1
|
Aguirre CG, Woo JH, Romero-Sosa JL, Rivera ZM, Tejada AN, Munier JJ, Perez J, Goldfarb M, Das K, Gomez M, Ye T, Pannu J, Evans K, O'Neill PR, Spigelman I, Soltani A, Izquierdo A. Dissociable Contributions of Basolateral Amygdala and Ventrolateral Orbitofrontal Cortex to Flexible Learning Under Uncertainty. J Neurosci 2024; 44:e0622232023. [PMID: 37968116 PMCID: PMC10860573 DOI: 10.1523/jneurosci.0622-23.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023] Open
Abstract
Reversal learning measures the ability to form flexible associations between choice outcomes with stimuli and actions that precede them. This type of learning is thought to rely on several cortical and subcortical areas, including the highly interconnected orbitofrontal cortex (OFC) and basolateral amygdala (BLA), and is often impaired in various neuropsychiatric and substance use disorders. However, the unique contributions of these regions to stimulus- and action-based reversal learning have not been systematically compared using a chemogenetic approach particularly before and after the first reversal that introduces new uncertainty. Here, we examined the roles of ventrolateral OFC (vlOFC) and BLA during reversal learning. Male and female rats were prepared with inhibitory designer receptors exclusively activated by designer drugs targeting projection neurons in these regions and tested on a series of deterministic and probabilistic reversals during which they learned about stimulus identity or side (left or right) associated with different reward probabilities. Using a counterbalanced within-subject design, we inhibited these regions prior to reversal sessions. We assessed initial and pre-/post-reversal changes in performance to measure learning and adjustments to reversals, respectively. We found that inhibition of the ventrolateral orbitofrontal cortex (vlOFC), but not BLA, eliminated adjustments to stimulus-based reversals. Inhibition of BLA, but not vlOFC, selectively impaired action-based probabilistic reversal learning, leaving deterministic reversal learning intact. vlOFC exhibited a sex-dependent role in early adjustment to action-based reversals, but not in overall learning. These results reveal dissociable roles for BLA and vlOFC in flexible learning and highlight a more crucial role for BLA in learning meaningful changes in the reward environment.
Collapse
Affiliation(s)
- C G Aguirre
- Department of Psychology, University of California, Los Angeles, California 90095
| | - J H Woo
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - J L Romero-Sosa
- Department of Psychology, University of California, Los Angeles, California 90095
| | - Z M Rivera
- Department of Psychology, University of California, Los Angeles, California 90095
| | - A N Tejada
- Department of Psychology, University of California, Los Angeles, California 90095
| | - J J Munier
- Section of Biosystems and Function, School of Dentistry, University of California, Los Angeles, California 90095
| | - J Perez
- Department of Psychology, University of California, Los Angeles, California 90095
| | - M Goldfarb
- Department of Psychology, University of California, Los Angeles, California 90095
| | - K Das
- Department of Psychology, University of California, Los Angeles, California 90095
| | - M Gomez
- Department of Psychology, University of California, Los Angeles, California 90095
| | - T Ye
- Department of Psychology, University of California, Los Angeles, California 90095
| | - J Pannu
- Section of Biosystems and Function, School of Dentistry, University of California, Los Angeles, California 90095
| | - K Evans
- Department of Psychology, University of California, Los Angeles, California 90095
| | - P R O'Neill
- Shirley and Stefan Hatos Center for Neuropharmacology, Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California 90095
| | - I Spigelman
- Section of Biosystems and Function, School of Dentistry, University of California, Los Angeles, California 90095
| | - A Soltani
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - A Izquierdo
- Department of Psychology, University of California, Los Angeles, California 90095
| |
Collapse
|
2
|
Aguirre CG, Woo JH, Romero-Sosa JL, Rivera ZM, Tejada AN, Munier JJ, Perez J, Goldfarb M, Das K, Gomez M, Ye T, Pannu J, Evans K, O'Neill PR, Spigelman I, Soltani A, Izquierdo A. Dissociable contributions of basolateral amygdala and ventrolateral orbitofrontal cortex to flexible learning under uncertainty. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535471. [PMID: 37066321 PMCID: PMC10104064 DOI: 10.1101/2023.04.03.535471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Reversal learning measures the ability to form flexible associations between choice outcomes with stimuli and actions that precede them. This type of learning is thought to rely on several cortical and subcortical areas, including highly interconnected orbitofrontal cortex (OFC) and basolateral amygdala (BLA), and is often impaired in various neuropsychiatric and substance use disorders. However, unique contributions of these regions to stimulus- and action-based reversal learning have not been systematically compared using a chemogenetic approach and particularly before and after the first reversal that introduces new uncertainty. Here, we examined the roles of ventrolateral OFC (vlOFC) and BLA during reversal learning. Male and female rats were prepared with inhibitory DREADDs targeting projection neurons in these regions and tested on a series of deterministic and probabilistic reversals during which they learned about stimulus identity or side (left or right) associated with different reward probabilities. Using a counterbalanced within-subject design, we inhibited these regions prior to reversal sessions. We assessed initial and pre-post reversal changes in performance to measure learning and adjustments to reversals, respectively. We found that inhibition of vlOFC, but not BLA, eliminated adjustments to stimulus-based reversals. Inhibition of BLA, but not vlOFC, selectively impaired action-based probabilistic reversal learning, leaving deterministic reversal learning intact. vlOFC exhibited a sex-dependent role in early adjustment to action-based reversals, but not in overall learning. These results reveal dissociable roles for BLA and vlOFC in flexible learning and highlight a more crucial role for BLA in learning meaningful changes in the reward environment.
