1
|
Li Y, Zhang Y, Wan X, Yan X, Song W. Effects of dual-target repetitive transcranial magnetic stimulation in patients with minimally conscious state: A preliminary study. Neuroscience 2025; 573:460-467. [PMID: 40189133 DOI: 10.1016/j.neuroscience.2025.03.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/09/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a promising neuromodulation therapy that facilitates recovery in patients with prolonged disorders of consciousness (pDOC). This study aimed to evaluate the efficacy of dual-target rTMS in treating patients with minimally conscious state (MCS). A total of 20 MCS patients were recruited and randomly assigned to either the real or sham stimulation group. Participants received 10 Hz rTMS targeting the left prefrontal and parietal cortices for 10 consecutive days. The Coma Recovery Scale-Revised (CRS-R) and resting-state EEG were recorded, with relative power spectral density and coherence subsequently computed. Additionally, behavioral assessments were conducted over a six-month follow-up period. Our findings indicate that 10 Hz dual-target rTMS enhances brain oscillatory activity in the frontal, central, and parietal lobes. Specifically, the treatment resulted in a reduction in delta-band activity and an increase in alpha-band activity in the frontal lobes, as well as an elevation in alpha-band power in the central and parietal region. In contrast, no significant changes were observed in the sham stimulation group. Meanwhile, in the real stimulation group, long-distance coherence (F3-P4) exhibited increased in alpha-band. These findings suggest that enhanced oscillatory activity and EEG functional connectivity may underlie the modulatory effects of dual-target rTMS. Additionally, a combined prefrontal and parietal cortex approach is another viable option in rTMS protocols for patients with pDOC.
Collapse
Affiliation(s)
- Yanhua Li
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China; Department of Rehabilitation Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ye Zhang
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China.
| | - Xiaoping Wan
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Xiao Yan
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Weiqun Song
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Veit W, Browning H, Garcia-Pelegrin E, Davies JR, DuBois JG, Clayton NS. Dimensions of corvid consciousness. Anim Cogn 2025; 28:35. [PMID: 40316871 PMCID: PMC12048460 DOI: 10.1007/s10071-025-01949-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 05/04/2025]
Abstract
Corvids have long been a target of public fascination and of scientific attention, particularly in the study of animal minds. Using Birch et al.'s (2020) 5-dimensional framework for animal consciousness we ask what it is like to be a corvid and propose a speculative but empirically informed answer. We go on to suggest future directions for research on corvid consciousness and how it can inform ethical treatment and animal welfare legislation.
Collapse
Affiliation(s)
| | | | | | - James R Davies
- University of Cambridge, Cambridge, UK
- University of Bristol, Bristol, UK
| | | | | |
Collapse
|
3
|
Degano G, Misirocchi F, Rigoni I, Kaplan PW, Quintard H, Vulliémoz S, Schaller K, Kleinschmidt A, Seeck M, De Stefano P. Electrophysiological Signatures of Alpha Coma. J Clin Neurophysiol 2025:00004691-990000000-00196. [PMID: 39785823 DOI: 10.1097/wnp.0000000000001141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
PURPOSE Recent research on quantitative EEG in coma has proposed several metrics correlating with consciousness level. However, the heterogeneous nature of coma can challenge the generalizability of these measures. This study investigates alpha-coma, an electroclinical pattern characterized by a widespread, nonreactive alpha rhythm often linked to poor outcomes. The aim was to quantify the electrophysiological features of alpha-coma and compare them to the alpha rhythm in awake controls, seeking clearer insights into quantitative EEG analysis in comatose states. METHODS Fourteen alpha-coma patients were retrospectively selected from University Hospitals of Geneva and age-matched with 14 healthy control subjects from an open-source dataset. EEG data were preprocessed and analyzed to extract power spectra, spectral decay (aperiodic activity), sample entropy, and functional connectivity. RESULTS Alpha-coma patients did not differ in alpha power but exhibited significantly higher levels of spectral decay ( p < 0.001), suggesting a convergence toward an inhibitory state. Sample entropy was significantly higher in alpha-coma patients ( p = 0.01), indicating an increase in the cortical complexity in alpha-coma compared with healthy subjects. CONCLUSIONS Alpha-coma shows increased aperiodic activity and EEG complexity, despite similar alpha power and clustering coefficient. The increased aperiodic activity aligns with findings in other comatose patients, including those sedated or with subcortical dysfunction. However, the increased entropy contradicts existing literature, suggesting that alpha-coma may represent a state of widespread cortical dysfunction likely resulting from nonhierarchical, turbulent brain activity. This indicates that the loss of consciousness does not guarantee consistent cortical measures across the whole spectrum of EEG patterns.
Collapse
Affiliation(s)
- Giulio Degano
- Department of Intensive Care, Neuro-Intensive Care Unit, University Hospital of Geneva, Geneva, Switzerland
| | - Francesco Misirocchi
- Department of Intensive Care, Neuro-Intensive Care Unit, University Hospital of Geneva, Geneva, Switzerland
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
| | - Isotta Rigoni
- Department of Clinical Neurosciences, EEG & Epilepsy Unit, University Hospital of Geneva, Geneva, Switzerland
| | - Peter W Kaplan
- Department of Neurology, Johns Hopkins Bayview Medical Center, Baltimore, Maryland, U.S.A
| | - Hervé Quintard
- Department of Intensive Care, Neuro-Intensive Care Unit, University Hospital of Geneva, Geneva, Switzerland
- Medical Faculty of the University of Geneva, Geneva, Switzerland
| | - Serge Vulliémoz
- Department of Clinical Neurosciences, EEG & Epilepsy Unit, University Hospital of Geneva, Geneva, Switzerland
- Medical Faculty of the University of Geneva, Geneva, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne and Geneva, Station 6, Lausanne Switzerland ; and
| | - Karl Schaller
- Medical Faculty of the University of Geneva, Geneva, Switzerland
- Department of Neurosurgery, Geneva University Medical Center & Faculty of Medicine, Geneva, Switzerland
| | - Andreas Kleinschmidt
- Medical Faculty of the University of Geneva, Geneva, Switzerland
- Department of Neurosurgery, Geneva University Medical Center & Faculty of Medicine, Geneva, Switzerland
| | - Margitta Seeck
- Department of Clinical Neurosciences, EEG & Epilepsy Unit, University Hospital of Geneva, Geneva, Switzerland
- Medical Faculty of the University of Geneva, Geneva, Switzerland
| | - Pia De Stefano
- Department of Intensive Care, Neuro-Intensive Care Unit, University Hospital of Geneva, Geneva, Switzerland
- Department of Clinical Neurosciences, EEG & Epilepsy Unit, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Jimenez M, Prieto A, Hinojosa JA, Montoro PR. Consciousness Under the Spotlight: The Problem of Measuring Subjective Experience. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2025; 16:e1697. [PMID: 39449331 DOI: 10.1002/wcs.1697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 09/03/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
The study of consciousness is considered by many one of the most difficult contemporary scientific endeavors and confronts several methodological and theoretical challenges. A central issue that makes the study of consciousness so challenging is that, while the rest of science is concerned with problems that can be verified from a "third person" view (i.e., objectively), the study of consciousness deals with the phenomenon of subjective experience, only accessible from a "first person" view. In the present article, we review early (starting during the late 19th century) and later efforts on measuring consciousness and its absence, focusing on the two main approaches used by researchers within the field: objective (i.e., performance based) and subjective (i.e., report based) measures of awareness. In addition, we compare the advantages and disadvantages of both types of awareness measures, evaluate them according to different methodological considerations, and discuss, among other issues, the possibility of comparing them by transforming them to a common sensitivity measure (d'). Finally, we explore several new approaches-such as Bayesian models to support the absence of awareness or new machine-learning based decoding models-as well as future challenges-such as measuring the qualia, the qualitative contents of awareness-in consciousness research.
Collapse
Affiliation(s)
- Mikel Jimenez
- Department of Psychology, University of Durham, Durham, UK
| | - Antonio Prieto
- Departamento de Psicología Básica I, UNED, Madrid, Spain
| | - José Antonio Hinojosa
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Psicología Experimental, Procesos Psicológicos y Logopedia, Universidad Complutense de Madrid, Madrid, Spain
- Centro de Investigación Nebrija en Cognición (CINC), Universidad de Nebrija, Madrid, Spain
| | | |
Collapse
|
5
|
Wang J, Lai Q, Han J, Qin P, Wu H. Neuroimaging biomarkers for the diagnosis and prognosis of patients with disorders of consciousness. Brain Res 2024; 1843:149133. [PMID: 39084451 DOI: 10.1016/j.brainres.2024.149133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/29/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
The progress in neuroimaging and electrophysiological techniques has shown substantial promise in improving the clinical assessment of disorders of consciousness (DOC). Through the examination of both stimulus-induced and spontaneous brain activity, numerous comprehensive investigations have explored variations in brain activity patterns among patients with DOC, yielding valuable insights for clinical diagnosis and prognostic purposes. Nonetheless, reaching a consensus on precise neuroimaging biomarkers for patients with DOC remains a challenge. Therefore, in this review, we begin by summarizing the empirical evidence related to neuroimaging biomarkers for DOC using various paradigms, including active, passive, and resting-state approaches, by employing task-based fMRI, resting-state fMRI (rs-fMRI), electroencephalography (EEG), and positron emission tomography (PET) techniques. Subsequently, we conducted a review of studies examining the neural correlates of consciousness in patients with DOC, with the findings holding potential value for the clinical application of DOC. Notably, previous research indicates that neuroimaging techniques have the potential to unveil covert awareness that conventional behavioral assessments might overlook. Furthermore, when integrated with various task paradigms or analytical approaches, this combination has the potential to significantly enhance the accuracy of both diagnosis and prognosis in DOC patients. Nonetheless, the stability of these neural biomarkers still needs additional validation, and future directions may entail integrating diagnostic and prognostic methods with big data and deep learning approaches.
Collapse
Affiliation(s)
- Jiaying Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Qiantu Lai
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Junrong Han
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Pengmin Qin
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China; Pazhou Lab, Guangzhou 510330, China.
| | - Hang Wu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China.
| |
Collapse
|
6
|
Tucker DM, Luu P. Feasibility of a Personal Neuromorphic Emulation. ENTROPY (BASEL, SWITZERLAND) 2024; 26:759. [PMID: 39330092 PMCID: PMC11431400 DOI: 10.3390/e26090759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024]
Abstract
The representation of intelligence is achieved by patterns of connections among neurons in brains and machines. Brains grow continuously, such that their patterns of connections develop through activity-dependent specification, with the continuing ontogenesis of individual experience. The theory of active inference proposes that the developmental organization of sentient systems reflects general processes of informatic self-evidencing, through the minimization of free energy. We interpret this theory to imply that the mind may be described in information terms that are not dependent on a specific physical substrate. At a certain level of complexity, self-evidencing of living (self-organizing) information systems becomes hierarchical and reentrant, such that effective consciousness emerges as the consequence of a good regulator. We propose that these principles imply that an adequate reconstruction of the computational dynamics of an individual human brain/mind is possible with sufficient neuromorphic computational emulation.
