1
|
Venkatesan D, Iyer M, Narayanasamy A, Gopalakrishnan AV, Vellingiri B. Plausible Role of Mitochondrial DNA Copy Number in Neurodegeneration-a Need for Therapeutic Approach in Parkinson's Disease (PD). Mol Neurobiol 2023; 60:6992-7008. [PMID: 37523043 DOI: 10.1007/s12035-023-03500-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Parkinson's disease (PD) is an advancing age-associated progressive brain disorder which has various diverse factors, among them mitochondrial dysfunction involves in dopaminergic (DA) degeneration. Aging causes a rise in mitochondrial abnormalities which leads to structural and functional modifications in neuronal activity and cell death in PD. This ends in deterioration of mitochondrial function, mitochondrial alterations, mitochondrial DNA copy number (mtDNA CN) and oxidative phosphorylation (OXPHOS) capacity. mtDNA levels or mtDNA CN in PD have reported that mtDNA depletion would be a predisposing factor in PD pathogenesis. To maintain the mtDNA levels, therapeutic approaches have been focused on mitochondrial biogenesis in PD. The depletion of mtDNA levels in PD can be influenced by autophagic dysregulation, apoptosis, neuroinflammation, oxidative stress, sirtuins, and calcium homeostasis. The current review describes the regulation of mtDNA levels and discusses the plausible molecular pathways in mtDNA CN depletion in PD pathogenesis. We conclude by suggesting further research on mtDNA depletion which might show a promising effect in predicting and diagnosing PD.
Collapse
Affiliation(s)
- Dhivya Venkatesan
- Centre for Neuroscience, Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore, 641021, India
| | - Mahalaxmi Iyer
- Centre for Neuroscience, Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore, 641021, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India
| | - Balachandar Vellingiri
- Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|
2
|
Yang T, Chen W, Gan K, Wang C, Xie X, Su Y, Lian H, Xu J, Zhao J, Liu Q. Myrislignan targets extracellular signal-regulated kinase (ERK) and modulates mitochondrial function to dampen osteoclastogenesis and ovariectomy-induced osteoporosis. J Transl Med 2023; 21:839. [PMID: 37993937 PMCID: PMC10664306 DOI: 10.1186/s12967-023-04706-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Activated osteoclasts cause excessive bone resorption, and disrupt bone homeostasis, leading to osteoporosis. The extracellular signal-regulated kinase (ERK) signaling is the classical pathway related to osteoclast differentiation, and mitochondrial reactive oxygen species are closely associated with the differentiation of osteoclasts. Myrislignan (MRL), a natural product derived from nutmeg, has multiple pharmacological activities; however, its therapeutic effect on osteoporosis is unclear. Here, we investigated whether MRL could inhibit osteoclastogenesis and bone mass loss in an ovariectomy mouse model by suppressing mitochondrial function and ERK signaling. METHODS Tartrate-resistant and phosphatase (TRAP) and bone resorption assays were performed to observe the effect of MRL on osteoclastogenesis of bone marrow macrophages. MitoSOX RED and tetramethyl rhodamine methyl ester (TMRM) staining was performed to evaluate the inhibitory effect of MRL on mitochondria. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay was performed to detect whether MRL suppressed the expression of osteoclast-specific genes. The impact of MRL on the protein involved in the mitogen-activated protein kinase (MAPK) and nuclear factor-κB pathways was evaluated using western blotting. In addition, a specific ERK agonist LM22B-10, was used to revalidate the inhibitory effect of MRL on ERK. Finally, we established an ovariectomy mouse model to assess the therapeutic effect of MRL on osteoporosis in vivo. RESULTS MRL inhibited osteoclast differentiation and the associated bone resorption, by significantly decreasing osteoclastic gene expression. Mechanistically, MRL inhibited the phosphorylation of ERK by suppressing the mitochondrial function, thereby downregulating the nuclear factor of activated T cells 1 (NFATc1) signaling. LM22B-10 treatment further verified the targeted inhibition effect of MRL on ERK. Microscopic computed tomographic and histologic analyses of the tibial tissue sections indicated that ovariectomized mice had lower bone mass and higher expression of ERK compared with normal controls. However, MRL treatment significantly reversed these effects, indicating the anti-osteoporosis effect of MRL. CONCLUSION We report for the first time that MRL inhibits ERK signaling by suppressing mitochondrial function, thereby ameliorating ovariectomy-induced osteoporosis. Our findings can provide a basis for the development of a novel therapeutic strategy for osteoporosis.
Collapse
Affiliation(s)
- Tao Yang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Weiwei Chen
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Kai Gan
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chaofeng Wang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoxiao Xie
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yuangang Su
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Haoyu Lian
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiake Xu
- School of Biomedical Sciences, the University of Western Australia, Perth, WA, 6009, Australia.
| | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
3
|
Hong CY, Lin SK, Wang HW, Shun CT, Yang CN, Lai EHH, Cheng SJ, Chen MH, Yang H, Lin HY, Wu FY, Kok SH. Metformin Reduces Bone Resorption in Apical Periodontitis Through Regulation of Osteoblast and Osteoclast Differentiation. J Endod 2023; 49:1129-1137. [PMID: 37454872 DOI: 10.1016/j.joen.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION We have previously demonstrated that auxiliary metformin therapy promotes healing of apical periodontitis. Here we aimed to investigate the effects of metformin on osteoblast differentiation and osteoclast formation in cultured cells and rat apical periodontitis. METHODS Murine pre-osteoblasts MC3T3-E1 and macrophages RAW264.7 were cultured under hypoxia (2% oxygen) or normoxia (21% oxygen) and stimulated with receptor activator of nuclear factor-κB ligand (RANKL) when indicated. Metformin was added to the cultures to evaluate its anti-hypoxic effects. Expressions of osteoblast differentiation regulator runt-related transcription factor 2 (RUNX2), RANKL, and osteoclast marker tartrate-resistant acid phosphatase (TRAP) were assessed by Western blot. Apical periodontitis was induced in mandibular first molars of 10 Sprague-Dawley rats. Root canal therapy with or without metformin supplement was performed. Periapical bone resorption was measured by micro-computed tomography. Immunohistochemistry was used to examine RUNX2, RANKL, and TRAP expressions. RESULTS Hypoxia suppressed RUNX2 expression and enhanced RANKL synthesis in pre-osteoblasts. TRAP production increased in macrophages after hypoxia and/or RANKL stimulation. Metformin reversed hypoxia-induced RUNX2 suppression and RANKL synthesis in pre-osteoblasts. Metformin also inhibited hypoxia and RANKL-enhanced TRAP synthesis in macrophages. Intracanal metformin diminished bone loss in rat apical periodontitis. Comparing with vehicle control, cells lining bone surfaces in metformin-treated lesions had significantly stronger expression of RUNX2 and decreased synthesis of RANKL and TRAP. CONCLUSIONS Alleviation of bone resorption by intracanal metformin was associated with enhanced osteoblast differentiation and diminished osteoclast formation in rat apical periodontitis. Our results endorsed the role of metformin as an effective medicament for inflammatory bone diseases.