Collapse
|
3
|
Barnett WH, Kuznetsov A, Lapish CC. Distinct cortico-striatal compartments drive competition between adaptive and automatized behavior. PLoS One 2023; 18:e0279841. [PMID: 36943842 PMCID: PMC10030038 DOI: 10.1371/journal.pone.0279841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/15/2022] [Indexed: 03/23/2023] Open
Abstract
Cortical and basal ganglia circuits play a crucial role in the formation of goal-directed and habitual behaviors. In this study, we investigate the cortico-striatal circuitry involved in learning and the role of this circuitry in the emergence of inflexible behaviors such as those observed in addiction. Specifically, we develop a computational model of cortico-striatal interactions that performs concurrent goal-directed and habit learning. The model accomplishes this by distinguishing learning processes in the dorsomedial striatum (DMS) that rely on reward prediction error signals as distinct from the dorsolateral striatum (DLS) where learning is supported by salience signals. These striatal subregions each operate on unique cortical input: the DMS receives input from the prefrontal cortex (PFC) which represents outcomes, and the DLS receives input from the premotor cortex which determines action selection. Following an initial learning of a two-alternative forced choice task, we subjected the model to reversal learning, reward devaluation, and learning a punished outcome. Behavior driven by stimulus-response associations in the DLS resisted goal-directed learning of new reward feedback rules despite devaluation or punishment, indicating the expression of habit. We repeated these simulations after the impairment of executive control, which was implemented as poor outcome representation in the PFC. The degraded executive control reduced the efficacy of goal-directed learning, and stimulus-response associations in the DLS were even more resistant to the learning of new reward feedback rules. In summary, this model describes how circuits of the dorsal striatum are dynamically engaged to control behavior and how the impairment of executive control by the PFC enhances inflexible behavior.
Collapse
Affiliation(s)
- William H. Barnett
- Department of Psychology, Indiana University—Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Alexey Kuznetsov
- Department of Mathematics, Indiana University—Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Christopher C. Lapish
- Department of Psychology, Indiana University—Purdue University Indianapolis, Indianapolis, Indiana, United States of America
- Stark Neurosciences Research Institute, Indiana University—Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| |
Collapse
|
4
|
Hervig ME, Fiddian L, Piilgaard L, Božič T, Blanco-Pozo M, Knudsen C, Olesen SF, Alsiö J, Robbins TW. Dissociable and Paradoxical Roles of Rat Medial and Lateral Orbitofrontal Cortex in Visual Serial Reversal Learning. Cereb Cortex 2021; 30:1016-1029. [PMID: 31343680 PMCID: PMC7132932 DOI: 10.1093/cercor/bhz144] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/17/2019] [Accepted: 06/08/2019] [Indexed: 11/14/2022] Open
Abstract
Much evidence suggests that reversal learning is mediated by cortico-striatal circuitries with the orbitofrontal cortex (OFC) playing a prominent role. The OFC is a functionally heterogeneous region, but potential differential roles of lateral (lOFC) and medial (mOFC) portions in visual reversal learning have yet to be determined. We investigated the effects of pharmacological inactivation of mOFC and lOFC on a deterministic serial visual reversal learning task for rats. For reference, we also targeted other areas previously implicated in reversal learning: prelimbic (PrL) and infralimbic (IL) prefrontal cortex, and basolateral amygdala (BLA). Inactivating mOFC and lOFC produced opposite effects; lOFC impairing, and mOFC improving, performance in the early, perseverative phase specifically. Additionally, mOFC inactivation enhanced negative feedback sensitivity, while lOFC inactivation diminished feedback sensitivity in general. mOFC and lOFC inactivation also affected novel visual discrimination learning differently; lOFC inactivation paradoxically improved learning, and mOFC inactivation had no effect. We also observed dissociable roles of the OFC and the IL/PrL. Whereas the OFC inactivation affected only perseveration, IL/PrL inactivation improved learning overall. BLA inactivation did not affect perseveration, but improved the late phase of reversal learning. These results support opponent roles of the rodent mOFC and lOFC in deterministic visual reversal learning.
Collapse
Affiliation(s)
- M E Hervig
- Department of Psychology, University of Cambridge, Cambridge, UK.,Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.,Department of Neuroscience, University of Copenhagen, Copenhagen N, Denmark.,Research Laboratory for Stereology and Neuroscience, Copenhagen University Hospital, Bispebjerg, Copenhagen NV, Denmark
| | - L Fiddian
- Department of Psychology, University of Cambridge, Cambridge, UK.,Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - L Piilgaard
- Department of Psychology, University of Cambridge, Cambridge, UK.,Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - T Božič
- Department of Psychology, University of Cambridge, Cambridge, UK.,Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - M Blanco-Pozo
- Department of Psychology, University of Cambridge, Cambridge, UK.,Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - C Knudsen
- Department of Psychology, University of Cambridge, Cambridge, UK.,Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - S F Olesen
- Department of Psychology, University of Cambridge, Cambridge, UK.,Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - J Alsiö
- Department of Psychology, University of Cambridge, Cambridge, UK.,Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - T W Robbins
- Department of Psychology, University of Cambridge, Cambridge, UK.,Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Prior cocaine self-administration impairs attention signals in anterior cingulate cortex. Neuropsychopharmacology 2020; 45:833-841. [PMID: 31775158 PMCID: PMC7075947 DOI: 10.1038/s41386-019-0578-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/04/2019] [Accepted: 11/15/2019] [Indexed: 01/11/2023]
Abstract
Although maladaptive decision-making is a defining feature of drug abuse and addiction, we have yet to ascertain how cocaine self-administration disrupts neural signals in anterior cingulate cortex (ACC), a brain region thought to contribute to attentional control. To address this issue, rats were trained on a reward-guided decision-making task; reward value was manipulated by independently varying the size of or the delay to reward over several trial blocks. Subsequently, rats self-administered either a cocaine (experimental group) or sucrose (control) during 12 consecutive days, after which they underwent a 1-month withdrawal period. Upon completion of this period, rats performed the previously learned reward-guided decision-making task while we recorded from single neurons in ACC. We demonstrate that prior cocaine self-administration attenuates attention and attention-related ACC signals in an intake-dependent manner, and that changes in attention are decoupled from ACC firing. These effects likely contribute to the impaired decision-making-typified by chronic substance abuse and relapse-observed after drug use.