Collapse
Affiliation(s)
- Don M Tucker
- The Brain Electrophysiological Laboratory Company, Eugene, OR 97403, USA
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA
| | - Phan Luu
- The Brain Electrophysiological Laboratory Company, Eugene, OR 97403, USA
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
7
|
Knight RS, Chen T, Center EG, Gratton G, Fabiani M, Savazzi S, Mazzi C, Beck DM. Bypassing input to V1 in visual awareness: A TMS-EROS investigation. Neuropsychologia 2024; 198:108864. [PMID: 38521150 PMCID: PMC11194103 DOI: 10.1016/j.neuropsychologia.2024.108864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/07/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
Early visual cortex (V1-V3) is believed to be critical for normal visual awareness by providing the necessary feedforward input. However, it remains unclear whether visual awareness can occur without further involvement of early visual cortex, such as re-entrant feedback. It has been challenging to determine the importance of feedback activity to these areas because of the difficulties in dissociating this activity from the initial feedforward activity. Here, we applied single-pulse transcranial magnetic stimulation (TMS) over the left posterior parietal cortex to elicit phosphenes in the absence of direct visual input to early visual cortex. Immediate neural activity after the TMS pulse was assessed using the event-related optical signal (EROS), which can measure activity under the TMS coil without artifacts. Our results show that: 1) The activity in posterior parietal cortex 50 ms after TMS was related to phosphene awareness, and 2) Activity related to awareness was observed in a small portion of V1 140 ms after TMS, but in contrast (3) Activity in V2 was a more robust correlate of awareness. Together, these results are consistent with interactive models proposing that sustained and recurrent loops of activity between cortical areas are necessary for visual awareness to emerge. In addition, we observed phosphene-related activations of the anteromedial cuneus and lateral occipital cortex, suggesting a functional network subserving awareness comprising these regions, the parietal cortex and early visual cortex.
Collapse
Affiliation(s)
- Ramisha S Knight
- Beckman Institute, University of Illinois.405 N Mathews Avenue, Urbana, IL, USA; Aptima, Inc. 2555 University Blvd, Fairborn, OH, USA
| | - Tao Chen
- Beckman Institute, University of Illinois.405 N Mathews Avenue, Urbana, IL, USA; Department of Psychology, University of Illinois. 601 E John Street, Champaign, IL, USA.
| | - Evan G Center
- Beckman Institute, University of Illinois.405 N Mathews Avenue, Urbana, IL, USA; Department of Psychology, University of Illinois. 601 E John Street, Champaign, IL, USA; Center for Ubiquitous Computing, University of Oulu, Oulu, Finland
| | - Gabriele Gratton
- Beckman Institute, University of Illinois.405 N Mathews Avenue, Urbana, IL, USA; Department of Psychology, University of Illinois. 601 E John Street, Champaign, IL, USA
| | - Monica Fabiani
- Beckman Institute, University of Illinois.405 N Mathews Avenue, Urbana, IL, USA; Department of Psychology, University of Illinois. 601 E John Street, Champaign, IL, USA
| | - Silvia Savazzi
- Perception and Awareness (PandA) Lab, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Chiara Mazzi
- Perception and Awareness (PandA) Lab, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Diane M Beck
- Beckman Institute, University of Illinois.405 N Mathews Avenue, Urbana, IL, USA; Department of Psychology, University of Illinois. 601 E John Street, Champaign, IL, USA.
| |
Collapse
|
8
|
Keppler J. Laying the foundations for a theory of consciousness: the significance of critical brain dynamics for the formation of conscious states. Front Hum Neurosci 2024; 18:1379191. [PMID: 38736531 PMCID: PMC11082359 DOI: 10.3389/fnhum.2024.1379191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Empirical evidence indicates that conscious states, distinguished by the presence of phenomenal qualities, are closely linked to synchronized neural activity patterns whose dynamical characteristics can be attributed to self-organized criticality and phase transitions. These findings imply that insight into the mechanism by which the brain controls phase transitions will provide a deeper understanding of the fundamental mechanism by which the brain manages to transcend the threshold of consciousness. This article aims to show that the initiation of phase transitions and the formation of synchronized activity patterns is due to the coupling of the brain to the zero-point field (ZPF), which plays a central role in quantum electrodynamics (QED). The ZPF stands for the presence of ubiquitous vacuum fluctuations of the electromagnetic field, represented by a spectrum of normal modes. With reference to QED-based model calculations, the details of the coupling mechanism are revealed, suggesting that critical brain dynamics is governed by the resonant interaction of the ZPF with the most abundant neurotransmitter glutamate. The pyramidal neurons in the cortical microcolumns turn out to be ideally suited to control this interaction. A direct consequence of resonant glutamate-ZPF coupling is the amplification of specific ZPF modes, which leads us to conclude that the ZPF is the key to the understanding of consciousness and that the distinctive feature of neurophysiological processes associated with conscious experience consists in modulating the ZPF. Postulating that the ZPF is an inherently sentient field and assuming that the spectrum of phenomenal qualities is represented by the normal modes of the ZPF, the significance of resonant glutamate-ZPF interaction for the formation of conscious states becomes apparent in that the amplification of specific ZPF modes is inextricably linked with the excitation of specific phenomenal qualities. This theory of consciousness, according to which phenomenal states arise through resonant amplification of zero-point modes, is given the acronym TRAZE. An experimental setup is specified that can be used to test a corollary of the theory, namely, the prediction that normally occurring conscious perceptions are absent under experimental conditions in which resonant glutamate-ZPF coupling is disrupted.
Collapse
|
9
|
Irwin LN. Behavioral indicators of heterogeneous subjective experience in animals across the phylogenetic spectrum: Implications for comparative animal phenomenology. Heliyon 2024; 10:e28421. [PMID: 38623251 PMCID: PMC11016586 DOI: 10.1016/j.heliyon.2024.e28421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/17/2024] Open
Abstract
This behavioral study was undertaken to provide empirical evidence in favor of or opposed to the notion that animals across a wide breadth of the animal kingdom have subjective (personal) experience that varies with their lifestyles, ecological constraints, or phylogeny. Twelve species representing two invertebrate phyla and six vertebrate classes were observed unobtrusively in 15-min episodes, during which three modes of behavior (volitional, interactive, and egocentric) were quantified according to the frequency, variety, and dynamism of each mode. Volitional behavior was the most prevalent and dynamic mode for nearly all species, largely without regard to phylogenetic position. Interactive behavior likewise varied inconsistently across the entire evolutionary spectrum. Egocentric behavior was concentrated among the avian and mammalian species, but evidence of it were observed in the invertebrate species as well. Diagrams of the matrix constructed from the three qualitative modes and three quantitative attributes for each mode provide a metaphorical representation of the unique experiential profile of each species. To the extent that these behavioral measures correlate with the nature of the animal's subjective experience, they support the growing view that phenomenology is heterogeneous, multimodal, and non-linear in extent across the animal kingdom.
Collapse
Affiliation(s)
- Louis N. Irwin
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
10
|
Forti B. The hidden structure of consciousness. Front Psychol 2024; 15:1344033. [PMID: 38650907 PMCID: PMC11033517 DOI: 10.3389/fpsyg.2024.1344033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
According to Loorits, if we want consciousness to be explained in terms of natural sciences, we should be able to analyze its seemingly non-structural aspects, like qualia, in structural terms. However, the studies conducted over the last three decades do not seem to be able to bridge the explanatory gap between physical phenomena and phenomenal experience. One possible way to bridge the explanatory gap is to seek the structure of consciousness within consciousness itself, through a phenomenal analysis of the qualitative aspects of experience. First, this analysis leads us to identify the explanandum concerning the simplest forms of experience not in qualia but in the unitary set of qualities found in early vision. Second, it leads us to hypothesize that consciousness is also made up of non-apparent parts, and that there exists a hidden structure of consciousness. This structure, corresponding to a simple early visual experience, is constituted by a Hierarchy of Spatial Belongings nested within each other. Each individual Spatial Belonging is formed by a primary content and a primary space. The primary content can be traced in the perceptibility of the contents we can distinguish in the phenomenal field. The primary space is responsible for the perceptibility of the content and is not perceptible in itself. However, the phenomenon I refer to as subtraction of visibility allows us to characterize it as phenomenally negative. The hierarchical relationships between Spatial Belongings can ensure the qualitative nature of components of perceptual organization, such as object, background, and detail. The hidden structure of consciousness presents aspects that are decidedly counterintuitive compared to our idea of phenomenal experience. However, on the one hand, the Hierarchy of Spatial Belongings can explain the qualities of early vision and their appearance as a unitary whole, while on the other hand, it might be more easily explicable in terms of brain organization. In other words, the hidden structure of consciousness can be considered a bridge structure which, placing itself at an intermediate level between experience and physical properties, can contribute to bridging the explanatory gap.
Collapse
Affiliation(s)
- Bruno Forti
- Department of Mental Health, Azienda ULSS 1 Dolomiti, Belluno, Italy
| |
Collapse
|
11
|
Forti B. Approaching the nature of consciousness through a phenomenal analysis of early vision. What is the explanandum? Front Psychol 2024; 15:1329259. [PMID: 38562232 PMCID: PMC10982490 DOI: 10.3389/fpsyg.2024.1329259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Loorits (2014) identifies the solution to the hard problem of consciousness in the possibility of fully analyzing seemingly non-structural aspects of consciousness in structural terms. However, research on consciousness conducted in recent decades has failed to bridge the explanatory gap between the brain and conscious mind. One reason why the explanatory gap cannot be filled, and consequently the problem remains hard, is that experience and neural structure are too different or "distant" to be directly compatible. Conversely, structural aspects of consciousness can be found in phenomenal experience. One possible alternative, therefore, is to seek the structure of seemingly non-structural aspects of consciousness not in the neural substrate, but within consciousness itself, through a phenomenal analysis of the qualitative aspects of experience, starting from its simplest forms. An essential premise is to reformulate the explanandum of consciousness, which is usually attributed to qualia and what it is like to be in a certain state. However, these properties do not allow us to identify the fundamental aspects of phenomenal experience. Sensations such as the redness of red or the painfulness of pain are inseparable from the context of the experience to which they belong, making qualia appear as phenomenal artifacts. Furthermore, the simplest qualitative aspects can be found in early vision. They are involved in perceptual organization and necessarily have relational significance. The unitary set of qualities found in early vision-such as those related to being an object, background or detail-constitutes the explanandum of the simplest forms of consciousness and seems to imply a justifying structure. Although early vision is characterized by interdependent qualitative components that form a unitary whole, we cannot find in it the structure of seemingly non-structural aspects of consciousness. Phenomenal appearance alone does not seem sufficient to identify a unitary structure of consciousness. However, the closeness of these characteristics to a unitary structure prompts us to delve into less explored territory, using the components of experience also as possible explanans.
