valentine Bouet
- GMPc, Groupe Mémoire et Plasticité comportementale, Caen, France
| | | | | | | | | |
Collapse
|
18
|
Arranz L, De Castro NM, Baeza I, Maté I, Viveros MP, De la Fuente M. Environmental Enrichment Improves Age-Related Immune System Impairment: Long-Term Exposure Since Adulthood Increases Life Span in Mice. Rejuvenation Res 2010; 13:415-28. [DOI: 10.1089/rej.2009.0989] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lorena Arranz
- Department of Physiology (Animal Physiology II), Faculty of Biological Sciences, Madrid Complutense University, Madrid, Spain
| | - Nuria M. De Castro
- Department of Physiology (Animal Physiology II), Faculty of Biological Sciences, Madrid Complutense University, Madrid, Spain
| | - Isabel Baeza
- Department of Physiology (Animal Physiology II), Faculty of Biological Sciences, Madrid Complutense University, Madrid, Spain
| | - Ianire Maté
- Department of Physiology (Animal Physiology II), Faculty of Biological Sciences, Madrid Complutense University, Madrid, Spain
| | - Maria Paz Viveros
- Department of Physiology (Animal Physiology II), Faculty of Biological Sciences, Madrid Complutense University, Madrid, Spain
| | - Mónica De la Fuente
- Department of Physiology (Animal Physiology II), Faculty of Biological Sciences, Madrid Complutense University, Madrid, Spain
| |
Collapse
|
19
|
The impact of age on emotional and cognitive behaviours triggered by experimental neuropathy in rats. Pain 2009; 144:57-65. [DOI: 10.1016/j.pain.2009.02.024] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/13/2009] [Accepted: 02/23/2009] [Indexed: 01/06/2023]
|
20
|
Zaman V, Boger HA, Granholm AC, Rohrer B, Moore A, Buhusi M, Gerhardt GA, Hoffer BJ, Middaugh LD. The nigrostriatal dopamine system of aging GFRalpha-1 heterozygous mice: neurochemistry, morphology and behavior. Eur J Neurosci 2008; 28:1557-68. [PMID: 18973577 PMCID: PMC2704551 DOI: 10.1111/j.1460-9568.2008.06456.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Given the established importance of glial cell line-derived neurotrophic factor (GDNF) in maintaining dopaminergic neurotransmitter systems, the nigrostriatal system and associated behaviors of mice with genetic reduction of its high-affinity receptor, GDNF receptor (GFR)alpha-1 (GFRalpha-1(+/-)), were compared with wild-type controls. Motor activity and the stimulatory effects of a dopamine (DA) D1 receptor agonist (SKF 82958) were assessed longitudinally at 8 and 18 months of age. Monoamine concentrations and dopaminergic nerve terminals in the striatum and the number of dopaminergic neurons in the substantia nigra (SN) were assessed. The results support the importance of GFRalpha-1 in maintaining normal function of the nigrostriatal dopaminergic system, with deficits being observed for GFRalpha-1(+/-) mice at both ages. Motor activity was lower and the stimulatory effects of the DA agonist were enhanced for the older GFRalpha-1(+/-) mice. DA in the striatum was reduced in the GFRalpha-1(+/-) mice at both ages, and tyrosine hydroxylase-positive cell numbers in the SN were reduced most substantially in the older GFRalpha-1(+/-) mice. The combined behavioral, pharmacological probe, neurochemical and morphological measures provide evidence of abnormalities in GFRalpha-1(+/-) mice that are indicative of an exacerbated aging-related decline in dopaminergic system function. The noted deficiencies, in turn, suggest that GFRalpha-1 is necessary for GDNF to maintain normal function of the nigrostriatal dopaminergic system. Although the precise mechanism(s) for the aging-related changes in the dopaminergic system remain to be established, the present study clearly establishes that genetic reductions in GFRalpha-1 can contribute to the degenerative changes observed in this system during the aging process.
Collapse
Affiliation(s)
- Vandana Zaman
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fabene PF, Mariotti R, Navarro Mora G, Chakir A, Zancanaro C. Forced mild physical training-induced effects on cognitive and locomotory behavior in old mice. J Nutr Health Aging 2008; 12:388-90. [PMID: 18548176 DOI: 10.1007/bf02982671] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To assess the effect of mild forced physical training on cognitive and locomotory behavior in old (26 mo.) mice. DESIGN Randomized, controlled study. SETTING Open-field in the behavioral laboratory. PARTICIPANTS Sixteen old sedentary male mice randomly assigned to one of two groups, exercise (E) or rest (R). INTERVENTION group E underwent treadmill running for one month at moderate intensity (belt speed=8 m/min, 45 min, five days a week), group R was only allowed spontaneous locomotor activity. MEASUREMENTS exploratory and locomotor behavior were evaluated in an enriched environment (Ethovision recording). RESULTS motor patterns were significantly reduced (chi2 test, p<0.05) in the E vs R group after one month of training; exploratory patterns were not different, both groups showing modest exploratory activity. CONCLUSIONS mild forced physical training initiated at old age may have detrimental effect on motor behavior in male mice without improving cognitive parameters.
Collapse
Affiliation(s)
- P F Fabene
- Department of Morphological and Biomedical Sciences, Anatomy and Histology Section, University of Verona, Verona, Italy
| | | | | | | | | |
Collapse
|