Collapse
|
6
|
Harvey E, Blurton‐Jones M, Kennedy PJ. Hippocampal BDNF regulates a shift from flexible, goal-directed to habit memory system function following cocaine abstinence. Hippocampus 2019; 29:1101-1113. [PMID: 31206907 PMCID: PMC6851590 DOI: 10.1002/hipo.23127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 01/08/2023]
Abstract
The transition from recreational drug use to addiction involves pathological learning processes that support a persistent shift from flexible, goal-directed to habit behavioral control. Here, we examined the molecular mechanisms supporting altered function in hippocampal (HPC) and dorsolateral striatum (DLS) memory systems following abstinence from repeated cocaine. After 3 weeks of cocaine abstinence (experimenter- or self-administered), we tested new behavioral learning in male rats using a dual-solution maze task, which provides an unbiased approach to assess HPC- versus DLS-dependent learning strategies. Dorsal hippocampus (dHPC) and DLS brain tissues were collected after memory testing to identify transcriptional adaptations associated with cocaine-induced shifts in behavioral learning. Our results demonstrate that following prolonged cocaine abstinence rats show a bias toward the use of an inflexible, habit memory system (DLS) in lieu of a more flexible, easily updated memory system involving the HPC. This memory system bias was associated with upregulation and downregulation of brain-derived neurotrophic factor (BDNF) gene expression and transcriptionally permissive histone acetylation (acetylated histone H3, AcH3) in the DLS and dHPC, respectively. Using viral-mediated gene transfer, we overexpressed BDNF in the dHPC during cocaine abstinence and new maze learning. This manipulation restored HPC-dependent behavioral control. These findings provide a system-level understanding of altered plasticity and behavioral learning following cocaine abstinence and inform mechanisms mediating the organization of learning and memory more broadly.
Collapse
Affiliation(s)
- Eric Harvey
- Department of PsychologyUniversity of California Los AngelesLos AngelesCalifornia
| | - Matthew Blurton‐Jones
- Department of Neurobiology and BehaviorUniversity of California IrvineIrvineCalifornia
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineCalifornia
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineCalifornia
| | - Pamela J. Kennedy
- Department of PsychologyUniversity of California Los AngelesLos AngelesCalifornia
- Brain Research InstituteUniversity of California Los AngelesLos AngelesCalifornia
| |
Collapse
|
7
|
Klein-Flügge MC, Wittmann MK, Shpektor A, Jensen DEA, Rushworth MFS. Multiple associative structures created by reinforcement and incidental statistical learning mechanisms. Nat Commun 2019; 10:4835. [PMID: 31645545 PMCID: PMC6811627 DOI: 10.1038/s41467-019-12557-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 09/16/2019] [Indexed: 01/07/2023] Open
Abstract
Learning the structure of the world can be driven by reinforcement but also occurs incidentally through experience. Reinforcement learning theory has provided insight into how prediction errors drive updates in beliefs but less attention has been paid to the knowledge resulting from such learning. Here we contrast associative structures formed through reinforcement and experience of task statistics. BOLD neuroimaging in human volunteers demonstrates rigid representations of rewarded sequences in temporal pole and posterior orbito-frontal cortex, which are constructed backwards from reward. By contrast, medial prefrontal cortex and a hippocampal-amygdala border region carry reward-related knowledge but also flexible statistical knowledge of the currently relevant task model. Intriguingly, ventral striatum encodes prediction error responses but not the full RL- or statistically derived task knowledge. In summary, representations of task knowledge are derived via multiple learning processes operating at different time scales that are associated with partially overlapping and partially specialized anatomical regions. Associative learning occurs through reinforcement mechanisms as well as incidentally through experience of statistical relationships. Here, the authors report that these two learning processes are associated with specialized anatomical regions that operate at different time scales.
Collapse
Affiliation(s)
- Miriam C Klein-Flügge
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3TA, UK. .,Wellcome Centre for Integrative Neuroimaging (WIN), University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | - Marco K Wittmann
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3TA, UK.,Wellcome Centre for Integrative Neuroimaging (WIN), University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Anna Shpektor
- Wellcome Centre for Integrative Neuroimaging (WIN), University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Daria E A Jensen
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3TA, UK.,Wellcome Centre for Integrative Neuroimaging (WIN), University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Matthew F S Rushworth
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3TA, UK.,Wellcome Centre for Integrative Neuroimaging (WIN), University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| |
Collapse
|
8
|
Moorman DE. The role of the orbitofrontal cortex in alcohol use, abuse, and dependence. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:85-107. [PMID: 29355587 PMCID: PMC6072631 DOI: 10.1016/j.pnpbp.2018.01.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/22/2017] [Accepted: 01/13/2018] [Indexed: 12/21/2022]
Abstract
One of the major functions of the orbitofrontal cortex (OFC) is to promote flexible motivated behavior. It is no surprise, therefore, that recent work has demonstrated a prominent impact of chronic drug use on the OFC and a potential role for OFC disruption in drug abuse and addiction. Among drugs of abuse, the use of alcohol is particularly salient with respect to OFC function. Although a number of studies in humans have implicated OFC dysregulation in alcohol use disorders, animal models investigating the association between OFC and alcohol use are only beginning to be developed, and there is still a great deal to be revealed. The goal of this review is to consider what is currently known regarding the role of the OFC in alcohol use and dependence. I will first provide a brief, general overview of current views of OFC function and its contributions to drug seeking and addiction. I will then discuss research to date related to the OFC and alcohol use, both in human clinical populations and in non-human models. Finally I will consider issues and strategies to guide future study that may identify this brain region as a key player in the transition from moderated to problematic alcohol use and dependence.