Collapse
Affiliation(s)
- Bruno Forti
- Department of Mental Health, Azienda ULSS 1 Dolomiti, Belluno, Italy
| |
Collapse
|
12
|
Zolnik TA, Bronec A, Ross A, Staab M, Sachdev RNS, Molnár Z, Eickholt BJ, Larkum ME. Layer 6b controls brain state via apical dendrites and the higher-order thalamocortical system. Neuron 2024; 112:805-820.e4. [PMID: 38101395 DOI: 10.1016/j.neuron.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/11/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023]
Abstract
The deepest layer of the cortex (layer 6b [L6b]) contains relatively few neurons, but it is the only cortical layer responsive to the potent wake-promoting neuropeptide orexin/hypocretin. Can these few neurons significantly influence brain state? Here, we show that L6b-photoactivation causes a surprisingly robust enhancement of attention-associated high-gamma oscillations and population spiking while abolishing slow waves in sleep-deprived mice. To explain this powerful impact on brain state, we investigated L6b's synaptic output using optogenetics, electrophysiology, and monoCaTChR ex vivo. We found powerful output in the higher-order thalamus and apical dendrites of L5 pyramidal neurons, via L1a and L5a, as well as in superior colliculus and L6 interneurons. L6b subpopulations with distinct morphologies and short- and long-term plasticities project to these diverse targets. The L1a-targeting subpopulation triggered powerful NMDA-receptor-dependent spikes that elicited burst firing in L5. We conclude that orexin/hypocretin-activated cortical neurons form a multifaceted, fine-tuned circuit for the sustained control of the higher-order thalamocortical system.
Collapse
Affiliation(s)
- Timothy Adam Zolnik
- Department of Biochemistry, Charité Universitätsmedizin Berlin, Berlin 10117, Germany; Department of Biology, Humboldt Universität zu Berlin, Berlin 10117, Germany.
| | - Anna Bronec
- Department of Biology, Humboldt Universität zu Berlin, Berlin 10117, Germany
| | - Annemarie Ross
- Department of Biology, Humboldt Universität zu Berlin, Berlin 10117, Germany
| | - Marcel Staab
- Department of Biology, Humboldt Universität zu Berlin, Berlin 10117, Germany
| | - Robert N S Sachdev
- Department of Biology, Humboldt Universität zu Berlin, Berlin 10117, Germany
| | - Zoltán Molnár
- Department of Biochemistry, Charité Universitätsmedizin Berlin, Berlin 10117, Germany; Department of Physiology, Anatomy, and Genetics, University of Oxford, Parks Road, Sherrington Building, Oxford OX1 3PT, UK
| | | | - Matthew Evan Larkum
- Department of Biology, Humboldt Universität zu Berlin, Berlin 10117, Germany.
| |
Collapse
|
13
|
Bai Y, Gong A, Wang Q, Guo Y, Zhang Y, Feng Z. Breakdown of oscillatory effective networks in disorders of consciousness. CNS Neurosci Ther 2024; 30:e14469. [PMID: 37718541 PMCID: PMC10916448 DOI: 10.1111/cns.14469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/19/2023] Open
Abstract
INTRODUCTION Combining transcranial magnetic stimulation with electroencephalography (TMS-EEG), oscillatory reactivity can be measured, allowing us to investigate the interaction between local and distant cortical oscillations. However, the extent to which human consciousness is related to these oscillatory effective networks has yet to be explored. AIMS We tend to investigate the link between oscillatory effective networks and brain consciousness, by monitoring the global transmission of TMS-induced oscillations in disorders of consciousness (DOC). RESULTS A cohort of DOC patients was included in this study, which included 28 patients with a minimally conscious state (MCS) and 20 patients with vegetative state/unresponsive wakefulness syndrome (VS/UWS). Additionally, 25 healthy controls were enrolled. The oscillatory reactivity to single-pulse TMS of the frontal, sensorimotor and parietal cortex was measured using event-related spectral perturbation of TMS-EEG. The temporal-spatial properties of the oscillatory reactivity were illustrated through life time, decay gradients and accumulative power. In DOC patients, an oscillatory reactivity was observed to be temporally and spatially suppressed. TMS-EEG of DOC patients showed that the oscillations did not travel as far in healthy controls, in terms of both temporal and spatial dimensions. Moreover, cortical theta reactivity was found to be a reliable indicator in distinguishing DOC versus healthy controls when TMS of the parietal region and in distinguishing MCS versus VS/UWS when TMS of the frontal region. Additionally, a positive correlation was observed between the Coma Recovery Scale-Revised scores of the DOC patients and the cortical theta reactivity. CONCLUSIONS The findings revealed a breakdown of oscillatory effective networks in DOC patients, which has implications for the use of TMS-EEG in DOC evaluation and offers a neural oscillation viewpoint on the neurological basis of human consciousness.
Collapse
Affiliation(s)
- Yang Bai
- Department of Rehabilitation MedicineThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Rehabilitation Medicine Clinical Research Center of Jiangxi ProvinceNanchangChina
| | - Anjuan Gong
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Qijun Wang
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Yongkun Guo
- The Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yin Zhang
- Center for Cognition and Brain DisordersThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Zhen Feng
- Department of Rehabilitation MedicineThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Rehabilitation Medicine Clinical Research Center of Jiangxi ProvinceNanchangChina
| |
Collapse
|
14
|
Wang Y, Liu W, Wang Y, Ouyang G, Guo Y. Long-term HD-tDCS modulates dynamic changes of brain activity on patients with disorders of consciousness: A resting-state EEG study. Comput Biol Med 2024; 170:108084. [PMID: 38295471 DOI: 10.1016/j.compbiomed.2024.108084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 01/27/2024] [Indexed: 02/02/2024]
Abstract
OBJECTIVE High-definition transcranial direct current stimulation (HD-tDCS) has been an effective neurostimulation method in the treatment of disorders of consciousness (DOC). However, the effects and mechanism of HD-tDCS are still unclear. METHODS This study recruited 8 DOC patients and applied 20-min sessions of 2 mA HD-tDCS (central anode electrode at Pz) for 14 consecutive days. We record DOC patients' EEG data and Coma Recovery Scale-Revised (CRS-R) values at four time point: baseline (T0), after 1 day's and 7,14 days' parietal HD-tDCS treatment (T1, T2, T3). Power spectral density (PSD), relative power (RP), spectral entropy and spectral exponent were calculated to evaluate the EEG dynamic changes of DOC patients during long-term parietal HD-tDCS. At last, we calculated the correlation between changes of EEG features and changes of CRS-R values. RESULT After 1 day's parietal HD-tDCS, DOC patients' CRS-R value had not changed (8.25 ± 1.91). HD-tDCS improved DOC patients' CRS-R value at T2 (9.75 ± 1.91, p < 0.05) and at T3 (11.38 ± 2.77, p < 0.05), compared with that at T0 (8.25 ± 1.91). As the treatment time increased, the EEG PSD decayed more slowly. Specifically, the delta frequency band RP decreased, while the alpha, beta, and gamma frequency bands RP increased. EEG oscillation characteristics changed but not significant at T1 (p > 0.05), and showed significant changes at T2 and T3 (p < 0.05). The spectral entropy continuously increased and the spectral exponent continuously decreased from T0 to T3. Specifically, the spectral entropy and spectral exponent of the parietal and occipital regions were significantly higher at T2 and T3 than that at T0 (p < 0.05). In addition, The changes in EEG features of the parietal and occipital lobes were correlated with changes in CRS-R value, especially between T2 and T0. CONCLUSION Long-term parietal HD-tDCS can improve the consciousness level and brain activity in DOC patients. Resting-state EEG can evaluate the dynamic changes of brain activity in DOC patients during HD-tDCS. EEG oscillation and non-oscillatory activity might be used to explain the mechanism of HD-tDCS on DOC patients.
Collapse
Affiliation(s)
- Yong Wang
- Zhuhai UM Science & Technology Research Institute, Zhuhai, China
| | - Wanqing Liu
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingying Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing, Normal University, Beijing, China
| | - Gaoxiang Ouyang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing, Normal University, Beijing, China.
| | - Yongkun Guo
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Brain Science and Brain Computer Interface Technology, Zhengzhou, China.
| |
Collapse
|
15
|
Gallucci A, Varoli E, Del Mauro L, Hassan G, Rovida M, Comanducci A, Casarotto S, Lo Re V, Romero Lauro LJ. Multimodal approaches supporting the diagnosis, prognosis and investigation of neural correlates of disorders of consciousness: A systematic review. Eur J Neurosci 2024; 59:874-933. [PMID: 38140883 DOI: 10.1111/ejn.16149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 12/24/2023]
Abstract
The limits of the standard, behaviour-based clinical assessment of patients with disorders of consciousness (DoC) prompted the employment of functional neuroimaging, neurometabolic, neurophysiological and neurostimulation techniques, to detect brain-based covert markers of awareness. However, uni-modal approaches, consisting in employing just one of those techniques, are usually not sufficient to provide an exhaustive exploration of the neural underpinnings of residual awareness. This systematic review aimed at collecting the evidence from studies employing a multimodal approach, that is, combining more instruments to complement DoC diagnosis, prognosis and better investigating their neural correlates. Following the PRISMA guidelines, records from PubMed, EMBASE and Scopus were screened to select peer-review original articles in which a multi-modal approach was used for the assessment of adult patients with a diagnosis of DoC. Ninety-two observational studies and 32 case reports or case series met the inclusion criteria. Results highlighted a diagnostic and prognostic advantage of multi-modal approaches that involve electroencephalography-based (EEG-based) measurements together with neuroimaging or neurometabolic data or with neurostimulation. Multimodal assessment deepened the knowledge on the neural networks underlying consciousness, by showing correlations between the integrity of the default mode network and the different clinical diagnosis of DoC. However, except for studies using transcranial magnetic stimulation combined with electroencephalography, the integration of more than one technique in most of the cases occurs without an a priori-designed multi-modal diagnostic approach. Our review supports the feasibility and underlines the advantages of a multimodal approach for the diagnosis, prognosis and for the investigation of neural correlates of DoCs.
Collapse
Affiliation(s)
- Alessia Gallucci
- Ph.D. Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- NeuroMi (Neuroscience Center), University of Milano-Bicocca, Milan, Italy
| | - Erica Varoli
- Neurology Service, Department of Diagnostic and Therapeutic Services, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS ISMETT), Palermo, Italy
| | - Lilia Del Mauro
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Gabriel Hassan
- Department of Biomedical and Clinical Sciences, University of Milan, Italy
| | - Margherita Rovida
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Angela Comanducci
- IRCSS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- Università Campus Bio-Medico di Roma, Rome, Italy
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences, University of Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Vincenzina Lo Re
- Neurology Service, Department of Diagnostic and Therapeutic Services, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS ISMETT), Palermo, Italy
| | - Leonor J Romero Lauro
- NeuroMi (Neuroscience Center), University of Milano-Bicocca, Milan, Italy
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
16
|
McFadden J. Carving Nature at Its Joints: A Comparison of CEMI Field Theory with Integrated Information Theory and Global Workspace Theory. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1635. [PMID: 38136515 PMCID: PMC10743215 DOI: 10.3390/e25121635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
The quest to comprehend the nature of consciousness has spurred the development of many theories that seek to explain its underlying mechanisms and account for its neural correlates. In this paper, I compare my own conscious electromagnetic information field (cemi field) theory with integrated information theory (IIT) and global workspace theory (GWT) for their ability to 'carve nature at its joints' in the sense of predicting the entities, structures, states and dynamics that are conventionally recognized as being conscious or nonconscious. I go on to argue that, though the cemi field theory shares features of both integrated information theory and global workspace theory, it is more successful at carving nature at its conventionally accepted joints between conscious and nonconscious systems, and is thereby a more successful theory of consciousness.