Collapse
Affiliation(s)
- Chi-Yuan Hong
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan; College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Sze-Kwan Lin
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Han-Wei Wang
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Tung Shun
- Department of Forensic Medicine and Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Ning Yang
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Eddie Hsiang-Hua Lai
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Jung Cheng
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mu-Hsiung Chen
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiang Yang
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Hung-Ying Lin
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Fang-Yu Wu
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Sang-Heng Kok
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
4
|
Zhang C, Li H, Li J, Hu J, Yang K, Tao L. Oxidative stress: A common pathological state in a high-risk population for osteoporosis. Biomed Pharmacother 2023; 163:114834. [PMID: 37163779 DOI: 10.1016/j.biopha.2023.114834] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/12/2023] Open
Abstract
Osteoporosis is becoming a major concern in the field of public health. The process of bone loss is insidious and does not directly induce obvious symptoms. Complications indicate an irreversible decrease in bone mass. The high-risk populations of osteoporosis, including postmenopausal women, elderly men, diabetic patients and obese individuals need regular bone mineral density testing and appropriate preventive treatment. However, the primary changes in these populations are different, increasing the difficulty of effective treatment of osteoporosis. Determining the core pathogenesis of osteoporosis helps improve the efficiency and efficacy of treatment among these populations. Oxidative stress is a common pathological state secondary to estrogen deficiency, aging, hyperglycemia and hyperlipemia. In this review, we divided oxidative stress into the direct effect of reactive oxygen species (ROS) and the reduction of antioxidant enzyme activity to discuss their roles in the development of osteoporosis. ROS initiated mitochondrial apoptotic signaling and suppressed osteogenic marker expression to weaken osteogenesis. MAPK and NF-κB signaling pathways mediated the positive effect of ROS on osteoclast differentiation. Antioxidant enzymes not only eliminate the negative effects of ROS, but also directly participate in the regulation of bone metabolism. Additionally, we also described the roles of proinflammatory factors and HIF-1α under the pathophysiological changes of inflammation and hypoxia, which provided a supplement of oxidative stress-induced osteoporosis. In conclusion, our review showed that oxidative stress was a common pathological state in a high-risk population for osteoporosis. Targeted oxidative stress treatment would greatly optimize the therapeutic schedule of various osteoporosis treatments.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Hao Li
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Jie Li
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Jiajin Hu
- Health Sciences Institute, China Medical University, Shenyang 110122, China
| | - Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China.
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China.
| |
Collapse
|
5
|
Ma Y, Qiu S, Zhou R. Osteoporosis in Patients With Respiratory Diseases. Front Physiol 2022; 13:939253. [PMID: 35903070 PMCID: PMC9315364 DOI: 10.3389/fphys.2022.939253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Climate change, environmental pollution, and virus epidemics have sharply increased the number of patients suffering from respiratory diseases in recent years. Prolonged periods of illness and drug use increase the occurrence of complications in these patients. Osteoporosis is the common bone metabolism disease with respiratory disturbance, which affects prognosis and increases mortality of patients. The problem of osteoporosis in patients with respiratory diseases needs more attention. In this review, we concluded the characteristics of osteoporosis in some respiratory diseases including COPD, asthma, COVID-19, tuberculosis, and lung cancer. We revealed that hypoxia was the common pathogenesis of osteoporosis secondary to respiratory diseases, with malnutrition and corticosteroid abuse driving the progression of osteoporosis. Hypoxia-induced ROS accumulation and activated HIF-1α lead to attenuated osteogenesis and enhanced osteoclastogenesis in patients with respiratory diseases. Tuberculosis and cancer also invaded bone tissue and reduced bone strength by direct infiltration. For the treatment of osteoporosis in respiratory patients, oral-optimized bisphosphonates were the best treatment modality. Vitamin D was a necessary supplement, both for calcium absorption in osteogenesis and for improvement of respiratory lesions. Reasonable adjustment of the dose and course of corticosteroids according to the etiology and condition of patients is beneficial to prevent the occurrence and development of osteoporosis. Additionally, HIF-1α was a potential target for the treatment of osteoporosis in respiratory patients, which could be activated under hypoxia condition and involved in the process of bone remodeling.
Collapse
Affiliation(s)
- Yue Ma
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shui Qiu
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Renyi Zhou
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
- *Correspondence: Renyi Zhou,
| |
Collapse
|
6
|
Babaker MA, Aljoud FA, Alkhilaiwi F, Algarni A, Ahmed A, Khan MI, Saadeldin IM, Alzahrani FA. The Therapeutic Potential of Milk Extracellular Vesicles on Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23126812. [PMID: 35743255 PMCID: PMC9224713 DOI: 10.3390/ijms23126812] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer remains one of the leading prevalent cancers in the world and is the fourth most common cause of death from cancer. Unfortunately, the currently utilized chemotherapies fail in selectively targeting cancer cells and cause harm to healthy cells, which results in profound side effects. Researchers are focused on developing anti-cancer targeted medications, which is essential to making them safer, more effective, and more selective and to maximizing their therapeutic benefits. Milk-derived extracellular vesicles (EVs) from camels and cows have attracted much attention as a natural substitute product that effectively suppresses a wide range of tumor cells. This review sheds light on the biogenesis, methods of isolation, characterization, and molecular composition of milk EVs as well as the therapeutic potentials of milk EVs on colorectal cancer.
Collapse
Affiliation(s)
- Manal A. Babaker
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Chemistry, Faculty of Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Fadwa A. Aljoud
- Regenerative Medicine Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.); (F.A.)
| | - Faris Alkhilaiwi
- Regenerative Medicine Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.); (F.A.)
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulrahman Algarni
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Northern Border University, Arar 73221, Saudi Arabia;
| | - Asif Ahmed
- MirZyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Birmingham B7 4BB, UK;
- School of Health Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Mohammad Imran Khan
- Centre of Artificial Intelligence in Precision Medicines (CAIPM), King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Islam M. Saadeldin
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- Correspondence: (I.M.S.); (F.A.A.)
| | - Faisal A. Alzahrani
- MirZyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Birmingham B7 4BB, UK;
- Centre of Artificial Intelligence in Precision Medicines (CAIPM), King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Embryonic Stem Cells Unit, Department of Biochemistry, Faculty of Science, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (I.M.S.); (F.A.A.)
| |
Collapse
|
7
|
Matic S, Dia VP. Bovine milk exosomes affected proliferation of macrophages under hypoxia. Curr Res Food Sci 2022; 5:2108-2113. [DOI: 10.1016/j.crfs.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
8
|
Impacts of Hypoxia on Osteoclast Formation and Activity: Systematic Review. Int J Mol Sci 2021; 22:ijms221810146. [PMID: 34576310 PMCID: PMC8467526 DOI: 10.3390/ijms221810146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 01/28/2023] Open
Abstract
Hypoxia is evident in several bone diseases which are characterized by excessive bone resorption by osteoclasts, the bone-resorbing cells. The effects of hypoxia on osteoclast formation and activities are widely studied but remain inconclusive. This systematic review discusses the studies reporting the effect of hypoxia on osteoclast differentiation and activity. A literature search for relevant studies was conducted through SCOPUS and PUBMED MEDLINE search engines. The inclusion criteria were original research articles presenting data demonstrating the effect of hypoxia or low oxygen on osteoclast formation and activity. A total of 286 studies were identified from the search, whereby 20 studies were included in this review, consisting of four in vivo studies and 16 in vitro studies. In total, 12 out of 14 studies reporting the effect of hypoxia on osteoclast activity indicated higher bone resorption under hypoxic conditions, 14 studies reported that hypoxia resulted in more osteoclasts, one study found that the number remained unchanged, and five studies indicated that the number decreased. In summary, examination of the relevant literature suggests differences in findings between studies, hence the impact of hypoxia on osteoclasts remains debatable, even though there is more evidence to suggest it promotes osteoclast differentiation and activity.
Collapse
|
9
|
Wrande M, Vestö K, Puiac Banesaru S, Anwar N, Nordfjell J, Liu L, McInerney GM, Rhen M. Replication of Salmonella enterica serovar Typhimurium in RAW264.7 Phagocytes Correlates With Hypoxia and Lack of iNOS Expression. Front Cell Infect Microbiol 2020; 10:537782. [PMID: 33330118 PMCID: PMC7734562 DOI: 10.3389/fcimb.2020.537782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 11/02/2020] [Indexed: 11/13/2022] Open
Abstract
Salmonella infection associates with tissue hypoxia, while inducible nitric oxide synthase (iNOS), relying for its activity on molecular oxygen, stands as a central host defence measure in murine salmonellosis. Here, we have detailed hypoxia and iNOS responses of murine macrophage-like RAW264.7 cells upon infection with Salmonella enterica serovar Typhimurium. We noted that only a proportion of the infected RAW264.7 cells became hypoxic or expressed iNOS. Heavily infected cells became hypoxic, while in parallel such cells tended not to express iNOS. While a proportion of the infected RAW264.7 cells revealed shutdown of protein synthesis, this was only detectable after 12 h post infection and after iNOS expression was induced in the cell culture. Our data implicate an intrinsic heterogeneity with regard to hypoxia and iNOS expression in a cell culture-based infection setting.
Collapse
Affiliation(s)
- Marie Wrande
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kim Vestö
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Speranta Puiac Banesaru
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Naeem Anwar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Johan Nordfjell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lifeng Liu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gerald M McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Rhen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
10
|
Roy Chowdhury A, Srinivasan S, Csordás G, Hajnóczky G, Avadhani NG. Dysregulation of RyR Calcium Channel Causes the Onset of Mitochondrial Retrograde Signaling. iScience 2020; 23:101370. [PMID: 32738613 PMCID: PMC7394923 DOI: 10.1016/j.isci.2020.101370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 02/18/2020] [Accepted: 07/13/2020] [Indexed: 01/22/2023] Open
Abstract
This study shows that multiple modes of mitochondrial stress generated by partial mtDNA depletion or cytochrome c oxidase disruption cause ryanodine receptor channel (RyR) dysregulation, which instigates the release of Ca2+ in the cytoplasm of C2C12 myoblasts and HCT116 carcinoma cells. We also observed a reciprocal downregulation of IP3R channel activity and reduced mitochondrial uptake of Ca2+. Ryanodine, an RyR antagonist, abrogated the mitochondrial stress-mediated increase in [Ca2+]c and the entire downstream signaling cascades of mitochondrial retrograde signaling. Interestingly, ryanodine also inhibited mitochondrial stress-induced invasive behavior in mtDNA-depleted C2C12 cells and HCT116 carcinoma cells. In addition, co-immunoprecipitation shows reduced FKBP12 protein binding to RyR channel proteins, suggesting the altered function of the Ca2+ channel. These results document how the endoplasmic reticulum-associated RyR channels, in combination with inhibition of the mitochondrial uniporter system, modulate cellular Ca2+ homeostasis and signaling under mitochondrial stress conditions.
Collapse
Affiliation(s)
- Anindya Roy Chowdhury
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Satish Srinivasan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - György Csordás
- Mitocare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - György Hajnóczky
- Mitocare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Narayan G Avadhani
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Hannah SS, McFadden S, McNeilly A, McClean C. "Take My Bone Away?" Hypoxia and bone: A narrative review. J Cell Physiol 2020; 236:721-740. [PMID: 32643217 DOI: 10.1002/jcp.29921] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022]
Abstract
To maintain normal cellular and physiological function, sufficient oxygen is required. Recently, evidence has suggested that hypoxia, either pathological or environmental, may influence bone health. It appears that bone cells are distinctly responsive to hypoxic stimuli; for better or worse, this is still yet to be elucidated. Hypoxia has been shown to offer potentially therapeutic effects for bone by inducing an osteogenic-angiogenic response, although, others have noted excessive osteoclastic bone resorption instead. Much evidence suggests that the hypoxic-inducible pathway is integral in mediating the changes in bone metabolism. Furthermore, many factors associated with hypoxia including changes in energy metabolism, acid-base balance and the increased generation of reactive oxygen species, are known to influence bone metabolism. This review aims to examine some of the putative mechanisms responsible for hypoxic-induced alterations of bone metabolism, with regard to osteoclasts and osteoblasts, both positive and negative.
Collapse
Affiliation(s)
- Scott S Hannah
- Sport and Exercise Sciences Research Institute, Ulster University, Newtownabbey, Antrim, UK
| | - Sonyia McFadden
- Institute of Nursing and Health Research, Ulster University, Newtownabbey, Antrim, UK
| | - Andrea McNeilly
- Sport and Exercise Sciences Research Institute, Ulster University, Newtownabbey, Antrim, UK
| | - Conor McClean
- Sport and Exercise Sciences Research Institute, Ulster University, Newtownabbey, Antrim, UK
| |
Collapse
|
12
|
Chowdhury AR, Zielonka J, Kalyanaraman B, Hartley RC, Murphy MP, Avadhani NG. Mitochondria-targeted paraquat and metformin mediate ROS production to induce multiple pathways of retrograde signaling: A dose-dependent phenomenon. Redox Biol 2020; 36:101606. [PMID: 32604037 PMCID: PMC7327929 DOI: 10.1016/j.redox.2020.101606] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/11/2020] [Indexed: 01/12/2023] Open
Abstract
The mitochondrial electron transport chain is a major source of reactive oxygen species (ROS) and is also a target of ROS, with an implied role in the stabilization of hypoxia-inducible factor (HIF) and induction of the AMPK pathway. Here we used varying doses of two agents, Mito-Paraquat and Mito-Metformin, that have been conjugated to cationic triphenylphosphonium (TPP+) moiety to selectively target them to the mitochondrial matrix compartment, thereby resulting in the site-specific generation of ROS within mitochondria. These agents primarily induce superoxide (O2•-) production by acting on complex I. In Raw264.7 macrophages, C2C12 skeletal myocytes, and HCT116 adenocarcinoma cells, we show that mitochondria-targeted oxidants can induce ROS (O2•- and H2O2). In all three cell lines tested, the mitochondria-targeted agents disrupted membrane potential and activated calcineurin and the Cn-dependent retrograde signaling pathway. Hypoxic culture conditions also induced Cn activation and HIF1α activation in a temporally regulated manner, with the former appearing at shorter exposure times. Together, our results indicate that mitochondrial oxidant-induced retrograde signaling is driven by disruption of membrane potential and activation of Ca2+/Cn pathway and is independent of ROS-induced HIF1α or AMPK pathways.
Collapse
Affiliation(s)
- Anindya Roy Chowdhury
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Michael P Murphy
- MRC-Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge, CB2 OXY, UK
| | - Narayan G Avadhani
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Mitochondrial Dysfunction in Aging and Cancer. J Clin Med 2019; 8:jcm8111983. [PMID: 31731601 PMCID: PMC6912717 DOI: 10.3390/jcm8111983] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 12/14/2022] Open
Abstract
Aging is a major risk factor for developing cancer, suggesting that these two events may represent two sides of the same coin. It is becoming clear that some mechanisms involved in the aging process are shared with tumorigenesis, through convergent or divergent pathways. Increasing evidence supports a role for mitochondrial dysfunction in promoting aging and in supporting tumorigenesis and cancer progression to a metastatic phenotype. Here, a summary of the current knowledge of three aspects of mitochondrial biology that link mitochondria to aging and cancer is presented. In particular, the focus is on mutations and changes in content of the mitochondrial genome, activation of mitochondria-to-nucleus signaling and the newly discovered mitochondria-telomere communication.