Collapse
Affiliation(s)
- David E. Moorman
- Department of Psychological and Brain Sciences, Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst MA 01003 USA
| |
Collapse
|
9
|
Functional Connectivity of Chronic Cocaine Use Reveals Progressive Neuroadaptations in Neocortical, Striatal, and Limbic Networks. eNeuro 2018; 5:eN-NWR-0081-18. [PMID: 30073194 PMCID: PMC6071197 DOI: 10.1523/eneuro.0081-18.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/25/2018] [Accepted: 07/10/2018] [Indexed: 12/21/2022] Open
Abstract
Brain imaging studies indicate that chronic cocaine users display altered functional connectivity between prefrontal cortical, thalamic, striatal, and limbic regions; however, the use of cross-sectional designs in these studies precludes measuring baseline brain activity prior to cocaine use. Animal studies can circumvent this limitation by comparing functional connectivity between baseline and various time points after chronic cocaine use. In the present study, adult male Long–Evans rats were trained to self-administer cocaine intravenously for 6 h sessions daily over 14 consecutive days. Two additional groups serving as controls underwent sucrose self-administration or exposure to the test chambers alone. Functional magnetic resonance imaging was conducted before self-administration and after 1 and 14 d of abstinence (1d and 14d Abs). After 1d Abs from cocaine, there were increased clustering coefficients in brain areas involved in reward seeking, learning, memory, and autonomic and affective processing, including amygdala, hypothalamus, striatum, hippocampus, and thalamus. Similar changes in clustering coefficient after 1d Abs from sucrose were evident in predominantly thalamic brain regions. Notably, there were no changes in strength of functional connectivity at 1 or 14 d after either cocaine or sucrose self-administration. The results suggest that cocaine and sucrose can change the arrangement of functional connectivity of brain regions involved in cognition and emotion, but that these changes dissipate across the early stages of abstinence. The study also emphasizes the importance of including baseline measures in longitudinal functional neuroimaging designs seeking to assess functional connectivity in the context of substance use.
Collapse
|
10
|
Frazer KM, Richards Q, Keith DR. The long-term effects of cocaine use on cognitive functioning: A systematic critical review. Behav Brain Res 2018; 348:241-262. [PMID: 29673580 DOI: 10.1016/j.bbr.2018.04.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND The predominant view of chronic cocaine use maintains that it causes a broad range of cognitive deficits. However, concerns about the possibly deleterious impact of cocaine on cognitive functioning have yet to be thoroughly vetted. This review addresses the impact of cocaine use on such cognitive domains as executive function, memory, language, and psychomotor speed. Additionally, relevant neuroimaging data is considered to understand the neural basis underlying cocaine-related effects on cognitive functioning. METHODS We searched PubMed, Google Scholar, and Embase using the search terms "cocaine and cognition," "cocaine and cognitive functioning," and "cocaine and cognitive deficits or impairment." To meet inclusion criteria we evaluated only cognitive and neuroimaging studies describing the long-term effects of cocaine on cognitive functioning published from 1999 to 2016. RESULTS The majority of studies reported statistically significant differences between cocaine users and non-drug-using controls in brain structures, blood-oxygen-level dependent signals, and brain metabolism. However, differences in cognitive performance were observed on a minority of measures. Additionally, the majority of studies were not compared against normative data. CONCLUSIONS The current evidence does not support the view that chronic cocaine use is associated with broad cognitive deficits. The view that cocaine users have broad cognitive deficits is inaccurate based upon current evidence, and the perpetuation of this view may have negative implications for treatment programs and development of public policies.
Collapse
Affiliation(s)
- Kirsten M Frazer
- Department of Psychology, Columbia University, 1190 Amsterdam Ave., New York, NY 10027, USA.
| | - Qwynten Richards
- Department of Psychology, Columbia University, 1190 Amsterdam Ave., New York, NY 10027, USA
| | - Diana R Keith
- Department of Psychiatry, University of Vermont Medical Center, 1 South Prospect Street, Burlington, VT 05401, USA
| |
Collapse
|
11
|
Piao C, Liu T, Ma L, Ding X, Wang X, Chen X, Duan Y, Sui N, Liang J. Alterations in brain activation in response to prolonged morphine withdrawal-induced behavioral inflexibility in rats. Psychopharmacology (Berl) 2017; 234:2941-2953. [PMID: 28762073 DOI: 10.1007/s00213-017-4689-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/03/2017] [Indexed: 12/12/2022]
Abstract
RATIONALE The inability to stop a repetitive maladaptive behavior is a main problem in addictive disorders. Neuroadaptations that are associated with behavioral inflexibility may be involved in compulsive drug use. OBJECTIVES The aim of the present study was to investigate the pattern of behavioral inflexibility during morphine withdrawal and map brain activation that is linked to alterations in flexibility. METHODS We first analyzed the effects of chronic morphine exposure on reversal learning after 2-week (short-term) and 6-week (prolonged) morphine withdrawal. We then compared the level of neuronal activation using cFos immunohistochemistry in 15 brain areas between rats that underwent morphine withdrawal and saline-control rats after a test of reversal learning. RESULTS Only prolonged morphine withdrawal impaired reversal learning. Rats that exhibited impairments in reversal learning presented a significant decrease in cFos expression in the orbitofrontal cortex (OFC), including the medial, lateral, and ventral OFC. cFos expression significantly increased in the dorsomedial striatum and major subregions of the medial prefrontal cortex (mPFC) in the morphine group. Rats that underwent prolonged morphine withdrawal exhibited no significant changes in cFos expression in the dorsolateral striatum, nucleus accumbens, amygdala, paraventricular thalamic nucleus, or motor cortex. The rats that underwent short-term withdrawal did not present any changes in cFos expression in any of these brain regions. CONCLUSION Altogether, these data suggest that alterations in the function of the frontal cortex and its striatal connections during the late morphine withdrawal phase may underlie the disruption of inhibitory control in opioid dependence.