Collapse
Affiliation(s)
- Johnjoe McFadden
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
17
|
Esteban FJ, Ibáñez-Molina A, Iglesias-Parro S, Ruiz de Miras J, Soler-Toscano F. Editorial: Complex network dynamics in consciousness. Front Comput Neurosci 2023; 17:1310392. [PMID: 38024447 PMCID: PMC10648109 DOI: 10.3389/fncom.2023.1310392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
| | | | | | - Juan Ruiz de Miras
- Software Engineering Department, Research Center for Information and Communication Technologies (CITIC-UGR), University of Granada, Granada, Spain
| | - Fernando Soler-Toscano
- Philosophy, Logic and Philosophy of Science Department, Sevilla University, Sevilla, Spain
| |
Collapse
|
18
|
Castro-Toledo FJ, Cerezo P, Gómez-Bellvís AB. Scratching the structure of moral agency: insights from philosophy applied to neuroscience. Front Neurosci 2023; 17:1198001. [PMID: 37539381 PMCID: PMC10396301 DOI: 10.3389/fnins.2023.1198001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/28/2023] [Indexed: 08/05/2023] Open
Abstract
This paper explores the intersection between neuroscience and philosophy, particularly in the areas of moral philosophy and philosophy of mind. While traditional philosophical questions, such as those relating to free will and moral motivation, have been subject to much debate, the rise of neuroscience has led to a reinterpretation of these questions considering empirical evidence. This has led to tensions between those who believe neuroscience can provide definitive answers to very complex philosophical questions and those who are skeptical about the scope of these studies. However, the paper argues that neuroscientists and philosophers can work together to generate major scientific and social advances. To contribute to bridge the gap, in this paper we expose the complexity of moral experience from a philosophical point of view and point to two great challenges and gaps to cover from neurosciences.
Collapse
Affiliation(s)
- Francisco Javier Castro-Toledo
- Plus Ethics, Elche, Spain
- Miguel Hernández University of Elche, Elche, Spain
- The European University of Brain and Technology (NeurotechEU), Elche, Spain
| | | | | |
Collapse
|
19
|
Huang Z. Temporospatial Nestedness in Consciousness: An Updated Perspective on the Temporospatial Theory of Consciousness. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1074. [PMID: 37510023 PMCID: PMC10378228 DOI: 10.3390/e25071074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Time and space are fundamental elements that permeate the fabric of nature, and their significance in relation to neural activity and consciousness remains a compelling yet unexplored area of research. The Temporospatial Theory of Consciousness (TTC) provides a framework that links time, space, neural activity, and consciousness, shedding light on the intricate relationships among these dimensions. In this review, I revisit the fundamental concepts and mechanisms proposed by the TTC, with a particular focus on the central concept of temporospatial nestedness. I propose an extension of temporospatial nestedness by incorporating the nested relationship between the temporal circuit and functional geometry of the brain. To further unravel the complexities of temporospatial nestedness, future research directions should emphasize the characterization of functional geometry and the temporal circuit across multiple spatial and temporal scales. Investigating the links between these scales will yield a more comprehensive understanding of how spatial organization and temporal dynamics contribute to conscious states. This integrative approach holds the potential to uncover novel insights into the neural basis of consciousness and reshape our understanding of the world-brain dynamic.
Collapse
Affiliation(s)
- Zirui Huang
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
20
|
Miller WB. A scale-free universal relational information matrix (N-space) reconciles the information problem: N-space as the fabric of reality. Commun Integr Biol 2023; 16:2193006. [PMID: 37188326 PMCID: PMC10177686 DOI: 10.1080/19420889.2023.2193006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 05/17/2023] Open
Abstract
Cellular measurement is a crucial faculty in living systems, and exaptations are acknowledged as a significant source of evolutionary innovation. However, the possibility that the origin of biological order is predicated on an exaptation of the measurement of information from the abiotic realm has not been previously explored. To support this hypothesis, the existence of a universal holographic relational information space-time matrix is proposed as a scale-free unification of abiotic and biotic information systems. In this framework, information is a universal property representing the interactions between matter and energy that can be subject to observation. Since observers are also universally distributed, information can be deemed the fundamental fabric of the universe. The novel concept of compartmentalizing this universal N-space information matrix into separate N-space partitions as nodes of informational density defined by Markov blankets and boundaries is introduced, permitting their applicability to both abiotic and biotic systems. Based on these N-space partitions, abiotic systems can derive meaningful information from the conditional settlement of quantum entanglement asymmetries and coherences between separately bounded quantum informational reference frames sufficient to be construed as a form of measurement. These conditional relationships are the precursor of the reiterating nested architecture of the N-space-derived information fields that characterize life and account for biological order. Accordingly, biotic measurement and biological N-space partitioning are exaptations of preexisting information processes within abiotic systems. Abiotic and biotic states thereby reconcile as differing forms of measurement of fundamental universal information. The essential difference between abiotic and biotic states lies within the attributes of the specific observer/detectors, thereby clarifying several contentious aspects of self-referential consciousness.
Collapse
|
21
|
Frohlich J, Bayne T, Crone JS, DallaVecchia A, Kirkeby-Hinrup A, Mediano PA, Moser J, Talar K, Gharabaghi A, Preissl H. Not with a “zap” but with a “beep”: measuring the origins of perinatal experience. Neuroimage 2023; 273:120057. [PMID: 37001834 DOI: 10.1016/j.neuroimage.2023.120057] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
When does the mind begin? Infant psychology is mysterious in part because we cannot remember our first months of life, nor can we directly communicate with infants. Even more speculative is the possibility of mental life prior to birth. The question of when consciousness, or subjective experience, begins in human development thus remains incompletely answered, though boundaries can be set using current knowledge from developmental neurobiology and recent investigations of the perinatal brain. Here, we offer our perspective on how the development of a sensory perturbational complexity index (sPCI) based on auditory ("beep-and-zip"), visual ("flash-and-zip"), or even olfactory ("sniff-and-zip") cortical perturbations in place of electromagnetic perturbations ("zap-and-zip") might be used to address this question. First, we discuss recent studies of perinatal cognition and consciousness using techniques such as functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and, in particular, magnetoencephalography (MEG). While newborn infants are the archetypal subjects for studying early human development, researchers may also benefit from fetal studies, as the womb is, in many respects, a more controlled environment than the cradle. The earliest possible timepoint when subjective experience might begin is likely the establishment of thalamocortical connectivity at 26 weeks gestation, as the thalamocortical system is necessary for consciousness according to most theoretical frameworks. To infer at what age and in which behavioral states consciousness might emerge following the initiation of thalamocortical pathways, we advocate for the development of the sPCI and similar techniques, based on EEG, MEG, and fMRI, to estimate the perinatal brain's state of consciousness.
Collapse
|
22
|
Tucker DM, Luu P, Johnson M. Neurophysiological Mechanisms of Implicit and Explicit Memory in the Process of Consciousness. J Neurophysiol 2022; 128:872-891. [PMID: 36044682 PMCID: PMC9576178 DOI: 10.1152/jn.00328.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurophysiological mechanisms are increasingly understood to constitute the foundations of human conscious experience. These include the capacity for ongoing memory, achieved through a hierarchy of reentrant cross-laminar connections across limbic, heteromodal, unimodal, and primary cortices. The neurophysiological mechanisms of consciousness also include the capacity for volitional direction of attention to the ongoing cognitive process, through a reentrant fronto-thalamo-cortical network regulation of the inhibitory thalamic reticular nucleus. More elusive is the way that discrete objects of subjective experience, such as the color of deep blue or the sound of middle C, could be generated by neural mechanisms. Explaining such ineffable qualities of subjective experience is what Chalmers has called “the hard problem of consciousness,” which has divided modern neuroscientists and philosophers alike. We propose that insight into the appearance of the hard problem can be gained through integrating classical phenomenological studies of experience with recent progress in the differential neurophysiology of consolidating explicit versus implicit memory. Although the achievement of consciousness, once it is reflected upon, becomes explicit, the underlying process of generating consciousness, through neurophysiological mechanisms, is largely implicit. Studying the neurophysiological mechanisms of adaptive implicit memory, including brain stem, limbic, and thalamic regulation of neocortical representations, may lead to a more extended phenomenological understanding of both the neurophysiological process and the subjective experience of consciousness. NEW & NOTEWORTHY The process of consciousness, generating the qualia that may appear to be irreducible qualities of experience, can be understood to arise from neurophysiological mechanisms of memory. Implicit memory, organized by the lemnothalamic brain stem projections and dorsal limbic consolidation in REM sleep, supports the unconscious field and the quasi-conscious fringe of current awareness. Explicit memory, organized by the collothalamic midbrain projections and ventral limbic consolidation of NREM sleep, supports the focal objects of consciousness.
Collapse
Affiliation(s)
- Don M Tucker
- Department of Psychology, University of Oregon, Eugene, OR, United States.,Brain Electrophysiology Laboratory Company, Riverfront Research Park, Eugene OR, United States
| | - Phan Luu
- Department of Psychology, University of Oregon, Eugene, OR, United States.,Brain Electrophysiology Laboratory Company, Riverfront Research Park, Eugene OR, United States
| | - Mark Johnson
- Department of Philosophy, University of Oregon, Eugene, OR, United States
| |
Collapse
|
23
|
Signorelli CM, Boils JD, Tagliazucchi E, Jarraya B, Deco G. From Brain-Body Function to Conscious Interactions. Neurosci Biobehav Rev 2022; 141:104833. [PMID: 36037978 DOI: 10.1016/j.neubiorev.2022.104833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/06/2022] [Accepted: 08/18/2022] [Indexed: 11/15/2022]
Abstract
In this review, we discuss empirical results inspiring the introduction of a formal mathematical multilayer model for the biological neuroscience of conscious experience. First, we motivate the discussion through evidence regarding the dynamic brain. Second, we review different brain-body couplings associated with conscious experience and its potential role in driving brain dynamics. Third, we introduce the machinery of multilayer networks to account for several types of interactions in brain-body systems. Then, a multilayer structure consists of two main generalizations: a formal semantic to study biological systems, and an integrative account for several signatures and models of consciousness. Finally, under this framework, we define composition of layers to account for entangled features of brain-body systems related to conscious experience. As such, a multilayer mathematical framework is highly integrative and thus may be more complete than other models. In this short review, we discuss a variety of empirical results inspiring the introduction of a formal mathematical multilayer model for the biological neuroscience of conscious experience.