Collapse
|
14
|
Angireddy R, Kazmi HR, Srinivasan S, Sun L, Iqbal J, Fuchs SY, Guha M, Kijima T, Yuen T, Zaidi M, Avadhani NG. Cytochrome c oxidase dysfunction enhances phagocytic function and osteoclast formation in macrophages. FASEB J 2019; 33:9167-9181. [PMID: 31063702 PMCID: PMC6662975 DOI: 10.1096/fj.201900010rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022]
Abstract
The mitochondria-to-nucleus retrograde signaling (MtRS) pathway aids in cellular adaptation to stress. We earlier reported that the Ca2+- and calcineurin-dependent MtRS induces macrophage differentiation to bone-resorbing osteoclasts. However, mechanisms through which macrophages sense and respond to cellular stress remain unclear. Here, we induced mitochondrial stress in macrophages by knockdown (KD) of subunits IVi1 or Vb of cytochrome c oxidase (CcO). Whereas both IVi1 and Vb KD impair CcO activity, IVi1 KD cells produced higher levels of cellular and mitochondrial reactive oxygen species with increased glycolysis. Additionally, IVi1 KD induced the activation of MtRS factors NF-κB, NFAT2, and C/EBPδ as well as inflammatory cytokines, NOS 2, increased phagocytic activity, and a greater osteoclast differentiation potential at suboptimal RANK-L concentrations. The osteoclastogenesis in IVi1 KD cells was reversed fully with an IL-6 inhibitor LMT-28, whereas there was minimal rescue of the enhanced phagocytosis in these cells. In agreement with our findings in cultured macrophages, primary bone marrow-derived macrophages from MPV17-/- mice, a model for mitochondrial dysfunction, also showed higher propensity for osteoclast formation. This is the first report showing that CcO dysfunction affects inflammatory pathways, phagocytic function, and osteoclastogenesis.-Angireddy, R., Kazmi, H. R., Srinivasan, S., Sun, L., Iqbal, J., Fuchs, S. Y., Guha, M., Kijima, T., Yuen, T., Zaidi, M., Avadhani, N. G. Cytochrome c oxidase dysfunction enhances phagocytic function and osteoclast formation in macrophages.
Collapse
Affiliation(s)
- Rajesh Angireddy
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hasan Raza Kazmi
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Satish Srinivasan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Li Sun
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jameel Iqbal
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Serge Y. Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Manti Guha
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Takashi Kijima
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tony Yuen
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mone Zaidi
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Narayan G. Avadhani
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Guo Y, Xie C, Li X, Yang J, Yu T, Zhang R, Zhang T, Saxena D, Snyder M, Wu Y, Li X. Succinate and its G-protein-coupled receptor stimulates osteoclastogenesis. Nat Commun 2017; 8:15621. [PMID: 28561074 PMCID: PMC5460032 DOI: 10.1038/ncomms15621] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 04/13/2017] [Indexed: 11/18/2022] Open
Abstract
The mechanism underlying bone impairment in patients with diabetes mellitus, a metabolic disorder characterized by chronic hyperglycaemia and dysregulation in metabolism, is unclear. Here we show the difference in the metabolomics of bone marrow stromal cells (BMSCs) derived from hyperglycaemic (type 2 diabetes mellitus, T2D) and normoglycaemic mice. One hundred and forty-two metabolites are substantially regulated in BMSCs from T2D mice, with the tricarboxylic acid (TCA) cycle being one of the primary metabolic pathways impaired by hyperglycaemia. Importantly, succinate, an intermediate metabolite in the TCA cycle, is increased by 24-fold in BMSCs from T2D mice. Succinate functions as an extracellular ligand through binding to its specific receptor on osteoclastic lineage cells and stimulates osteoclastogenesis in vitro and in vivo. Strategies targeting the receptor activation inhibit osteoclastogenesis. This study reveals a metabolite-mediated mechanism of osteoclastogenesis modulation that contributes to bone dysregulation in metabolic disorders. Bone loss is common in patients with diabetes, but the underlying molecular and cellular mechanisms are unclear. Here the authors show high succinate levels in mice with type 2 diabetes and that succinate can signal through succinate receptor 1 on osteoclasts to induce bone resorption.
Collapse
Affiliation(s)
- Yuqi Guo
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York 10010, USA
| | - Chengzhi Xie
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York 10010, USA
| | - Xiyan Li
- Department of Genetics, Stanford University, Stanford, California 94305-5120, USA
| | - Jian Yang
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York 10010, USA
| | - Tao Yu
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York 10010, USA.,Institute for Genomic Engineered Animal Models of Human Diseases, Liaoning 116044, China
| | - Ruohan Zhang
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York 10010, USA
| | - Tianqing Zhang
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York 10010, USA
| | - Deepak Saxena
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York 10010, USA
| | - Michael Snyder
- Department of Genetics, Stanford University, Stanford, California 94305-5120, USA
| | - Yingjie Wu
- Institute for Genomic Engineered Animal Models of Human Diseases, Liaoning 116044, China.,Advanced Institute for Medical Science, Dalian Medical University, 9 West Section, South Lvshun Road Dalian, Liaoning 116044, China
| | - Xin Li
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York 10010, USA.,Department of Urology, New York University Langone Medical Center, New York, New York 10016, USA.,Perlmutter Cancer Institute, New York University Langone Medical Center, New York, New York 10016, USA
| |
Collapse
|
16
|
Hulley PA, Bishop T, Vernet A, Schneider JE, Edwards JR, Athanasou NA, Knowles HJ. Hypoxia-inducible factor 1-alpha does not regulate osteoclastogenesis but enhances bone resorption activity via prolyl-4-hydroxylase 2. J Pathol 2017; 242:322-333. [PMID: 28418093 PMCID: PMC5518186 DOI: 10.1002/path.4906] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/27/2017] [Accepted: 04/03/2017] [Indexed: 12/12/2022]
Abstract
Osteogenic-angiogenic coupling is promoted by the hypoxia-inducible factor 1-alpha (HIF-1α) transcription factor, provoking interest in HIF activation as a therapeutic strategy to improve osteoblast mineralization and treat pathological osteolysis. However, HIF also enhances the bone-resorbing activity of mature osteoclasts. It is therefore essential to determine the full effect(s) of HIF on both the formation and the bone-resorbing function of osteoclasts in order to understand how they might respond to such a strategy. Expression of HIF-1α mRNA and protein increased during osteoclast differentiation from CD14+ monocytic precursors, additionally inducing expression of the HIF-regulated glycolytic enzymes. However, HIF-1α siRNA only moderately affected osteoclast differentiation, accelerating fusion of precursor cells. HIF induction by inhibition of the regulatory prolyl-4-hydroxylase (PHD) enzymes reduced osteoclastogenesis, but was confirmed to enhance bone resorption by mature osteoclasts. Phd2+/- murine osteoclasts also exhibited enhanced bone resorption, associated with increased expression of resorption-associated Acp5, in comparison with wild-type cells from littermate controls. Phd3-/- bone marrow precursors displayed accelerated early fusion, mirroring results with HIF-1α siRNA. In vivo, Phd2+/- and Phd3-/- mice exhibited reduced trabecular bone mass, associated with reduced mineralization by Phd2+/- osteoblasts. These data indicate that HIF predominantly functions as a regulator of osteoclast-mediated bone resorption, with little effect on osteoclast differentiation. Inhibition of HIF might therefore represent an alternative strategy to treat diseases characterized by pathological levels of osteolysis. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Philippa A Hulley
- Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Tammie Bishop
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Aude Vernet
- BHF Experimental MR Unit, University of Oxford, Oxford, UK
| | | | - James R Edwards
- Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Nick A Athanasou
- Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, Nuffield Orthopaedic Centre, University of Oxford, Oxford, UK
| | - Helen J Knowles
- Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Srinivasan S, Guha M, Kashina A, Avadhani NG. Mitochondrial dysfunction and mitochondrial dynamics-The cancer connection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:602-614. [PMID: 28104365 DOI: 10.1016/j.bbabio.2017.01.004] [Citation(s) in RCA: 286] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 02/07/2023]
Abstract
Mitochondrial dysfunction is a hallmark of many diseases. The retrograde signaling initiated by dysfunctional mitochondria can bring about global changes in gene expression that alters cell morphology and function. Typically, this is attributed to disruption of important mitochondrial functions, such as ATP production, integration of metabolism, calcium homeostasis and regulation of apoptosis. Recent studies showed that in addition to these factors, mitochondrial dynamics might play an important role in stress signaling. Normal mitochondria are highly dynamic organelles whose size, shape and network are controlled by cell physiology. Defective mitochondrial dynamics play important roles in human diseases. Mitochondrial DNA defects and defective mitochondrial function have been reported in many cancers. Recent studies show that increased mitochondrial fission is a pro-tumorigenic phenotype. In this paper, we have explored the current understanding of the role of mitochondrial dynamics in pathologies. We present new data on mitochondrial dynamics and dysfunction to illustrate a causal link between mitochondrial DNA defects, excessive fission, mitochondrial retrograde signaling and cancer progression. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.
Collapse
Affiliation(s)
- Satish Srinivasan
- The Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, #189E, Philadelphia, PA 19104, United States
| | - Manti Guha
- The Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, #189E, Philadelphia, PA 19104, United States
| | - Anna Kashina
- The Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, #189E, Philadelphia, PA 19104, United States
| | - Narayan G Avadhani
- The Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, #189E, Philadelphia, PA 19104, United States.
| |
Collapse
|
18
|
Andreev-Andrievskiy AA, Kolosova NG, Stefanova NA, Lovat MV, Egorov MV, Manskikh VN, Zinovkin RA, Galkin II, Prikhodko AS, Skulachev MV, Lukashev AN. Efficacy of Mitochondrial Antioxidant Plastoquinonyl-decyl-triphenylphosphonium Bromide (SkQ1) in the Rat Model of Autoimmune Arthritis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8703645. [PMID: 27293517 PMCID: PMC4887630 DOI: 10.1155/2016/8703645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/22/2016] [Accepted: 04/18/2016] [Indexed: 12/30/2022]
Abstract
Rheumatoid arthritis is one of the most common autoimmune diseases. Many antioxidants have been tested in arthritis, but their efficacy was, at best, marginal. In this study, a novel mitochondria-targeted antioxidant, plastoquinonyl-decyl-triphenylphosphonium bromide (SkQ1), was tested in vivo to prevent and cure experimental autoimmune arthritis. In conventional Wistar rats, SkQ1 completely prevented the development of clinical signs of arthritis if administered with food before induction. Further, SkQ1 significantly reduced the fraction of animals that developed clinical signs of arthritis and severity of pathological lesions if administration began immediately after induction of arthritis or at the onset of first symptoms (day 14 after induction). In specific pathogen-free Wistar rats, SkQ1 administered via gavage after induction of arthritis did not reduce the fraction of animals with arthritis but decreased the severity of lesions upon pathology examination in a dose-dependent manner. Efficacious doses of SkQ1 were in the range of 0.25-1.25 nmol/kg/day (0.13-0.7 μg/kg/day), which is much lower than doses commonly used for conventional antioxidants. SkQ1 promoted apoptosis of neutrophils in vitro, which may be one of the mechanisms underlying its pharmacological activity. Considering its low toxicity and the wide therapeutic window, SkQ1 may be a valuable additional therapy for rheumatoid arthritis.
Collapse
Affiliation(s)
- Alexander A. Andreev-Andrievskiy
- Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Maxim V. Lovat
- Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim V. Egorov
- Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia
| | - Vasily N. Manskikh
- Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia
| | - Roman A. Zinovkin
- Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ivan I. Galkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Maxim V. Skulachev
- Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander N. Lukashev
- Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia
- Martsinovsky Institute of Medical Parasitology and Tropical Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
19
|
Snodgrass RG, Boß M, Zezina E, Weigert A, Dehne N, Fleming I, Brüne B, Namgaladze D. Hypoxia Potentiates Palmitate-induced Pro-inflammatory Activation of Primary Human Macrophages. J Biol Chem 2015; 291:413-24. [PMID: 26578520 DOI: 10.1074/jbc.m115.686709] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Indexed: 12/17/2022] Open
Abstract
Pro-inflammatory cytokines secreted by adipose tissue macrophages (ATMs) contribute to chronic low-grade inflammation and obesity-induced insulin resistance. Recent studies have shown that adipose tissue hypoxia promotes an inflammatory phenotype in ATMs. However, our understanding of how hypoxia modulates the response of ATMs to free fatty acids within obese adipose tissue is limited. We examined the effects of hypoxia (1% O2) on the pro-inflammatory responses of human monocyte-derived macrophages to the saturated fatty acid palmitate. Compared with normoxia, hypoxia significantly increased palmitate-induced mRNA expression and protein secretion of IL-6 and IL-1β. Although palmitate-induced endoplasmic reticulum stress and nuclear factor κB pathway activation were not enhanced by hypoxia, hypoxia increased the activation of JNK and p38 mitogen-activated protein kinase signaling in palmitate-treated cells. Inhibition of JNK blocked the hypoxic induction of pro-inflammatory cytokine expression, whereas knockdown of hypoxia-induced transcription factors HIF-1α and HIF-2α alone or in combination failed to reduce IL-6 and only modestly reduced IL-1β gene expression in palmitate-treated hypoxic macrophages. Enhanced pro-inflammatory cytokine production and JNK activity under hypoxia were prevented by inhibiting reactive oxygen species generation. In addition, silencing of dual-specificity phosphatase 16 increased normoxic levels of IL-6 and IL-1β and reduced the hypoxic potentiation in palmitate-treated macrophages. The secretome of hypoxic palmitate-treated macrophages promoted IL-6 and macrophage chemoattractant protein 1 expression in primary human adipocytes, which was sensitive to macrophage JNK inhibition. Our results reveal that the coexistence of hypoxia along with free fatty acids exacerbates macrophage-mediated inflammation.
Collapse
Affiliation(s)
| | - Marcel Boß
- From the Institute of Biochemistry I and
| | | | | | | | - Ingrid Fleming
- Institute for Vascular Signaling, Center for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | | | |
Collapse
|
20
|
Abstract
Bone integrity is maintained throughout life via the homeostatic actions of bone cells, namely, osteoclasts, which resorb bone, and osteoblasts, which produce bone. Disruption of this balance in favor of osteoclast activation results in pathological bone loss, which occurs in conditions including osteoporosis, rheumatoid arthritis, primary bone cancer, and cancer metastasis to bone. Hypoxia also plays a major role in these conditions, where it is associated with disease progression and poor prognosis. In recent years, considerable interest has arisen in the mechanisms whereby hypoxia and the hypoxia-inducible transcription factors, HIF-1α and HIF-2α, affect bone remodeling and bone pathologies. This review summarizes the current evidence for hypoxia-mediated regulation of osteoclast differentiation and bone resorption activity. Role(s) of HIF and HIF target genes in the formation of multinucleated osteoclasts from cells of the monocyte-macrophage lineage and in the activation of bone resorption by mature osteoclasts will be discussed. Specific attention will be paid to hypoxic metabolism and generation of ATP by osteoclasts. Hypoxia-driven increases in both glycolytic flux and mitochondrial metabolic activity, along with consequent generation of mitochondrial reactive oxygen species, have been found to be essential for osteoclast formation and resorption activity. Finally, evidence for the use of HIF inhibitors as potential therapeutic agents targeting bone resorption in osteolytic disease will be discussed.