Collapse
Affiliation(s)
- Chengji Piao
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,Sino-Danish Center for Education and Research, Beijing, China
| | - Tiane Liu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Lian Ma
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xuekun Ding
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xingyue Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xing Chen
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Duan
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Nan Sui
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China. .,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Jing Liang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China. .,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Adaptive Encoding of Outcome Prediction by Prefrontal Cortex Ensembles Supports Behavioral Flexibility. J Neurosci 2017; 37:8363-8373. [PMID: 28729442 DOI: 10.1523/jneurosci.0450-17.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/02/2017] [Accepted: 06/09/2017] [Indexed: 11/21/2022] Open
Abstract
The prefrontal cortex (PFC) is thought to play a critical role in behavioral flexibility by monitoring action-outcome contingencies. How PFC ensembles represent shifts in behavior in response to changes in these contingencies remains unclear. We recorded single-unit activity and local field potentials in the dorsomedial PFC (dmPFC) of male rats during a set-shifting task that required them to update their behavior, among competing options, in response to changes in action-outcome contingencies. As behavior was updated, a subset of PFC ensembles encoded the current trial outcome before the outcome was presented. This novel outcome-prediction encoding was absent in a control task, in which actions were rewarded pseudorandomly, indicating that PFC neurons are not merely providing an expectancy signal. In both control and set-shifting tasks, dmPFC neurons displayed postoutcome discrimination activity, indicating that these neurons also monitor whether a behavior is successful in generating rewards. Gamma-power oscillatory activity increased before the outcome in both tasks but did not differentiate between expected outcomes, suggesting that this measure is not related to set-shifting behavior but reflects expectation of an outcome after action execution. These results demonstrate that PFC neurons support flexible rule-based action selection by predicting outcomes that follow a particular action.SIGNIFICANCE STATEMENT Tracking action-outcome contingencies and modifying behavior when those contingencies change is critical to behavioral flexibility. We find that ensembles of dorsomedial prefrontal cortex neurons differentiate between expected outcomes when action-outcome contingencies change. This predictive mode of signaling may be used to promote a new response strategy at the service of behavioral flexibility.
Collapse
|
13
|
Barker AT, Rebec GV. Cocaine withdrawal alters the reward omission effect and enhances traits of negative urgency in rats across multiple days of testing. Drug Alcohol Depend 2016; 163 Suppl 1:S19-24. [PMID: 27306726 PMCID: PMC4911541 DOI: 10.1016/j.drugalcdep.2015.11.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 11/18/2015] [Accepted: 11/21/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND The personality trait of negative urgency, characterized as behaving rashly when emotionally perturbed, is gaining attention as an indicator for susceptibility to problematic substance use. How this trait is influenced by exposure to drugs of abuse is still unclear. Using an animal model of binge cocaine consumption, we tested this relationship in a reward-omission task across multiple days. METHODS Adult, male, Sprague-Dawley rats received seven daily (ip) injections of saline, cocaine (10-20mg/kg), or cocaine (20-40mg/kg). Cocaine doses increased linearly each day from the lower to the higher dose. A separate group received RTI-113 (3.0mg/kg), a selective dopamine transporter inhibitor, for 7 days. Fifteen days after their final injection, rats were trained on a reward-omission task with an operant component to earn further rewards. RESULTS Previous exposure to cocaine resulted in dose-dependent increases in negative urgency in separate behavioral variables across days of testing. The lower dose range increased negative urgency on the dimension of decreased reaction time to press a lever, while the higher dose range increased the rate of increase in lever presses made per trial. Rats receiving RTI-113 did not resemble either cocaine group and instead showed a decrease in lever pressing across days. CONCLUSIONS Our results indicate that previous binge cocaine consumption enhances behavioral markers of negative urgency in a dose-dependent, time-sensitive manner on discrete behavioral dimensions. The results with RTI-113 suggest the relationship between cocaine exposure and negative urgency is unlikely to be explained solely by inhibition of dopamine reuptake.
Collapse
Affiliation(s)
- Alan T Barker
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th St., Bloomington, IN 47405-7007, United States
| | - G V Rebec
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th St., Bloomington, IN 47405-7007, United States.