Collapse
Affiliation(s)
- Camilo Miguel Signorelli
- Department of Computer Science, University of Oxford, Oxford, 7 Parks Rd, OxfordOX1 3QG, United Kingdom; Physiology of Cognition, GIGA-CRC In Vivo Imaging, Allée du 6 Août, 8 (B30), 4000 Sart Tilman, University of Liège, Belgium; Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France; Computational Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Joaquín Díaz Boils
- Universidad Internacional de La Rioja, Avda La Paz, 137, Logroño, La Rioja, Spain
| | - Enzo Tagliazucchi
- Physics Department, University of Buenos Aires, Buenos Aires, Argentina
| | - Bechir Jarraya
- Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
24
|
Functional Connectivity Increases in Response to High-Definition Transcranial Direct Current Stimulation in Patients with Chronic Disorder of Consciousness. Brain Sci 2022; 12:brainsci12081095. [PMID: 36009158 PMCID: PMC9405975 DOI: 10.3390/brainsci12081095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Highlights Functional connectivity induced by HD-tDCS in DLPFC has different trends in CRS-R score improvers and non-improvers. An increase in theta PLV in the left frontal–parietooccipital region was significantly associated with CRS-R changes. DOC patients with increased PLV of the alpha band in the intra-bifrontal region have a better prognosis than those without.
Abstract High-definition transcranial direct current stimulation (HD-tDCS) has been shown to play an important role in improving consciousness in patients with disorders of consciousness (DOCs), but its neuroelectrophysiological evidence is still lacking. To better explain the electrophysiological mechanisms of the effects of HD-tDCS on patients with DOCs, 22 DOC patients underwent 10 anodal HD-tDCS sessions of the left dorsolateral prefrontal cortex (DLPFC). This study used the Coma Recovery Scale-Revised (CRS-R) to assess the level of consciousness in DOC patients. According to whether the CRS-R score increased before and after stimulation, DOC patients were divided into a responsive group and a non-responsive group. By comparing the differences in resting-state EEG functional connectivity between different frequency bands and brain regions, as well as the relationship between functional connectivity values and clinical scores, the electrophysiological mechanism of the clinical effects of HD-tDCS was further explored. The change of the phase locking value (PLV) on the theta frequency band in the left frontal–parietooccipital region was positively correlated with the change in the CRS-R scores. As the number of interventions increased, we observed that in the responsive group, the change in PLV showed an upward trend, and the increase in the PLV appeared in the left frontal–parietooccipital region at 4–8 Hz and in the intra-bifrontal region at 8–13 Hz. In the non-responsive group, although the CRS-R scores did not change after stimulation, the PLV showed a downward trend, and the decrease in the PLV appeared in the intra-bifrontal region at 8–13 Hz. In addition, at the three-month follow-up, patients with increased PLV in the intra-bifrontal region at 8–13 Hz after repeated HD-tDCS stimulation had better outcomes than those without. Repeated anodal stimulation of the left DLPFC with HD-tDCS resulted in improved consciousness in some patients with DOCs. The increase in functional connectivity in the brain regions may be associated with the improvement of related awareness after HD-tDCS and may be a predictor of better long-term outcomes.
Collapse
|
25
|
Alachkar A. Aromatic patterns: Tryptophan aromaticity as a catalyst for the emergence of life and rise of consciousness. Phys Life Rev 2022; 42:93-114. [PMID: 35905538 DOI: 10.1016/j.plrev.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022]
Abstract
Sunlight held the key to the origin of life on Earth. The earliest life forms, cyanobacteria, captured the sunlight to generate energy through photosynthesis. Life on Earth evolved in accordance with the circadian rhythms tied to sensitivity to sunlight patterns. A unique feature of cyanobacterial photosynthetic proteins and circadian rhythms' molecules, and later of nearly all photon-sensing molecules throughout evolution, is that the aromatic amino acid tryptophan (Trp) resides at the center of light-harvesting active sites. In this perspective, I review the literature and integrate evidence from different scientific fields to explore the role Trp plays in photon-sensing capabilities of living organisms through its resonance delocalization of π-electrons. The observations presented here are the product of apparently unrelated phenomena throughout evolution, but nevertheless share consistent patterns of photon-sensing by Trp-containing and Trp-derived molecules. I posit the unique capacity to transfer electrons during photosynthesis in the earliest life forms is conferred to Trp due to its aromaticity. I propose this ability evolved to assume more complex functions, serving as a host for mechanisms underlying mental aptitudes - a concept which provides a theoretical basis for defining the neural correlates of consciousness. The argument made here is that Trp aromaticity may have allowed for the inception of the mechanistic building blocks used to fabricate complexity in higher forms of life. More specifically, Trp aromatic non-locality may have acted as a catalyst for the emergence of consciousness by instigating long-range synchronization and stabilizing the large-scale coherence of neural networks, which mediate functional brain activity. The concepts proposed in this perspective provide a conceptual foundation that invites further interdisciplinary dialogue aimed at examining and defining the role of aromaticity (beyond Trp) in the emergence of life and consciousness.
Collapse
Affiliation(s)
- Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA; UC Irvine Center for the Neurobiology of Learning and Memory, University of California-Irvine, Irvine, CA 92697, USA; Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
26
|
Emergent Intelligence in Generalized Pure Quantum Systems. COMPUTATION 2022. [DOI: 10.3390/computation10060088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper presents the generalized information system theory, which is enlarged into pure quantum systems using wave probability functions. The novelty of this approach is based on analogies with electrical circuits and quantum physics. Information power was chosen as the relevant parameter, which guarantees the balance of both components—information flow and information content. Next, the principles of quantum resonance between individual information components, which can lead to emergent behavior, are analyzed. For such a system, adding more and more probabilistic information elements can lead to better convergence of the whole to the resulting trajectory due to phase parameters. The paper also offers an original interpretation of information “source–recipient” or “resource–demand” models, including not yet implemented “unused resources” and “unmet demands”. Finally, possible applications of these principles are shown in several examples from the quantum gyrator to the hypothetical possibility of explaining some properties of the consciousness.
Collapse
|
27
|
Revach D, Salti M. Expanding the discussion: Revision of the fundamental assumptions framing the study of the neural correlates of consciousness. Conscious Cogn 2021; 96:103229. [PMID: 34749156 DOI: 10.1016/j.concog.2021.103229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 01/10/2023]
Abstract
The way one asks a question is shaped by a-priori assumptions and constrains the range of possible answers. We identify and test the assumptions underlying contemporary debates, models, and methodology in the study of the neural correlates of consciousness, which was framed by Crick and Koch's seminal paper (1990). These premises create a sequential and passive conception of conscious perception: it is considered the product of resolved information processing by unconscious mechanisms, produced by a singular event in time and place representing the moment of entry. The conscious percept produced is then automatically retained to be utilized by post-conscious mechanisms. Major debates in the field, such as concern the moment of entry, the all-or-none vs graded nature, and report vs no-report paradigms, are driven by the consensus on these assumptions. We show how removing these assumptions can resolve some of the debates and challenges and prompt additional questions. The potential non-sequential nature of perception suggests new ways of thinking about consciousness as a dynamic and dispersed process, and in turn about the relationship between conscious and unconscious perception. Moreover, it allows us to present a parsimonious account for conscious perception while addressing more aspects of the phenomenon.
Collapse
Affiliation(s)
- Daniel Revach
- Ben Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Moti Salti
- Ben Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
28
|
Sklar AY, Kardosh R, Hassin RR. From non-conscious processing to conscious events: a minimalist approach. Neurosci Conscious 2021; 2021:niab026. [PMID: 34676105 PMCID: PMC8524171 DOI: 10.1093/nc/niab026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/23/2021] [Accepted: 10/11/2021] [Indexed: 01/22/2023] Open
Abstract
The minimalist approach that we develop here is a framework that allows to appreciate how non-conscious processing and conscious contents shape human cognition, broadly defined. It is composed of three simple principles. First, cognitive processes are inherently non-conscious, while their inputs and (interim) outputs may be consciously experienced. Second, non-conscious processes and elements of the cognitive architecture prioritize information for conscious experiences. Third, conscious events are composed of series of conscious contents and non-conscious processes, with increased duration leading to more opportunity for processing. The narrowness of conscious experiences is conceptualized here as a solution to the problem of channeling the plethora of non-conscious processes into action and communication processes that are largely serial. The framework highlights the importance of prioritization for consciousness, and we provide an illustrative review of three main factors that shape prioritization-stimulus strength, motivational relevance and mental accessibility. We further discuss when and how this framework (i) is compatible with previous theories, (ii) enables new understandings of established findings and models, and (iii) generates new predictions and understandings.
Collapse
Affiliation(s)
- Asael Y Sklar
- Edmond & Lily Safra Center for Brain Sciences, The Hebrew University Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Rasha Kardosh
- Psychology Department, The Hebrew University Mount Scopus, Jerusalem 91905, Israel
| | - Ran R Hassin
- James Marshall Chair of Psychology, Psychology Department & The Federmann Center for the Study of Rationality, The Hebrew University Mount Scopus, Jerusalem 91905, Israel
| |
Collapse
|
29
|
López-González A, Panda R, Ponce-Alvarez A, Zamora-López G, Escrichs A, Martial C, Thibaut A, Gosseries O, Kringelbach ML, Annen J, Laureys S, Deco G. Loss of consciousness reduces the stability of brain hubs and the heterogeneity of brain dynamics. Commun Biol 2021; 4:1037. [PMID: 34489535 PMCID: PMC8421429 DOI: 10.1038/s42003-021-02537-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 08/11/2021] [Indexed: 01/07/2023] Open
Abstract
Low-level states of consciousness are characterized by disruptions of brain activity that sustain arousal and awareness. Yet, how structural, dynamical, local and network brain properties interplay in the different levels of consciousness is unknown. Here, we study fMRI brain dynamics from patients that suffered brain injuries leading to a disorder of consciousness and from healthy subjects undergoing propofol-induced sedation. We show that pathological and pharmacological low-level states of consciousness display less recurrent, less connected and more segregated synchronization patterns than conscious state. We use whole-brain models built upon healthy and injured structural connectivity to interpret these dynamical effects. We found that low-level states of consciousness were associated with reduced network interactions, together with more homogeneous and more structurally constrained local dynamics. Notably, these changes lead the structural hub regions to lose their stability during low-level states of consciousness, thus attenuating the differences between hubs and non-hubs brain dynamics. López-González et al study the fMRI brain dynamics and their underlying mechanism from patients that suffered brain injuries leading to a disorder of consciousness as well as from healthy subjects undergoing propofol-induced sedation. They show that pathological and pharmacological low-level states of consciousness display disrupted synchronization patterns, higher constraint to the anatomy and a loss of heterogeneity and stability in the structural hubs compared to conscious states.
Collapse
Affiliation(s)
- Ane López-González
- Computational Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Rajanikant Panda
- GIGA-Consciousness, Coma Science Group, University of Liège, Liège, Belgium.,Centre du Cerveau2, University Hospital of Liège, Liège, Belgium
| | - Adrián Ponce-Alvarez
- Computational Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gorka Zamora-López
- Computational Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| | - Anira Escrichs
- Computational Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| | - Charlotte Martial
- GIGA-Consciousness, Coma Science Group, University of Liège, Liège, Belgium.,Centre du Cerveau2, University Hospital of Liège, Liège, Belgium
| | - Aurore Thibaut
- GIGA-Consciousness, Coma Science Group, University of Liège, Liège, Belgium.,Centre du Cerveau2, University Hospital of Liège, Liège, Belgium
| | - Olivia Gosseries
- GIGA-Consciousness, Coma Science Group, University of Liège, Liège, Belgium.,Centre du Cerveau2, University Hospital of Liège, Liège, Belgium
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, UK.,Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark.,Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
| | - Jitka Annen
- GIGA-Consciousness, Coma Science Group, University of Liège, Liège, Belgium.,Centre du Cerveau2, University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- GIGA-Consciousness, Coma Science Group, University of Liège, Liège, Belgium.,Centre du Cerveau2, University Hospital of Liège, Liège, Belgium
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
30
|
Dijkstra N, van Gaal S, Geerligs L, Bosch SE, van Gerven MAJ. No Evidence for Neural Overlap between Unconsciously Processed and Imagined Stimuli. eNeuro 2021; 8:ENEURO.0228-21.2021. [PMID: 34593516 PMCID: PMC8577044 DOI: 10.1523/eneuro.0228-21.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/23/2022] Open
Abstract
Visual representations can be generated via feedforward or feedback processes. The extent to which these processes result in overlapping representations remains unclear. Previous work has shown that imagined stimuli elicit similar representations as perceived stimuli throughout the visual cortex. However, while representations during imagery are indeed only caused by feedback processing, neural processing during perception is an interplay of both feedforward and feedback processing. This means that any representational overlap could be because of overlap in feedback processes. In the current study, we aimed to investigate this issue by characterizing the overlap between feedforward- and feedback-initiated category representations during imagined stimuli, conscious perception, and unconscious processing using fMRI in humans of either sex. While all three conditions elicited stimulus representations in left lateral occipital cortex (LOC), significant similarities were observed only between imagery and conscious perception in this area. Furthermore, connectivity analyses revealed stronger connectivity between frontal areas and left LOC during conscious perception and in imagery compared with unconscious processing. Together, these findings can be explained by the idea that long-range feedback modifies visual representations, thereby reducing representational overlap between purely feedforward- and feedback-initiated stimulus representations measured by fMRI. Neural representations influenced by feedback, either stimulus driven (perception) or purely internally driven (imagery), are, however, relatively similar.
Collapse
Affiliation(s)
- Nadine Dijkstra
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 GL, Nijmegen, The Netherlands
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, United Kingdom
| | - Simon van Gaal
- Department of Psychology, Brain & Cognition, University of Amsterdam, 1000 GG, Amsterdam, The Netherlands
| | - Linda Geerligs
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 GL, Nijmegen, The Netherlands
| | - Sander E Bosch
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 GL, Nijmegen, The Netherlands
| | - Marcel A J van Gerven
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 GL, Nijmegen, The Netherlands
| |
Collapse
|
31
|
Abstract
The conscious electromagnetic information (cemi) field theory proposes that the seat of consciousness is the brain’s electromagnetic (EM) field that integrates information from trillions of firing neurons. What we call free will is its output. The cemi theory also proposes that the brain has two streams. Most actions are initiated by the first non-conscious stream that is composed of neurons that are insulated from EM field influences. These non-conscious involuntary actions are thereby invisible to our EM field-located thoughts. The theory also proposes that voluntary actions are driven by neurons that receive EM field inputs and are thereby visible to our EM field-located thoughts. I review the extensive evidence for EM field/ephaptic coupling between neurons and the increasing evidence that EM fields in the brain are a cause of behaviour. I conclude by arguing that though this EM field-driven will is not free, in the sense of being acausal, it nevertheless corresponds to the very real experience of our conscious mind being in control of our voluntary actions. Will is not an illusion. It is our experience of control by our EM field-located mind. It is an immaterial, yet physical, will.
Collapse
|
32
|
Deficits in access consciousness, integrative function, and consequent autonoetic thinking in schizophrenia. Med Hypotheses 2021; 155:110664. [PMID: 34425452 DOI: 10.1016/j.mehy.2021.110664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/09/2021] [Accepted: 08/10/2021] [Indexed: 11/23/2022]
Abstract
Alterations within consciousness in schizophrenia can be evidenced by impediments in self-awareness and loss of agency. Ned Block's definition of access consciousness is applied in order to further delineate cognitive deficits involving reflective thought and autonoetic thinking in persons with schizophrenia. Current theories on the nature and functioning of consciousness are discussed, which include Global Workspace Theory and metarepresentational characterizations. These describe a recursive, integrative quality to consciousness, contributed to by the functions of access consciousness, that is relevant in examining cognitive deficits in schizophrenia. The integrative deficit that is described as operating in conscious process involves a failure to incorporate prior outputs from a separate cognitive task and integrate these into a novel working schema. The alterations in access consciousness in persons with schizophrenia appear to be a consequence of disrupted integrative cognitive functions. An anteceding problem with cortical circuits involving integrative functions related to access consciousness is therefore hypothesized to manifest as subsequent cognitive dysfunction that leads to symptoms of schizophrenia. Constitutive failures to integrate information in schizophrenia could lead to an inability to create experiential unity and manage content in autonoetic consciousness. Some of the aberrant reasoning manifested by persons with schizophrenia, including problems with hierarchical relational reasoning, model-based-learning, J-con, ipseity, and source monitoring, could also reflect alterations in access consciousness, and their investigation offers additional approaches for scientific inquiry.
Collapse
|
33
|
Bertrand E, van Duinkerken E, Laks J, Dourado MCN, Bernardes G, Landeira-Fernandez J, Mograbi DC. Structural Gray and White Matter Correlates of Awareness in Alzheimer's Disease. J Alzheimers Dis 2021; 81:1321-1330. [PMID: 33935073 DOI: 10.3233/jad-201246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Unawareness of disease is a common feature of Alzheimer's disease (AD), but few studies explored its neural correlates. Additionally, neural correlates according to the object of awareness are unexplored. OBJECTIVE To investigate structural brain correlates in relation to different objects of awareness. METHODS 27 people with AD underwent MRI scanning on a 3T Siemens Prisma. T1-MPRAGE was used to investigate cortical thickness and white matter microstructure was defined by DTI as fractional anisotropy, mean, axial, and radial diffusivity. Preprocessing used FreeSurfer6.0, ExploreDTI, and FSL-TBSS. Awareness of disease, cognitive deficits, emotional state, relationships, and functional capacity were assessed with the short version of the Assessment Scale of Psychosocial Impact of the Diagnosis of Dementia. Voxel-wise correlations between brain structure and awareness were determined by FSL-PALM. Analyses were corrected for multiple comparisons using Threshold Free Cluster Enhancement and FWE. RESULTS Lower left hemisphere cortical thickness was related to poorer disease awareness uncorrected and corrected for age, sex, and MMSE. In the uncorrected model, mainly right-sided, but also left temporal lower cortical thickness was related to decreased awareness of cognitive deficits. Correcting for age, sex, and MMSE eliminated correlations for the right hemisphere, but extensive correlations in the left hemisphere remained. For white matter integrity, higher right hemisphere MD was related to lower cognitive awareness deficits, and lower FA was related to lower functional capacity awareness. CONCLUSION Findings suggest that extensive regions of the brain are linked to self-awareness, with particular frontal and temporal alterations leading to unawareness, in agreement with theoretical models indicating executive and mnemonic forms of anosognosia in AD.
Collapse
Affiliation(s)
- Elodie Bertrand
- MC2Lab (URP 7536), Institut de Psychologie, Université de Paris, Paris, France.,Department of Psychology, Pontifícia Universidade Católica-Rio (PUC-Rio), Rio de Janeiro, Brazil
| | - Eelco van Duinkerken
- Department of Medical Psychology, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands.,Center for Epilepsy, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil.,Postgraduate Program in Neurology, Hospital Universitário Gaffrée e Guinle -UNIRIO, Rio de Janeiro, Brazil
| | - Jerson Laks
- Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Psychology, Universidade do Grande Rio (Unigranrio), Duque de Caxias, Brazil
| | | | - Gabriel Bernardes
- Department of Psychology, Pontifícia Universidade Católica-Rio (PUC-Rio), Rio de Janeiro, Brazil
| | - Jesus Landeira-Fernandez
- Department of Psychology, Pontifícia Universidade Católica-Rio (PUC-Rio), Rio de Janeiro, Brazil
| | - Daniel C Mograbi
- Department of Psychology, Pontifícia Universidade Católica-Rio (PUC-Rio), Rio de Janeiro, Brazil.,Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
34
|
Gruenbaum BF. Comparison of anaesthetic- and seizure-induced states of unconsciousness: a narrative review. Br J Anaesth 2021; 126:219-229. [PMID: 32951841 PMCID: PMC7844374 DOI: 10.1016/j.bja.2020.07.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/23/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022] Open
Abstract
In order to understand general anaesthesia and certain seizures, a fundamental understanding of the neurobiology of unconsciousness is needed. This review article explores similarities in neuronal and network changes during general anaesthesia and seizure-induced unconsciousness. Both seizures and anaesthetics cause disruption in similar anatomical structures that presumably lead to impaired consciousness. Despite differences in behaviour and mechanisms, both of these conditions are associated with disruption of the functionality of subcortical structures that mediate neuronal activity in the frontoparietal cortex. These areas are all likely to be involved in maintaining normal consciousness. An assessment of the similarities in the brain network disruptions with certain seizures and general anaesthesia might provide fresh insights into the mechanisms of the alterations of consciousness seen in these particular unconscious states, allowing for innovative therapies for seizures and the development of anaesthetic approaches targeting specific networks.
Collapse
|
35
|
Castelnovo A, Loddo G, Provini F, Miano S, Manconi M. Mental Activity During Episodes of Sleepwalking, Night Terrors or Confusional Arousals: Differences Between Children and Adults. Nat Sci Sleep 2021; 13:829-840. [PMID: 34188578 PMCID: PMC8232850 DOI: 10.2147/nss.s309868] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/21/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE/BACKGROUND Night terrors, sleepwalking and confusional arousals are behavioral manifestations of incomplete awakenings from sleep. According to international diagnostic criteria, these behaviors occur in the absence of any mental experience, or in the presence of very limited cognition or dream imagery (eg, a single visual scene). The aim of this study was to systematically and retrospectively investigate the mental content associated with sleep terrors and/or sleepwalking in both children and adults. PATIENTS AND METHODS Forty-five consecutive patients referred for a diagnosis of disorders of arousal (DOA) of all subtypes (sleepwalking/sleep terrors/confusional arousals) (25 adults: 30 ± 6 y, 15 females; 20 children: 10 ± 3 y, 6 females) underwent a detailed semi-structured interview about the mental content associated with their nocturnal episodes. The interview was comprehensive of specific questions about their subjective recall rate, several content details (characters, emotions, actions and setting/context), and hallucinatory or dissociative experiences during clinical episodes. Patients' reports were classified for complexity (Orlinsky scale) and content (Hall and Van de Castle categories). RESULTS More than two-third of the children (n = 14) could not recall any mental activity associated with their episodes, whereas more than two-third (n = 16) of the adults recalled at least one mental experience. Half of the adult patients (n = 8) estimated that a specific mental content was subjectively present around 50% or more of the times. Seven adults and one child described clear and vivid hallucinatory experiences of "dreamed" objects or characters projected onto their real home environment, in the absence of any reality testing. Five adults and two children described one or more dissociative experiences. The content of the collected reports was dominated by dynamic actions acted out from a self-perspective, often with apprehension and in response to misfortune and danger, in a home-setting environment. CONCLUSION These results suggest that current diagnostic criteria are tailored around the typical presentation of DOA in children, and do not always fit to adult patients with DOA. Furthermore, they support the concept that consciousness may reemerge in DOA patients during clinical episodes, in a peculiar dissociated, psychotic-like form.
Collapse
Affiliation(s)
- Anna Castelnovo
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Ospedale Civico, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.,University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Giuseppe Loddo
- Department of Primary Care, Azienda USL di Bologna, Bologna, Italia
| | - Federica Provini
- IRCSS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italia.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italia
| | - Silvia Miano
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Ospedale Civico, Lugano, Switzerland
| | - Mauro Manconi
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, Ospedale Civico, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.,Department of Neurology, University Hospital, Inselspital, Bern, Switzerland
| |
Collapse
|
36
|
Krauss P, Maier A. Will We Ever Have Conscious Machines? Front Comput Neurosci 2020; 14:556544. [PMID: 33414712 PMCID: PMC7782472 DOI: 10.3389/fncom.2020.556544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/26/2020] [Indexed: 01/09/2023] Open
Abstract
The question of whether artificial beings or machines could become self-aware or conscious has been a philosophical question for centuries. The main problem is that self-awareness cannot be observed from an outside perspective and the distinction of being really self-aware or merely a clever imitation cannot be answered without access to knowledge about the mechanism's inner workings. We investigate common machine learning approaches with respect to their potential ability to become self-aware. We realize that many important algorithmic steps toward machines with a core consciousness have already been taken.
Collapse
Affiliation(s)
- Patrick Krauss
- Neuroscience Lab, University Hospital Erlangen, Erlangen, Germany.,Cognitive Computational Neuroscience Group, Chair of Linguistics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas Maier
- Chair of Machine Intelligence, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
37
|
Rajananda S, Zhu J, Peters MAK. Normal observers show no evidence for blindsight in facial emotion perception. Neurosci Conscious 2020; 2020:niaa023. [PMID: 33343928 PMCID: PMC7734439 DOI: 10.1093/nc/niaa023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/05/2020] [Accepted: 09/07/2020] [Indexed: 11/16/2022] Open
Abstract
Some researchers have argued that normal human observers can exhibit "blindsight-like" behavior: the ability to discriminate or identify a stimulus without being aware of it. However, we recently used a bias-free task to show that what looks like blindsight may in fact be an artifact of typical experimental paradigms' susceptibility to response bias. While those findings challenge previous reports of blindsight in normal observers, they do not rule out the possibility that different stimuli or techniques could still reveal perception without awareness. One intriguing candidate is emotion processing, since processing of emotional stimuli (e.g. fearful/happy faces) has been reported to potentially bypass conscious visual circuits. Here we used the bias-free blindsight paradigm to investigate whether emotion processing might reveal "featural blindsight," i.e. ability to identify a face's emotion without introspective access to the task-relevant features that led to the discrimination decision. However, we saw no evidence for emotion processing "featural blindsight": as before, whenever participants could identify a face's emotion they displayed introspective access to the task-relevant features, matching predictions of a Bayesian ideal observer. These results add to the growing body of evidence that perceptual discrimination ability without introspective access may not be possible for neurologically intact observers.
Collapse
Affiliation(s)
- Sivananda Rajananda
- Department of Bioengineering, University of California Riverside, Riverside, CA 92521, USA
| | - Jeanette Zhu
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Megan A K Peters
- Department of Bioengineering, University of California Riverside, Riverside, CA 92521, USA
- Department of Cognitive Science, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
38
|
Abstract
Human cerebral organoids (HCOs) are three-dimensional in vitro cell cultures that mimic the developmental process and organization of the developing human brain. In just a few years this technique has produced brain models that are already being used to study diseases of the nervous system and to test treatments and drugs. Currently, HCOs consist of tens of millions of cells and have a size of a few millimeters. The greatest limitation to further development is due to their lack of vascularization. However, recent research has shown that human cerebral organoids can manifest the same electrical activity and connections between brain neurons and EEG patterns as those recorded in preterm babies. All this suggests that, in the future, HCOs may manifest an ability to experience basic sensations such as pain, therefore manifesting sentience, or even rudimentary forms of consciousness. This calls for consideration of whether cerebral organoids should be given a moral status and what limitations should be introduced to regulate research. In this article I focus particularly on the study of the emergence and mechanisms of human consciousness, i.e. one of the most complex scientific problems there are, by means of experiments on HCOs. This type of experiment raises relevant ethical issues and, as I will argue, should probably not be considered morally acceptable.
Collapse
Affiliation(s)
- Andrea Lavazza
- Centro Universitario Internazionale, Via Garbasso, 42, 52100, Arezzo, Italy.
- University of Pavia, Pavia, Italy.
| |
Collapse
|
39
|
A source for awareness-dependent figure-ground segregation in human prefrontal cortex. Proc Natl Acad Sci U S A 2020; 117:30836-30847. [PMID: 33199608 DOI: 10.1073/pnas.1922832117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Figure-ground modulation, i.e., the enhancement of neuronal responses evoked by the figure relative to the background, has three complementary components: edge modulation (boundary detection), center modulation (region filling), and background modulation (background suppression). However, the neuronal mechanisms mediating these three modulations and how they depend on awareness remain unclear. For each modulation, we compared both the cueing effect produced in a Posner paradigm and fMRI blood oxygen-level dependent (BOLD) signal in primary visual cortex (V1) evoked by visible relative to invisible orientation-defined figures. We found that edge modulation was independent of awareness, whereas both center and background modulations were strongly modulated by awareness, with greater modulations in the visible than the invisible condition. Effective-connectivity analysis further showed that the awareness-dependent region-filling and background-suppression processes in V1 were not derived through intracortical interactions within V1, but rather by feedback from the frontal eye field (FEF) and dorsolateral prefrontal cortex (DLPFC), respectively. These results indicate a source for an awareness-dependent figure-ground segregation in human prefrontal cortex.
Collapse
|
40
|
Lavazza A. Potential ethical problems with human cerebral organoids: Consciousness and moral status of future brains in a dish. Brain Res 2020; 1750:147146. [PMID: 33068633 DOI: 10.1016/j.brainres.2020.147146] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/04/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
Human cerebral organoids (HCOs) are an in vitro model of early neural development, aimed at modelling and understanding brain development and neurological disorders. In just a few years there has been rapid and considerable progress in the attempt to create a brain model capable of showcasing the characteristics of the human brain. There are still strong limitations to address, including the absence of vascularization which makes it difficult to feed the central layers of the organoid. Nevertheless, some important features of the nervous system have recently been observed in cerebral organoids: they manifest electrical activity (i.e. communication between neurons), are sensitive to light stimulation and are able to connect to a spinal cord by sending impulses that make a muscle contract. Recent data show that cortical organoid network development at ten months resembles some preterm babies EEG patterns. Although cerebral organoids are not close to human brains so far due to their extremely simplified structure, this state of things gives rise to ethical concerns about the creation and destructive experimental use of human cerebral organoids. Particularly, one can wonder whether a human cerebral organoid could develop some degree of consciousness and whether, under certain conditions, it could acquire its own moral status with the related rights. In this article, I discuss the conditions under which HCOs could be granted their own moral status. For this purpose, I consider the hypothesis that HCOs might develop a primitive form of consciousness and investigate the ways in which it could be detected. In light of all this, I finally point out some cautionary measures that could be introduced into research on and with human cerebral organoids.
Collapse
Affiliation(s)
- Andrea Lavazza
- Centro Universitario Internazionale, via Garbasso, 42, 5200 Arezzo, Italy; University of Pavia, Piazza Botta, 11, 27100 Pavia, Italy.
| |
Collapse
|
41
|
Keshmiri S. Entropy and the Brain: An Overview. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E917. [PMID: 33286686 PMCID: PMC7597158 DOI: 10.3390/e22090917] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/25/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022]
Abstract
Entropy is a powerful tool for quantification of the brain function and its information processing capacity. This is evident in its broad domain of applications that range from functional interactivity between the brain regions to quantification of the state of consciousness. A number of previous reviews summarized the use of entropic measures in neuroscience. However, these studies either focused on the overall use of nonlinear analytical methodologies for quantification of the brain activity or their contents pertained to a particular area of neuroscientific research. The present study aims at complementing these previous reviews in two ways. First, by covering the literature that specifically makes use of entropy for studying the brain function. Second, by highlighting the three fields of research in which the use of entropy has yielded highly promising results: the (altered) state of consciousness, the ageing brain, and the quantification of the brain networks' information processing. In so doing, the present overview identifies that the use of entropic measures for the study of consciousness and its (altered) states led the field to substantially advance the previous findings. Moreover, it realizes that the use of these measures for the study of the ageing brain resulted in significant insights on various ways that the process of ageing may affect the dynamics and information processing capacity of the brain. It further reveals that their utilization for analysis of the brain regional interactivity formed a bridge between the previous two research areas, thereby providing further evidence in support of their results. It concludes by highlighting some potential considerations that may help future research to refine the use of entropic measures for the study of brain complexity and its function. The present study helps realize that (despite their seemingly differing lines of inquiry) the study of consciousness, the ageing brain, and the brain networks' information processing are highly interrelated. Specifically, it identifies that the complexity, as quantified by entropy, is a fundamental property of conscious experience, which also plays a vital role in the brain's capacity for adaptation and therefore whose loss by ageing constitutes a basis for diseases and disorders. Interestingly, these two perspectives neatly come together through the association of entropy and the brain capacity for information processing.
Collapse
Affiliation(s)
- Soheil Keshmiri
- The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto 619-0237, Japan
| |
Collapse
|
42
|
Effects of ketamine on voltage-gated sodium channels in the barrel cortex and the ventral posteromedial nucleus slices of rats. Neuroreport 2020; 30:1197-1204. [PMID: 31568204 PMCID: PMC6855387 DOI: 10.1097/wnr.0000000000001344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ketamine is commonly used as a dissociative anesthetic with unique actions in the central nervous system. Previous studies have found that the thalamocortical systems play an important role in general anesthetics induced unconsciousness. Whether the voltage-gated sodium channels in the thalamocortical systems are the target of ketamine remain unclear. The present study used a whole-cell patch-clamp technique to observe the effects of ketamine on voltage-gated Na channels in thalamocortical pyramidal neurons. We found that IC50 of ketamine on Na currents in the primary somatosensory barrel cortex pyramidal neurons and the thalamus ventral posteromedial nucleus pyramidal neurons was 686.72 ± 39.92 and 842.65 ± 87.28 μM, respectively. Ketamine accelerated the Na channels inactivation and slowed inactivation of Na channels after recovery but did not affect the activation. We demonstrated the detailed suppression process of neural voltage-gated Na channels by ketamine on thalamocortical slice. This may provide a new insight into the mechanical explanation for the ketamine anesthesia.
Collapse
|
43
|
Transcranial magnetic stimulation-evoked connectivity reveals modulation effects of repetitive transcranial magnetic stimulation on patients with disorders of consciousness. Neuroreport 2020; 30:1307-1315. [PMID: 31714484 DOI: 10.1097/wnr.0000000000001362] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Several studies have investigated possible role of repetitive transcranial magnetic stimulation (rTMS) in patients with disorder of consciousness (DOC). But the details of patients' brain responses to the rTMS are yet to be disclosed. The aim of the study is to explore the neural electrical responses of DOC patients to rTMS modulation. DOC Patients [14 vegetative state, seven minimally conscious state (MCS)] and healthy subjects were enrolled and received one session of rTMS. The TMS-electroencephalogram was recorded at before and immediately after rTMS stimulation. TMS-evoked potentials as well as TMS-evoked connectivity were proposed to capture the effective connectivity alteration induced by rTMS. Significant changes of TMS-evoked potential were found in the healthy group but not in DOC patients. TMS-evoked connectivity was significantly enhanced by the rTMS in healthy and MCS groups. In addition, the enhancement was positively correlated with patients' Coma Recovery Scale-Revised scores. Global synchrony of the TMS-evoked connectivity matrix significantly enhanced by rTMS in the control and MCS groups but not in vegetative state patients. Furthermore, after rTMS stimulation, the similarity of TMS-evoked connectivity patterns between pairwise patients was significantly raised in MCS patients. But no significant changes were found in vegetative state patients. TMS-evoked connectivity reveals that rTMS can effectively modulate effective connectivity of MCS patients, but no evidence of changes in vegetative state patients.
Collapse
|
44
|
Chang AYC, Biehl M, Yu Y, Kanai R. Information Closure Theory of Consciousness. Front Psychol 2020; 11:1504. [PMID: 32760320 PMCID: PMC7374725 DOI: 10.3389/fpsyg.2020.01504] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/05/2020] [Indexed: 11/13/2022] Open
Abstract
Information processing in neural systems can be described and analyzed at multiple spatiotemporal scales. Generally, information at lower levels is more fine-grained but can be coarse-grained at higher levels. However, only information processed at specific scales of coarse-graining appears to be available for conscious awareness. We do not have direct experience of information available at the scale of individual neurons, which is noisy and highly stochastic. Neither do we have experience of more macro-scale interactions, such as interpersonal communications. Neurophysiological evidence suggests that conscious experiences co-vary with information encoded in coarse-grained neural states such as the firing pattern of a population of neurons. In this article, we introduce a new informational theory of consciousness: Information Closure Theory of Consciousness (ICT). We hypothesize that conscious processes are processes which form non-trivial informational closure (NTIC) with respect to the environment at certain coarse-grained scales. This hypothesis implies that conscious experience is confined due to informational closure from conscious processing to other coarse-grained scales. Information Closure Theory of Consciousness (ICT) proposes new quantitative definitions of both conscious content and conscious level. With the parsimonious definitions and a hypothesize, ICT provides explanations and predictions of various phenomena associated with consciousness. The implications of ICT naturally reconcile issues in many existing theories of consciousness and provides explanations for many of our intuitions about consciousness. Most importantly, ICT demonstrates that information can be the common language between consciousness and physical reality.
Collapse
|
45
|
Ulanowicz RE. Ecological Clues to the Nature of Consciousness. ENTROPY 2020; 22:e22060611. [PMID: 33286383 PMCID: PMC7517151 DOI: 10.3390/e22060611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 11/16/2022]
Abstract
Some dynamics associated with consciousness are shared by other complex macroscopic living systems. For example, autocatalysis, an active agency in ecosystems, imparts to them a centripetality, the ability to attract resources that identifies the system as an agency apart from its surroundings. It is likely that autocatalysis in the central nervous system likewise gives rise to the phenomenon of selfhood, id or ego. Similarly, a coherence domain, as constituted in terms of complex bi-level coordination in ecosystems, stands as an analogy to the simultaneous access the mind has to assorted information available over different channels. The result is the feeling that various features of one’s surroundings are present to the individual all at once. Research on these phenomena in other fields may suggest empirical approaches to the study of consciousness in humans and other higher animals.
Collapse
Affiliation(s)
- Robert E. Ulanowicz
- Department of Biology, University of Florida, Gainesville, FL 32611-8525, USA; ; Tel.: +1-(352)-392-6917
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, MD 20688-0038, USA
| |
Collapse
|
46
|
Avramiea AE, Hardstone R, Lueckmann JM, Bím J, Mansvelder HD, Linkenkaer-Hansen K. Pre-stimulus phase and amplitude regulation of phase-locked responses are maximized in the critical state. eLife 2020; 9:e53016. [PMID: 32324137 PMCID: PMC7217696 DOI: 10.7554/elife.53016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/20/2020] [Indexed: 01/23/2023] Open
Abstract
Understanding why identical stimuli give differing neuronal responses and percepts is a central challenge in research on attention and consciousness. Ongoing oscillations reflect functional states that bias processing of incoming signals through amplitude and phase. It is not known, however, whether the effect of phase or amplitude on stimulus processing depends on the long-term global dynamics of the networks generating the oscillations. Here, we show, using a computational model, that the ability of networks to regulate stimulus response based on pre-stimulus activity requires near-critical dynamics-a dynamical state that emerges from networks with balanced excitation and inhibition, and that is characterized by scale-free fluctuations. We also find that networks exhibiting critical oscillations produce differing responses to the largest range of stimulus intensities. Thus, the brain may bring its dynamics close to the critical state whenever such network versatility is required.
Collapse
Affiliation(s)
- Arthur-Ervin Avramiea
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam NeuroscienceAmsterdamNetherlands
| | - Richard Hardstone
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam NeuroscienceAmsterdamNetherlands
- Neuroscience Institute, New York University School of MedicineNew YorkUnited States
| | - Jan-Matthis Lueckmann
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam NeuroscienceAmsterdamNetherlands
- Technical University of MunichMunichGermany
| | - Jan Bím
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam NeuroscienceAmsterdamNetherlands
- Czech Technical University in PraguePragueCzech Republic
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam NeuroscienceAmsterdamNetherlands
| | - Klaus Linkenkaer-Hansen
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam NeuroscienceAmsterdamNetherlands
| |
Collapse
|
47
|
Keppler J, Shani I. Cosmopsychism and Consciousness Research: A Fresh View on the Causal Mechanisms Underlying Phenomenal States. Front Psychol 2020; 11:371. [PMID: 32210886 PMCID: PMC7066492 DOI: 10.3389/fpsyg.2020.00371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 02/18/2020] [Indexed: 01/21/2023] Open
Abstract
Despite the progress made in studying the observable exteriors of conscious processes, which are reflected in the neural correlates of consciousness (NCC), there are still no satisfactory answers to two closely related core questions. These are the question of the origin of the subjective, phenomenal aspects of consciousness, and the question of the causal mechanisms underlying the generation of specific phenomenal states. In this article, we address these questions using a novel variant of cosmopsychism, a holistic form of panpsychism relying on the central idea that the universe is imbued with a ubiquitous field of consciousness (UFC). This field is understood as a foundational dual-aspect component of the cosmos, the extrinsic appearance of which is physical in nature and the intrinsic manifestation of which is phenomenological in nature. We argue that this approach brings a new perspective into play, according to which the organizational characteristics of the NCC are indicative of the brain's interaction with and modulation of the UFC. Key insights from modern physics suggest that the modulation mechanism is identical with the fundamental mechanism underlying quantum systems, resulting in the conclusion that a coherently oscillating neural cell assembly acquires phenomenal properties by tapping into the universal pool of phenomenal nuances predetermined by the UFC, or more specifically, by entering into a temporary liaison with the UFC and extracting a subset of phenomenal tones from the phenomenal color palette inherent in the basic structure of the UFC. This hypothesis is supported by a substantial body of empirical evidence.
Collapse
Affiliation(s)
| | - Itay Shani
- Department of Philosophy, Sun Yat-sen University, Zhuhai Campus, Zhuhai, China
| |
Collapse
|
48
|
Propofol Anesthesia Alters Spatial and Topologic Organization of Rat Brain Metabolism. Anesthesiology 2020; 131:850-865. [PMID: 31343459 DOI: 10.1097/aln.0000000000002876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Loss of consciousness during anesthesia reduces local and global rate of cerebral glucose metabolism. Despite this, the influence of gradual anesthetic-induced changes on consciousness across the entire brain metabolic network has barely been studied. The purpose of the present study was to identify specific cerebral metabolic patterns characteristic of different consciousness/anesthesia states induced by intravenous anesthetic propofol. METHODS At various times, 20 Sprague-Dawley adult rats were intravenously administered three different dosages of propofol to induce different anesthetic states: mild sedation (20 mg · kg · h), deep sedation (40 mg · kg · h), and deep anesthesia (80 mg · kg · h). Using [F]fluorodeoxyglucose positron emission tomography brain imaging, alterations in the spatial pattern of metabolic distribution and metabolic topography were investigated by applying voxel-based spatial covariance analysis and graph-theory analysis. RESULTS Evident reductions were found in baseline metabolism along with altered metabolic spatial distribution during propofol-induced anesthesia. Moreover, graph-theory analysis revealed a disruption in global and local efficiency of the metabolic brain network characterized by decreases in metabolic connectivity and energy efficiency during propofol-induced deep anesthesia (mild sedation global efficiency/local efficiency = 0.6985/0.7190, deep sedation global efficiency/local efficiency = 0.7444/0.7875, deep anesthesia global efficiency/local efficiency = 0.4498/0.6481; mild sedation vs. deep sedation, global efficiency: P = 0.356, local efficiency: P = 0.079; mild sedation vs. deep anesthesia, global efficiency: P < 0.0001, local efficiency: P < 0.0001; deep sedation vs. deep anesthesia, global efficiency: P < 0.0001, local efficiency: P < 0.0001). A strong spatial correlation was also found between cerebral metabolism and metabolic connectivity strength, which decreased significantly with deepening anesthesia level (correlation coefficients: mild sedation, r = 0.55, deep sedation, r = 0.47; deep anesthesia, r = 0.23; P < 0.0001 between the sedation and deep anesthesia groups). CONCLUSIONS The data revealed anesthesia-related alterations in spatial and topologic organization of metabolic brain network, as well as a close relationship between metabolic connectivity and cerebral metabolism during propofol anesthesia. These findings may provide novel insights into the metabolic mechanism of anesthetic-induced loss of consciousness.
Collapse
|
49
|
Martínez DE, Rudas J, Demertzi A, Charland‐Verville V, