1
|
Filippone A, Mannino D, Cucinotta L, Calapai F, Crupi L, Paterniti I, Esposito E. Rebalance of mitophagy by inhibiting LRRK2 improves colon alterations in an MPTP in vivo model. iScience 2024; 27:110980. [PMID: 39635134 PMCID: PMC11615202 DOI: 10.1016/j.isci.2024.110980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/10/2024] [Accepted: 09/13/2024] [Indexed: 12/07/2024] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are common genetic causes of Parkinson's disease (PD). Studies demonstrated that variants in LRRK2 genetically link intestinal disorders to PD. We aimed to evaluate whether the selective inhibitor of LRRK2, PF-06447475 (PF-475), attenuates the PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in central nervous system (CNS) and in the gastrointestinal system. CD1 mice received four intraperitoneal injections of MPTP (20 mg/kg, total dose of 80 mg/kg) at 2 h intervals (day 1). After 24 h PF-475 was administered intraperitoneally at the doses of 2.5, 5, and 10 mg/kg for seven days. LRRK2 inhibition reduced brain α-synuclein and modulated mitophagy pathway and reduced pro-inflammatory markers and α-synuclein aggregates in colonic tissues through the modulation of mitophagy proteins. LRRK2 inhibition suppressed MPTP-induced enteric dopaminergic neuronal injury and protected tight junction in the colon. Results suggested that PF-475 may attenuate gastrointestinal dysfunction associated to PD.
Collapse
Affiliation(s)
- Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Laura Cucinotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Fabrizio Calapai
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Lelio Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| |
Collapse
|
2
|
Fernández-Espejo E. Is there a halo-enzymopathy in Parkinson's disease? Neurologia 2022; 37:661-667. [PMID: 30952477 DOI: 10.1016/j.nrl.2018.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/12/2018] [Accepted: 12/20/2018] [Indexed: 11/18/2022] Open
Abstract
Laboratory studies identified changes in the metabolism of halogens in the serum and cerebrospinal fluid (CSF) of patients with Parkinson's disease, which indicates the presence of «accelerated self-halogenation» of CSF and/or an increase in haloperoxidases, specifically serum thyroperoxidase and CSF lactoperoxidase. Furthermore, an excess of some halogenated derivatives, such as advanced oxygenation protein products (AOPP), has been detected in the CSF and serum. «Accelerated self-halogenation» and increased levels of haloperoxidases and AOPP proteins indicate that halogenative stress is present in Parkinson's disease. In addition, 3-iodo-L-tyrosine, a halogenated derivative, shows «parkinsonian» toxicity in experimental models, since it has been observed to induce α-synuclein aggregation and damage to dopaminergic neurons in the mouse brain and intestine. The hypothesis is that patients with Parkinson's disease display halogenative stress related to a haloenzymatic alteration of the synthesis or degradation of oxyacid of halogens and their halogenated derivatives. This halogenative stress would be related to nervous system damage.
Collapse
Affiliation(s)
- E Fernández-Espejo
- Laboratorio de Neurofisiología y Neurología Molecular, Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, España.
| |
Collapse
|
3
|
Fernández-Espejo E. Is there a halo-enzymopathy in Parkinson’s disease? NEUROLOGÍA (ENGLISH EDITION) 2021; 37:661-667. [DOI: 10.1016/j.nrleng.2018.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/20/2018] [Indexed: 11/25/2022] Open
|
4
|
Huh E, Choi JG, Noh D, Yoo HS, Ryu J, Kim NJ, Kim H, Oh MS. Ginger and 6-shogaol protect intestinal tight junction and enteric dopaminergic neurons against 1-methyl-4-phenyl 1,2,3,6-tetrahydropyridine in mice. Nutr Neurosci 2020; 23:455-464. [PMID: 30230979 DOI: 10.1080/1028415x.2018.1520477] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: Ginger and its compound, 6-shogaol, have been known for improving gastrointestinal (GI) function and reducing inflammatory responses in GI tract. Recently, the treatment of GI dysfunction has been recognized as an important part of the management of neurodegenerative diseases, especially for Parkinson's disease (PD). In this study, we investigated whether ginger and 6-shogaol attenuate disruptions induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on the intestinal barrier and the enteric dopaminergic neurons.Methods: C57BL/6J mice received MPTP (30 mg/kg) for 5 days to induce GI alterations. Ginger (30, 100, 300 mg/kg) and 6-shogaol (10 mg/kg) were treated by gavage feeding for 15 days including the period of MPTP injection.Results: Ginger and 6-shogaol protected intestinal tight junction proteins disrupted by MPTP in mouse colon. In addition, ginger and 6-shogaol suppressed the increase of inducible nitric oxide synthase, cyclooxygenase-2, TNF-α and IL-1β activated by macrophage. Moreover, ginger and 6-shogaol suppressed the MPTP-induced enteric dopaminergic neuronal damage via increasing the cell survival signaling pathway.Conclusion: These results indicate that ginger and 6-shogaol restore the disruption of intestinal integrity and enteric dopaminergic neurons in an MPTP-injected mouse PD model by inhibiting the processes of inflammation and apoptosis, suggesting that they may attenuate the GI dysfunction in PD patients.