| |
Collapse
|
14
|
Aznar S, Hervig MES. The 5-HT2A serotonin receptor in executive function: Implications for neuropsychiatric and neurodegenerative diseases. Neurosci Biobehav Rev 2016; 64:63-82. [DOI: 10.1016/j.neubiorev.2016.02.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/05/2015] [Accepted: 02/08/2016] [Indexed: 02/07/2023]
|
15
|
Saddoris MP, Wang X, Sugam JA, Carelli RM. Cocaine Self-Administration Experience Induces Pathological Phasic Accumbens Dopamine Signals and Abnormal Incentive Behaviors in Drug-Abstinent Rats. J Neurosci 2016; 36:235-50. [PMID: 26740664 PMCID: PMC4701963 DOI: 10.1523/jneurosci.3468-15.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/05/2015] [Accepted: 11/24/2015] [Indexed: 11/21/2022] Open
Abstract
Chronic exposure to drugs of abuse is linked to long-lasting alterations in the function of limbic system structures, including the nucleus accumbens (NAc). Although cocaine acts via dopaminergic mechanisms within the NAc, less is known about whether phasic dopamine (DA) signaling in the NAc is altered in animals with cocaine self-administration experience or if these animals learn and interact normally with stimuli in their environment. Here, separate groups of rats self-administered either intravenous cocaine or water to a receptacle (controls), followed by 30 d of enforced abstinence. Next, all rats learned an appetitive Pavlovian discrimination and voltammetric recordings of real-time DA release were taken in either the NAc core or shell of cocaine and control subjects. Cocaine experience differentially impaired DA signaling in the core and shell relative to controls. Although phasic DA signals in the shell were essentially abolished for all stimuli, in the core, DA did not distinguish between cues and was abnormally biased toward reward delivery. Further, cocaine rats were unable to learn higher-order associations and even altered simple conditioned approach behaviors, displaying enhanced preoccupation with cue-associated stimuli (sign-tracking; ST) but diminished time at the food cup awaiting reward delivery (goal-tracking). Critically, whereas control DA signaling correlated with ST behaviors, cocaine experience abolished this relationship. These findings show that cocaine has persistent, differential, and pathological effects on both DA signaling and DA-dependent behaviors and suggest that psychostimulant experience may remodel the very circuits that bias organisms toward repeated relapse. SIGNIFICANCE STATEMENT Relapsing to drug abuse despite periods of abstinence and sincere attempts to quit is one of the most pernicious facets of addiction. Unfortunately, little is known about how the dopamine (DA) system functions after periods of drug abstinence, particularly its role in behavior in nondrug situations. Here, rats learned about food-paired stimuli after prolonged abstinence from cocaine self-administration. Using voltammetry, we found that real-time DA signals in cocaine-experienced rats were strikingly altered relative to controls. Further, cocaine-experienced animals found reward-predictive stimuli abnormally salient and spent more time interacting with cues. Therefore, cocaine induces neuroplastic changes in the DA system that biases animals toward salient stimuli (including reward-associated cues), putting addicts at increasing risk to relapse as addiction increases in severity.
Collapse
Affiliation(s)
- Michael P Saddoris
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado 80309, and Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Xuefei Wang
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jonathan A Sugam
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Regina M Carelli
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
16
|
Buchta WC, Riegel AC. Chronic cocaine disrupts mesocortical learning mechanisms. Brain Res 2015; 1628:88-103. [PMID: 25704202 DOI: 10.1016/j.brainres.2015.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/28/2015] [Accepted: 02/01/2015] [Indexed: 01/06/2023]
Abstract
The addictive power of drugs of abuse such as cocaine comes from their ability to hijack natural reward and plasticity mechanisms mediated by dopamine signaling in the brain. Reward learning involves burst firing of midbrain dopamine neurons in response to rewards and cues predictive of reward. The resulting release of dopamine in terminal regions is thought to act as a teaching signaling to areas such as the prefrontal cortex and striatum. In this review, we posit that a pool of extrasynaptic dopaminergic D1-like receptors activated in response to dopamine neuron burst firing serve to enable synaptic plasticity in the prefrontal cortex in response to rewards and their cues. We propose that disruptions in these mechanisms following chronic cocaine use contribute to addiction pathology, in part due to the unique architecture of the mesocortical pathway. By blocking dopamine reuptake in the cortex, cocaine elevates dopamine signaling at these extrasynaptic receptors, prolonging D1-receptor activation and the subsequent activation of intracellular signaling cascades, and thus inducing long-lasting maladaptive plasticity. These cellular adaptations may account for many of the changes in cortical function observed in drug addicts, including an enduring vulnerability to relapse. Therefore, understanding and targeting these neuroadaptations may provide cognitive benefits and help prevent relapse in human drug addicts.
Collapse
Affiliation(s)
- William C Buchta
- Neurobiology of Addiction Research Center (NARC), Medical University of South Carolina, Charleston, SC 29425, USA
| | - Arthur C Riegel
- Neurobiology of Addiction Research Center (NARC), Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
17
|
Skelin I, Needham MA, Molina LM, Metz GAS, Gruber AJ. Multigenerational prenatal stress increases the coherence of brain signaling among cortico-striatal-limbic circuits in adult rats. Neuroscience 2015; 289:270-8. [PMID: 25595989 DOI: 10.1016/j.neuroscience.2015.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/23/2014] [Accepted: 01/04/2015] [Indexed: 11/28/2022]
Abstract
Prenatal stress (PNS) is a significant risk factor for the development of psychopathology in adulthood such as anxiety, depression, schizophrenia and addiction. Animal models of PNS resemble many of the effects of PNS on humans and provide a means to study the accumulated effects of PNS over several generations on brain function. Here, we examined how mild PNS delivered during the third week in utero over four consecutive generations affects behavioral flexibility and functional signaling among cortical and limbic structures. These multi-generational prenatally stressed (MGPNS) rats were not impaired on an odor-cued reversal learning task as compared to control animals. Unilateral field potential (FP) recordings from the medial prefrontal cortex, basolateral amygdala, ventral hippocampus, and striatal territories revealed widespread differences in brain signaling between these groups during the odor sampling phase of the task. The FP power was significantly lower in most structures across most frequency bands in MGPNS animals, and the relative increase in power from baseline during the task was lower for the beta band (12-30Hz) in MGPNS animals as compared to controls. The coherence of FPs between brain regions, however, was much higher in MGPNS animals among all structures and for most frequency bands. We propose that this pattern of changes in brain signaling reflects a simplification of network processing, which is consistent with reports of reduced spine density and dendritic complexity in the brains of animals receiving PNS. Our data support the proposal that recurrent ancestral stress leads to adaptations in the brain, and that these may confer adaptive behavior in some circumstances as compared to single-generation PNS.