Collapse
Affiliation(s)
- Helen J Knowles
- Botnar Research Centre, NDORMS, University of Oxford, Oxford, Oxfordshire, UK
| |
Collapse
|
21
|
Guha M, Srinivasan S, Koenigstein A, Zaidi M, Avadhani NG. Enhanced osteoclastogenesis by mitochondrial retrograde signaling through transcriptional activation of the cathepsin K gene. Ann N Y Acad Sci 2015; 1364:52-61. [PMID: 25800988 DOI: 10.1111/nyas.12709] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondrial dysfunction has emerged as an important factor in wide ranging human pathologies. We have previously defined a retrograde signaling pathway that originates from dysfunctional mitochondria (Mt-RS) and causes a global nuclear transcriptional reprograming as its end point. Mitochondrial dysfunction causing disruption of mitochondrial membrane potential and consequent increase in cytosolic calcium [Ca(2) ](c) activates calcineurin and the transcription factors NF-κB, NFAT, CREB, and C/EBPδ. In macrophages, this signaling complements receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastic differentiation. Here, we show that the Mt-RS activated transcriptional coactivator heterogeneous ribonucleoprotein A2 (hnRNP A2) is induced by hypoxia in murine macrophages. We demonstrate that the cathepsin K gene (Ctsk), one of the key genes upregulated during osteoclast differentiation, is transcriptionally activated by Mt-RS factors. HnRNP A2 acts as a coactivator with nuclear transcription factors, cRel, and C/EBPδ for Ctsk promoter activation under hypoxic conditions. Notably, our study shows that hypoxia-induced activation of the stress target factors mediates effects similar to that of RANKL with regard to Ctsk activation. We therefore suggest that mitochondrial dysfunction and activation of Mt-RS, induced by various pathophysiologic conditions, is a potential risk factor for osteoclastogenesis and bone loss.
Collapse
Affiliation(s)
- Manti Guha
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Satish Srinivasan
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alexander Koenigstein
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mone Zaidi
- The Mount Sinai Bone Program, Mount Sinai School of Medicine, New York, New York
| | - Narayan G Avadhani
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
22
|
Al Hadi H, Smerdon GR, Fox SW. Hyperbaric oxygen therapy suppresses osteoclast formation and bone resorption. J Orthop Res 2013; 31:1839-44. [PMID: 23878004 DOI: 10.1002/jor.22443] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/25/2013] [Indexed: 02/04/2023]
Abstract
The cellular and molecular mechanism through which hyperbaric oxygen therapy (HBO) improves osteonecrosis (ON) is unclear. The present study therefore examined the effect of HBO, pressure and hyperoxia on RANKL-induced osteoclast formation in RAW 264.7 cells and human peripheral blood monocytes (PBMC). Daily exposure to HBO (2.4 ATA, 97% O2 , 90 min), hyperbaric pressure (2.4 ATA, 8.8% O2 , 90 min) or normobaric hyperoxia (1 ATA, 95% O2 , 90 min) significantly decreased RANKL-induced osteoclast formation and bone resorption in normoxic conditions. HBO had a more pronounced anti-osteoclastic effect than hyperoxia or pressure alone and also directly inhibited osteoclast formation and resorption in hypoxic conditions a hallmark of many osteolytic skeletal disorders. The suppressive action of HBO was at least in part mediated through a reduction in RANK, NFATc1, and Dc-STAMP expression and inhibition of hypoxia-induced HIF-1α mRNA and protein expression. This data provides mechanistic evidence supporting the use of HBO as an adjunctive therapy to prevent osteoclast formation and bone loss associated with low oxygen partial pressure.
Collapse
Affiliation(s)
- Hadil Al Hadi
- School of Biomedical and Biological Sciences, Plymouth University, Drake Circus, Plymouth, Devon, PL4 8AA, UK
| | | | | |
Collapse
|
23
|
Guha M, Avadhani NG. Mitochondrial retrograde signaling at the crossroads of tumor bioenergetics, genetics and epigenetics. Mitochondrion 2013; 13:577-91. [PMID: 24004957 DOI: 10.1016/j.mito.2013.08.007] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/20/2013] [Accepted: 08/27/2013] [Indexed: 12/25/2022]
Abstract
Mitochondria play a central role not only in energy production but also in the integration of metabolic pathways as well as signals for apoptosis and autophagy. It is becoming increasingly apparent that mitochondria in mammalian cells play critical roles in the initiation and propagation of various signaling cascades. In particular, mitochondrial metabolic and respiratory states and status on mitochondrial genetic instability are communicated to the nucleus as an adaptive response through retrograde signaling. Each mammalian cell contains multiple copies of the mitochondrial genome (mtDNA). A reduction in mtDNA copy number has been reported in various human pathological conditions such as diabetes, obesity, neurodegenerative disorders, aging and cancer. Reduction in mtDNA copy number disrupts mitochondrial membrane potential (Δψm) resulting in dysfunctional mitochondria. Dysfunctional mitochondria trigger retrograde signaling and communicate their changing metabolic and functional state to the nucleus as an adaptive response resulting in an altered nuclear gene expression profile and altered cell physiology and morphology. In this review, we provide an overview of the various modes of mitochondrial retrograde signaling focusing particularly on the Ca(2+)/Calcineurin mediated retrograde signaling. We discuss the contribution of the key factors of the pathway such as Calcineurin, IGF1 receptor, Akt kinase and HnRNPA2 in the propagation of signaling and their role in modulating genetic and epigenetic changes favoring cellular reprogramming towards tumorigenesis.
Collapse
Affiliation(s)
- Manti Guha
- Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | | |
Collapse
|
24
|
Qing Hong Z, Meng Tao L, Yi Z, Wei L, Ju Xiang S, Li L. The effect of rotative stress on CAII, FAS, FASL, OSCAR, and TRAP gene expression in osteoclasts. J Cell Biochem 2012; 114:388-97. [PMID: 22949349 DOI: 10.1002/jcb.24372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/22/2012] [Indexed: 11/09/2022]
Abstract
This study was designed to explore the effects of rotative stress on carbonic anhydrase II (CAII), TNF receptor superfamily member 6 (FAS), FAS ligand (FASL), osteoclast-associated receptor (OSCAR), and tartrate-resistant acid phosphatase (TRAP) gene expression in osteoclasts. Osteoclasts were induced from RAW264.7 cells cultured in medium containing recombinant murine soluble receptor activator of NF-Kβ ligand (sRANKL). The mRNA and protein expression of CAII, FAS, FASL, OSCAR, and TRAP genes in osteoclasts was detected by RT-PCR and Western blot, respectively, after osteoclasts were loaded at various rotative stress strengths and times. No significant differences in mRNA and protein expression were observed between any of the control groups (P > 0.05). Importantly, rotative stress had a significant effect on the mRNA and protein expression of these genes (P < 0.05). We found a negative relationship between rotative stress strength and prolonged loading time and the expression of FAS/FASL genes in osteoclasts. In addition, there was a positive relationship between rotative stress strength and prolonged loading time and the expression of CAII, OSCAR, or TRAP genes in osteoclasts. Based on these results, rotative stress has a significant effect on CAII, FAS, FASL, OSCAR, and TRAP gene expression in osteoclasts.
Collapse
Affiliation(s)
- Zhang Qing Hong
- Department of Prosthodontics, Stomatology Hospital, College of Medical Sciences, Zhejiang University, No.395 Yan-an Road, Hangzhou 310006, China
| | | | | | | | | | | |
Collapse
|
25
|
Zhao Y, Chen G, Zhang W, Xu N, Zhu JY, Jia J, Sun ZJ, Wang YN, Zhao YF. Autophagy regulates hypoxia-induced osteoclastogenesis through the HIF-1α/BNIP3 signaling pathway. J Cell Physiol 2011; 227:639-48. [DOI: 10.1002/jcp.22768] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Galli C, Passeri G, Macaluso GM. FoxOs, Wnts and oxidative stress-induced bone loss: new players in the periodontitis arena? J Periodontal Res 2011; 46:397-406. [PMID: 21332475 DOI: 10.1111/j.1600-0765.2011.01354.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Chronic periodontitis is a widespread disease affecting tooth-supporting structures that can lead to extensive loss of periodontal ligament and bone, ultimately resulting in tooth loss. Extensive evidence has demonstrated a strong association between age, metabolic disorders such as type II diabetes, oxidative stress and alveolar bone loss. The molecular players controlling bone maintenance and underlying age-related bone loss and its links to the general metabolism are currently the object of intense research. MATERIAL AND METHODS Recent findings are summarized to elucidate the molecular mechanisms linking oxidative stress, bone loss and metabolic factors. RESULTS It is well known that reactive oxygen species are an inevitable consequence of cellular respiration and that organisms have developed an efficient array of defenses against them. The core of this complex defense line is a family of transcription factors, known as FoxOs, which can bind to β-catenin and initiate a transcriptional programme regulating cell apoptosis, DNA repair and degradation of reactive oxygen species. An increase in reactive oxygen species due, for example, to age or insulin resistance, generates a situation in which bone formation is impaired by activation of FoxO, and a decrease in Wnt signaling and bone resorption are promoted. CONCLUSION The balance between FoxO and the Wnt pathway is finely tuned by systemic and local factors, creating a far-reaching mechanism that dictates the fate of mesenchymal progenitors and regulates the homeostasis of bone, providing a rationale for the impairment of systemic and alveolar bone maintenance clinically observed with age and metabolic diseases.
Collapse
Affiliation(s)
- C Galli
- Department of Internal Medicine Unit of Periodontology, University of Parma, Parma, Italy.
| | | | | |
Collapse
|
27
|
Leger AJ, Altobelli A, Mosquea LM, Belanger AJ, Song A, Cheng SH, Jiang C, Yew NS. Inhibition of osteoclastogenesis by prolyl hydroxylase inhibitor dimethyloxallyl glycine. J Bone Miner Metab 2010; 28:510-9. [PMID: 20300790 DOI: 10.1007/s00774-010-0171-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 02/03/2010] [Indexed: 12/22/2022]
Abstract
Studies examining the effects of hypoxia upon osteoclast biology have consistently revealed a stimulatory effect; both osteoclast differentiation and resorption activity have been shown to be enhanced in the presence of hypoxia. In the present study we examined the effects of the hypoxia mimetics dimethyloxallyl glycine (DMOG) and desferrioxamine (DFO) upon osteoclastogenesis. In contrast to hypoxia, our studies revealed a dose-dependent inhibition of osteoclast formation from macrophages treated with DMOG and DFO. Moreover, expression of a constitutively active form of hypoxia-inducible factor 1alpha (HIF-1alpha) did not enhance osteoclastogenesis and actually attenuated the differentiation process. DMOG did not affect cell viability or receptor activator of nuclear factor kappaB ligand (RANKL)-dependent phosphorylation of mitogen-activated protein (MAP) kinases. However, RANKL-dependent transcription of tartrate-resistant acid phosphatase (TRAP) was reduced in the presence of DMOG. Additionally, DMOG promoted transcription of the pro-apoptotic mediator B-Nip3. These studies suggest that a hypoxia-responsive factor other than HIF-1alpha is necessary for enhancing the formation of osteoclasts in hypoxic settings.
Collapse
Affiliation(s)
- Andrew J Leger
- Genzyme Corporation, 49 New York Avenue, Framingham, MA 01701-9322, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Srinivasan S, Koenigstein A, Joseph J, Sun L, Kalyanaraman B, Zaidi M, Avadhani NG. Role of mitochondrial reactive oxygen species in osteoclast differentiation. Ann N Y Acad Sci 2010; 1192:245-52. [PMID: 20392243 DOI: 10.1111/j.1749-6632.2009.05377.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previously we showed that hypoxia-induced mitochondrial respiratory stress in RAW 264.7 macrophages and other cells caused activation of retrograde signaling (also known as mitochondrial respiratory stress signaling) and the appearance of tartrate-resistant acid phosphatase (TRAP)-positive cells. In the present study, we used N-acetyl cysteine and ascorbate (general antioxidants) and MitoQ, a mitochondria-specific antioxidant, to investigate the role of intracellular reactive oxygen species (ROS) in osteoclast differentiation. Our results show that hypoxia-mediated mitochondrial dysfunction, as tested by disruption of mitochondrial transmembrane potential, was suppressed by MitoQ as well as by the other antioxidants. These agents also suppressed the activation of mitochondrial retrograde signaling. Interestingly, in terms of molar concentrations, MitoQ was more than 1000-fold more effective than general antioxidants in suppressing the receptor activator of nuclear factor-B ligand-induced differentiation of RAW 264.7 cells into multinucleated and TRAP-positive osteoclasts. We propose that mitochondrial function and intramitochondrial ROS play important roles in osteoclastogenesis.
Collapse
Affiliation(s)
- Satish Srinivasan
- Department of Animal Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Role of calcineurin, hnRNPA2 and Akt in mitochondrial respiratory stress-mediated transcription activation of nuclear gene targets. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1055-65. [PMID: 20153290 DOI: 10.1016/j.bbabio.2010.02.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 02/01/2010] [Accepted: 02/07/2010] [Indexed: 01/18/2023]
Abstract
Pathophysiological conditions causing mitochondrial dysfunction and altered transmembrane potential (psim) initiate a mitochondrial respiratory stress response, also known as mitochondrial retrograde response, in a variety of mammalian cells. An increase in the cytosolic Ca2+ [Ca2+]c as part of this signaling cascade activates Ca2+ responsive phosphatase, calcineurin (Cn). Activation of IGF1R accompanied by increased glycolysis, invasiveness, and resistance to apoptosis is a phenotypic hallmark of C2C12 skeletal muscle cells subjected to this stress. The signaling is associated with activation and increased nuclear translocation of a number of transcription factors including a novel NFkappaB (cRel:p50) pathway, NFAT, CREB and C/EBPdelta. This culminates in the upregulation of a number of nuclear genes including Cathepsin L, RyR1, Glut4 and Akt1. We observed that stress regulated transcription activation of nuclear genes involves a cooperative interplay between NFkappaB (cRel:p50), C/EBPdelta, CREB, and NFAT. Our results show that the functional synergy of these factors requires the stress-activated heterogeneous nuclear ribonucleoprotein, hnRNPA2 as a transcriptional coactivator. We report here that mitochondrial stress leads to induced expression and activation of serine threonine kinase Akt1. Interestingly, we observe that Akt1 phosphorylates hnRNPA2 under mitochondrial stress conditions, which is a crucial step for the recruitment of this coactivator to the stress target promoters and culmination in mitochondrial stress-mediated transcription activation of target genes. We propose that mitochondrial stress plays an important role in tumor progression and emergence of invasive phenotypes.
Collapse
|
30
|
Wang D, Malo D, Hekimi S. Elevated mitochondrial reactive oxygen species generation affects the immune response via hypoxia-inducible factor-1alpha in long-lived Mclk1+/- mouse mutants. THE JOURNAL OF IMMUNOLOGY 2009; 184:582-90. [PMID: 20007531 DOI: 10.4049/jimmunol.0902352] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mitochondrial reactive oxygen species (ROS) are believed to stabilize hypoxia-inducible factor (HIF)-1alpha, a transcriptional regulator of the immune response. Mclk1 encodes a mitochondrial protein that is necessary for ubiquinone biosynthesis. Heterozygote Mclk1(+/-) mutant mice are long-lived despite increased mitochondrial ROS and decreased energy metabolism. In this study, Mclk1(+/-) mutant mice in the C57BL/6J background displayed increased basal and induced expression of HIF-1alpha in liver and macrophages in association with elevated expression of inflammatory cytokines, in particular TNF-alpha. Mutant macrophages showed increased classical and decreased alternative activation, and mutant mice were hypersensitive to LPS. Consistent with these observations in vivo, knock-down of Mclk1 in murine RAW264.7 macrophage-like cells induced increased mitochondrial ROS as well as elevated expression of HIF-1alpha and secretion of TNF-alpha. We used an antioxidant peptide targeted to mitochondria to show that altered ROS metabolism is necessary for the enhanced expression of HIF-1alpha, which, in turn, is necessary for increased TNF-alpha secretion. These findings provide in vivo evidence for the action of mitochondrial ROS on HIF-1alpha activity and demonstrate that changes in mitochondrial function within physiologically tolerable limits modulate the immune response. Our results further suggest that altered immune function through a limited increase in HIF-1alpha expression can positively impact animal longevity.
Collapse
Affiliation(s)
- Dantong Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
31
|
Guha M, Pan H, Fang JK, Avadhani NG. Heterogeneous nuclear ribonucleoprotein A2 is a common transcriptional coactivator in the nuclear transcription response to mitochondrial respiratory stress. Mol Biol Cell 2009; 20:4107-19. [PMID: 19641020 DOI: 10.1091/mbc.e09-04-0296] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial dysfunction and altered transmembrane potential initiate a mitochondrial respiratory stress response, also known as mitochondrial retrograde response, in a wide spectrum of cells. The mitochondrial stress response activates calcineurin, which regulates transcription factors, including a new nuclear factor-kappaB (NF-kappaB) pathway, different from the canonical and noncanonical pathways. In this study using a combination of small interfering RNA-mediated mRNA knock down, transcriptional analysis, and chromatin immunoprecipitation, we report a common mechanism for the regulation of previously established stress response genes Cathepsin L, RyR1, and Glut4. Stress-regulated transcription involves the cooperative interplay between NF-kappaB (cRel: p50), C/EBPdelta, cAMP response element-binding protein, and nuclear factor of activated T cells. We show that the functional synergy of these factors requires the stress-activated heterogeneous nuclear ribonucleoprotein (hnRNP) A2 as a coactivator. HnRNP A2 associates with the enhanceosome, mostly through protein-protein interactions with DNA-bound factors. Silencing of hnRNP A2 as well as other DNA binding signature factors prevents stress-induced transcriptional activation and reverses the invasiveness of mitochondrial DNA-depleted C2C12 cells. Induction of mitochondrial stress signaling by electron transfer chain inhibitors also involved hnRNPA2 activation. We describe a common mechanism of mitochondrial respiratory stress-induced activation of nuclear target genes that involves hnRNP A2 as a transcription coactivator.
Collapse
Affiliation(s)
- Manti Guha
- Department of Animal Biology and Marie Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
32
|
Knowles HJ, Athanasou NA. Acute hypoxia and osteoclast activity: a balance between enhanced resorption and increased apoptosis. J Pathol 2009; 218:256-64. [PMID: 19291710 DOI: 10.1002/path.2534] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Osteoclasts are the primary mediators of pathological bone resorption in many conditions in which micro-environmental hypoxia is associated with disease progression. However, effects of hypoxia on human osteoclast activity have not been reported. Mature human osteoclasts were differentiated from peripheral blood or obtained from giant cell tumour of bone. Osteoclasts were exposed to a constant hypoxic environment and then assessed for parameters including resorption (toluidine blue staining of dentine slices), membrane integrity (trypan blue exclusion), apoptosis (TUNEL, DAPI), and osteolysis-associated enzyme activity (TRAP, cathepsin K). 24 h exposure to 2% O(2) produced a 2.5-fold increase in resorption associated with increased TRAP and cathepsin K enzyme activity. Hypoxia-Inducible Factor-1alpha (HIF-1alpha) siRNA completely ablated the hypoxic increase in osteoclast resorption. 24 h at 2% O(2) also increased the number of osteoclasts with compromised membrane integrity from 6% to 21%, with no change in the total osteoclast number or the proportion of late-stage apoptotic cells. Transient reoxygenation returned the percentage of trypan blue-positive cells to normoxic levels, suggesting that osteoclasts can recover from the early stages of cell death. Repeated over an extended period, hypoxia/reoxygenation enhanced osteoclast differentiation at this pO(2). These data suggest that in diseased bone, where the pO(2) may fall to <or=2% O(2), a delicate balance between hypoxia-induced osteoclast activation and hypoxia-induced osteoclast apoptosis mediates pathological bone resorption.
Collapse
Affiliation(s)
- Helen J Knowles
- Botnar Research Centre, University of Oxford, Nuffield Orthopaedic Centre, Oxford, UK.
| | | |
Collapse
|
33
|
Biswas G, Tang W, Sondheimer N, Guha M, Bansal S, Avadhani NG. A distinctive physiological role for IkappaBbeta in the propagation of mitochondrial respiratory stress signaling. J Biol Chem 2008; 283:12586-94. [PMID: 18272519 DOI: 10.1074/jbc.m710481200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The NFkappaBs regulate an array of physiological and pathological processes, including propagation of mitochondrial respiratory stress signaling in mammalian cells. We showed previously that mitochondrial stress activates NFkappaB using a novel calcineurin-requiring pathway that is different from canonical or non-canonical pathways. This study shows that IkappaBbeta is essential for the propagation of mitochondrial stress signaling. Knock down of IkappaBbeta, but not IkappaBalpha, mRNA reduced the mitochondrial stress-mediated activation and nuclear translocation of cRel:p50, inhibiting expression of nuclear target genes RyR1 and cathepsin L. IkappaBbeta mRNA knock down also reduced resistance to staurosporine-induced apoptosis and decreased in vitro invasiveness. Induced receptor switching to insulin-like growth factor-1 receptor and increased glucose uptake are hallmarks of mitochondrial stress. IkappaBbeta mRNA knock down selectively abrogated the receptor switch and altered tubulin cytoskeletal organization. These results show that mitochondrial stress signaling uses an IkappaBbeta-initiated NFkappaB pathway that is distinct from the other known NFkappaB pathways. Furthermore, our results demonstrate the distinctive physiological roles of the two inhibitory proteins IkappaBbeta and IkappaBalpha.
Collapse
Affiliation(s)
- Gopa Biswas
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|