Collapse
Affiliation(s)
- Eugene Huh
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jin Gyu Choi
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Dongjin Noh
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hyung-Seok Yoo
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jeewon Ryu
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Nam-Jung Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hocheol Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Myung Sook Oh
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
5
|
Arab A, Ruda-Kucerova J, Minsterova A, Drazanova E, Szabó N, Starcuk Z, Rektorova I, Khairnar A. Diffusion Kurtosis Imaging Detects Microstructural Changes in a Methamphetamine-Induced Mouse Model of Parkinson’s Disease. Neurotox Res 2019; 36:724-735. [DOI: 10.1007/s12640-019-00068-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022]
|
6
|
Flack A, Persons AL, Kousik SM, Celeste Napier T, Moszczynska A. Self-administration of methamphetamine alters gut biomarkers of toxicity. Eur J Neurosci 2018; 46:1918-1932. [PMID: 28661099 DOI: 10.1111/ejn.13630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 12/13/2022]
Abstract
Methamphetamine (METH) is a highly abused psychostimulant that is associated with an increased risk for developing Parkinson's disease (PD). This enhanced vulnerability likely relates to the toxic effects of METH that overlap with PD pathology, for example, aberrant functioning of α-synuclein and parkin. In PD, peripheral factors are thought to contribute to central nervous system (CNS) degeneration. For example, α-synuclein levels in the enteric nervous system (ENS) are elevated, and this precedes the onset of motor symptoms. It remains unclear whether neurons of the ENS, particularly catecholaminergic neurons, exhibit signs of METH-induced toxicity as seen in the CNS. The aim of this study was to determine whether self-administered METH altered the levels of α-synuclein, parkin, tyrosine hydroxylase (TH), and dopamine-β-hydroxylase (DβH) in the myenteric plexus of the distal colon ENS. Young adult male Sprague-Dawley rats self-administered METH for 3 h per day for 14 days and controls were saline-yoked. Distal colon tissue was collected at 1, 14, or 56 days after the last operant session. Levels of α-synuclein were increased, while levels of parkin, TH, and DβH were decreased in the myenteric plexus in the METH-exposed rats at 1 day following the last operant session and returned to the control levels after 14 or 56 days of forced abstinence. The changes were not confined to neurofilament-positive neurons. These results suggest that colon biomarkers may provide early indications of METH-induced neurotoxicity, particularly in young chronic METH users who may be more susceptible to progression to PD later in life.