Collapse
Affiliation(s)
- I Skelin
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - M A Needham
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - L M Molina
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - G A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - A J Gruber
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.
| |
Collapse
|
18
|
Matuskey D, Gallezot JD, Pittman B, Williams W, Wanyiri J, Gaiser E, Lee DE, Hannestad J, Lim K, Zheng MQ, Lin SF, Labaree D, Potenza MN, Carson RE, Malison RT, Ding YS. Dopamine D₃ receptor alterations in cocaine-dependent humans imaged with [¹¹C](+)PHNO. Drug Alcohol Depend 2014; 139:100-5. [PMID: 24717909 PMCID: PMC4071607 DOI: 10.1016/j.drugalcdep.2014.03.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/21/2014] [Accepted: 03/08/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Evidence from animal models and postmortem human studies points to the importance of the dopamine D₃ receptor (D₃R) in cocaine dependence (CD). The objective of this pilot study was to use the D₃R-preferring radioligand [(11)C](+)PHNO to compare receptor availability in groups with and without CD. METHODS Ten medically healthy, non-treatment seeking CD subjects (mean age 41 ± 8) in early abstinence were compared to 10 healthy control (HC) subjects (mean age 41 ± 6) with no history of cocaine or illicit substance abuse. Binding potential (BPND), a measure of available receptors, was determined with parametric images, computed using the simplified reference tissue model (SRTM2) with the cerebellum as the reference region. RESULTS BPND in CD subjects was higher in D₃R-rich areas including the substantia nigra ((SN) 29%; P=0.03), hypothalamus (28%; P=0.02) and amygdala (35%; P=0.03). No between-group differences were observed in the striatum or pallidum. BPND values in the SN (r=+0.83; P=0.008) and pallidum (r=+0.67; P=0.03) correlated with years of cocaine use. CONCLUSIONS Between-group differences suggest an important role for dopaminergic transmission in the SN, hypothalamus and amygdala in CD. Such findings also highlight the potential relevance of D₃R as a medication development target in CD.
Collapse
Affiliation(s)
- David Matuskey
- Department of Psychiatry, Yale University, New Haven, CT, USA; Department of Diagnostic Radiology, Yale University, New Haven, CT, USA.
| | | | - Brian Pittman
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Wendol Williams
- Department of Psychiatry, Yale University, New Haven, CT, USA,Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - Jane Wanyiri
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Edward Gaiser
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Dianne E. Lee
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - Jonas Hannestad
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Keunpoong Lim
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - Minq-Qiang Zheng
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - Shu-fei Lin
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - David Labaree
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - Marc N. Potenza
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Richard E. Carson
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | | | - Yu-Shin Ding
- Department of Radiology and Psychiatry, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
19
|
Dombrovski AY, Szanto K, Clark L, Reynolds CF, Siegle GJ. Reward signals, attempted suicide, and impulsivity in late-life depression. JAMA Psychiatry 2013; 70:1. [PMID: 23925710 PMCID: PMC3859132 DOI: 10.1001/jamapsychiatry.2013.75] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
IMPORTANCE—Suicide can be viewed as an escape from unendurable punishment at the cost of any future rewards. Could faulty estimation of these outcomes predispose to suicidal behavior? In behavioral studies, many of those who have attempted suicide misestimate expected rewards on gambling and probabilistic learning tasks.OBJECTIVES—To describe the neural circuit abnormalities that underlie disadvantageous choices in people at risk for suicide and to relate these abnormalities to impulsivity, which is one of the components of vulnerability to suicide.DESIGN—Case-control functional magnetic resonance imaging study of reward learning using are inforcement learning model.SETTING—University hospital and outpatient clinic.PATIENTS—Fifty-three participants 60 years or older, including 15 depressed patients who had attempted suicide, 18 depressed patients who had never attempted suicide (depressed control subjects), and 20 psychiatrically healthy controls.MAIN OUTCOMES AND MEASURES—Components of the cortical blood oxygenation level–dependent response tracking expected and unpredicted rewards.RESULTS—Depressed elderly participants displayed 2 distinct disruptions of control over reward-guided behavior. First, impulsivity and a history of suicide attempts (particularly poorly planned ones) were associated with a weakened expected reward signal in the paralimbic cortex,which in turn predicted the behavioral insensitivity to contingency change. Second, depression was associated with disrupted corticostriatothalamic encoding of unpredicted rewards, which in turn predicted the behavioral over sensitivity to punishment. These results were robust to the effects of possible brain damage from suicide attempts, depressive severity, co-occurring substance use and anxiety disorders, antidepressant and anticholinergic exposure, lifetime exposure to electroconvulsive therapy, vascular illness, and incipient dementia.CONCLUSIONS AND RELEVANCE—Altered paralimbic reward signals and impulsivity and/or carelessness may facilitate unplanned suicidal acts. This pattern, also seen in gambling and cocaine use, may reflect a primary deficit in the paralimbic cortex or in its mesolimbic input. The over reactivity to punishment in depression may be caused in part by a disruption of appetitive learning in the corticostriatothalamic circuits.
Collapse
Affiliation(s)
- Alexandre Y Dombrovski
- MD, Department of Psychiatry, University of Pittsburgh, 3811 O’Hara St, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
20
|
Albein-Urios N, Martinez-González JM, Lozano O, Clark L, Verdejo-García A. Comparison of impulsivity and working memory in cocaine addiction and pathological gambling: Implications for cocaine-induced neurotoxicity. Drug Alcohol Depend 2012; 126:1-6. [PMID: 22475814 DOI: 10.1016/j.drugalcdep.2012.03.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 03/01/2012] [Accepted: 03/04/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND The aim of this study was to compare the cognitive performance of cocaine dependent individuals (CDI) with that of pathological gamblers (PG). Cocaine dependence and pathological gambling share neurobiological vulnerabilities related to addiction, but PG are relatively free of the toxic consequences, such that any additional deficits observed in CDI may be interpreted as pertaining to specific drug effects. METHODS We used a case-control observational design contrasting multiple measures of impulsivity (UPPS-P trait impulsivity, delay discounting) and executive measures of response inhibition (Stroop) and working memory performance (N-back) between groups of CDI (n=29), PG (n=23), and healthy controls (n=20). We conducted one-way ANOVAs, followed by planned pairwise tests and calculations of Cohen's d to estimate significant differences between the groups. RESULTS CDI, as compared to PG, had elevated scores on UPPS-P Negative Urgency and poorer performance on working memory (2-back). PG had steeper delay-discounting rates. Both groups had elevated Positive Urgency and poorer Stroop inhibition compared to controls. Peak amount of cocaine use was negatively correlated with working memory and response inhibition performance. CONCLUSION We found cocaine-related specific elevations in Negative Urgency and working memory deficits, putatively identified as cocaine neurotoxicity effects. Other aspects of impulsivity (Positive Urgency, Stroop inhibition) were increased across CDI and PG groups and may reflect vulnerability factors for addiction.
Collapse
|
21
|
Torun L, Madras BK, Meltzer PC. Synthesis and structure-activity relationship studies of 3-biaryl-8-oxabicyclo[3.2.1]octane-2-carboxylic acid methyl esters. Bioorg Med Chem 2012; 20:2762-72. [PMID: 22398259 PMCID: PMC3345971 DOI: 10.1016/j.bmc.2012.01.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 11/30/2022]
Abstract
Stille cross coupling protocols were utilized for the synthesis of 3-(biaryl)-8-oxabicyclo[3.2.1]oct-2-ene-2-carboxylic acid methyl esters, which furnished products in high yields where in some cases Suzuki coupling under the conditions utilized provided complex reaction mixture. Samarium iodide reduction of the resulting coupling products produced both of the 2β-carbomethoxy-3-biaryl-8-oxabicyclo[3.2.1]octane diastereomers and the 2α-carbomethoxy-3-biaryl-8-oxabicyclo[3.2.1]octane diastereomers. Among the series synthesized, the benzothiophene substituted compounds demonstrated significant binding profiles of inhibition of WIN 35,438 with 177-fold selectivity for DAT versus SERT.
Collapse
Affiliation(s)
- Lokman Torun
- TUBITAK MAM Chemistry Institute P. K. 21 Gebze, Kocaeli, Turkey 41470
| | - Bertha K. Madras
- Department of Psychiatry, Harvard Medical School and New England Regional Primate Center, Southborough, MA 01772, USA
| | | |
Collapse
|
22
|
Spiegel DR, Lamm K. A Case Of Utilization Behavior and Hyperorality Following Bilateral Anterior Cerebral Artery Infarct Partially Responsive to Carbamazepine: Can Both Behaviors Be Attributed To Lesions In Different Frontal Lobe Circuits? PSYCHOSOMATICS 2011; 52:563-7. [DOI: 10.1016/j.psym.2011.01.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/09/2011] [Accepted: 01/10/2011] [Indexed: 11/27/2022]
|
23
|
Zuo Y, Wang X, Cui C, Luo F, Yu P, Wang X. Cocaine-induced impulsive choices are accompanied by impaired delay-dependent anticipatory activity in basolateral amygdala. J Cogn Neurosci 2011; 24:196-211. [PMID: 21916564 DOI: 10.1162/jocn_a_00131] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Addicts and drug-experienced animals have decision-making deficits in delayed reinforcement choice task, in which they prefer small immediate rewards over large delayed rewards. Here, we show evidence that this deficit is accompanied by changed coding of delay length in the basolateral amygdala (BLA). A subset of neurons in BLA demonstrated delay-dependent anticipatory activity (either increase or decrease as a function of delay to reward) in naive rats. After 30 days of withdrawal from chronic cocaine treatment (30 mg/kg/day for 10 days ip), the proportion of delay-dependent anticipatory neurons reduced, whereas delay-dependent activity in response to elapsed delay after reward delivery increased, both in the proportion of delay-dependent neurons and in the extent of delay dependence. Cocaine exposure increased, instead of decreased, BLA neuronal expectation for different reward magnitudes. These results indicate that BLA is critical for representing and maintaining the information of delayed reward before its delivery, and cocaine exposure may affect decision-making by impairing perception of delay instead of the ability to assess the differences in reward size.
Collapse
|
24
|
Madoz-Gúrpide A, Ochoa Mangado E, Martínez Pelegrín B. Consumo de cocaína y daño neuropsicológico. Implicaciones clínicas. Med Clin (Barc) 2009; 132:555-9. [DOI: 10.1016/j.medcli.2008.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 07/09/2008] [Indexed: 11/25/2022]
|
25
|
Ranaldi R, Egan J, Kest K, Fein M, Delamater AR. Repeated heroin in rats produces locomotor sensitization and enhances appetitive Pavlovian and instrumental learning involving food reward. Pharmacol Biochem Behav 2009; 91:351-7. [DOI: 10.1016/j.pbb.2008.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 08/01/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
|