Collapse
Affiliation(s)
- Amanda Flack
- Department of Pharmaceutical Sciences, Wayne State University, Eugene Applebaum College of Pharmaceutical Sciences, Detroit, MI, 48201, USA
| | - Amanda L Persons
- Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, USA.,Department of Pharmacology, Rush University Medial Center, Chicago, IL, USA
| | - Sharanya M Kousik
- Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, USA.,Department of Pharmacology, Rush University Medial Center, Chicago, IL, USA
| | - T Celeste Napier
- Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, USA.,Department of Pharmacology, Rush University Medial Center, Chicago, IL, USA.,Department of Psychiatry, Rush University Medical Center, Chicago, IL, USA
| | - Anna Moszczynska
- Department of Pharmaceutical Sciences, Wayne State University, Eugene Applebaum College of Pharmaceutical Sciences, Detroit, MI, 48201, USA
| |
Collapse
|
7
|
Excess amounts of 3-iodo-l-tyrosine induce Parkinson-like features in experimental approaches of Parkinsonism. Neurotoxicology 2018; 67:178-189. [DOI: 10.1016/j.neuro.2018.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/08/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
|
8
|
Johnson M, Salvatore M, Maiolo S, Bobrovskaya L. Tyrosine hydroxylase as a sentinel for central and peripheral tissue responses in Parkinson’s progression: Evidence from clinical studies and neurotoxin models. Prog Neurobiol 2018; 165-167:1-25. [DOI: 10.1016/j.pneurobio.2018.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/07/2017] [Accepted: 01/10/2018] [Indexed: 12/25/2022]
|
9
|
Huot P, Fox SH, Brotchie JM. Monoamine reuptake inhibitors in Parkinson's disease. PARKINSON'S DISEASE 2015; 2015:609428. [PMID: 25810948 PMCID: PMC4355567 DOI: 10.1155/2015/609428] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/26/2014] [Indexed: 12/13/2022]
Abstract
The motor manifestations of Parkinson's disease (PD) are secondary to a dopamine deficiency in the striatum. However, the degenerative process in PD is not limited to the dopaminergic system and also affects serotonergic and noradrenergic neurons. Because they can increase monoamine levels throughout the brain, monoamine reuptake inhibitors (MAUIs) represent potential therapeutic agents in PD. However, they are seldom used in clinical practice other than as antidepressants and wake-promoting agents. This review article summarises all of the available literature on use of 50 MAUIs in PD. The compounds are divided according to their relative potency for each of the monoamine transporters. Despite wide discrepancy in the methodology of the studies reviewed, the following conclusions can be drawn: (1) selective serotonin transporter (SERT), selective noradrenaline transporter (NET), and dual SERT/NET inhibitors are effective against PD depression; (2) selective dopamine transporter (DAT) and dual DAT/NET inhibitors exert an anti-Parkinsonian effect when administered as monotherapy but do not enhance the anti-Parkinsonian actions of L-3,4-dihydroxyphenylalanine (L-DOPA); (3) dual DAT/SERT inhibitors might enhance the anti-Parkinsonian actions of L-DOPA without worsening dyskinesia; (4) triple DAT/NET/SERT inhibitors might exert an anti-Parkinsonian action as monotherapy and might enhance the anti-Parkinsonian effects of L-DOPA, though at the expense of worsening dyskinesia.
Collapse
Affiliation(s)
- Philippe Huot
- Toronto Western Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
- Division of Neurology, Movement Disorder Clinic, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
- Department of Pharmacology and Division of Neurology, Faculty of Medicine, Université de Montréal and Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Susan H. Fox
- Toronto Western Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
- Division of Neurology, Movement Disorder Clinic, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
| | - Jonathan M. Brotchie
- Toronto Western Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
| |
Collapse
|
10
|
Lebouvier T, Chaumette T, Paillusson S, Duyckaerts C, Bruley des Varannes S, Neunlist M, Derkinderen P. The second brain and Parkinson's disease. Eur J Neurosci 2009; 30:735-41. [PMID: 19712093 DOI: 10.1111/j.1460-9568.2009.06873.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parkinson's disease is the second most common neurodegenerative disease after Alzheimer's disease. It has been classically considered that the pathological hallmarks of Parkinson's disease, namely Lewy bodies and Lewy neurites, affect primarily the substantia nigra. Nevertheless, it has become increasingly evident in recent years that Parkinson's disease is a multicentric neurodegenerative process that affects several neuronal structures outside the substantia nigra, among which is the enteric nervous system. Remarkably, recent reports have shown that the lesions in the enteric nervous system occurred at a very early stage of the disease, even before the involvement of the central nervous system. This led to the postulate that the enteric nervous system could be critical in the pathophysiology of Parkinson's disease, as it could represent a route of entry for a putative environmental factor to initiate the pathological process (Braak's hypothesis). Besides their putative role in the spreading of the pathological process, it has also been suggested that the pathological alterations within the enteric nervous system could be involved in the gastrointestinal dysfunction frequently encountered by parkinsonian patients. The scope of the present article is to review the available studies on the enteric nervous system in Parkinson's disease patients and in animal models of the disease. We further discuss the strategies that will help in our understanding of the roles of the enteric nervous system, both in the pathophysiology of the disease and in the pathophysiology of the gastrointestinal symptoms.
Collapse
|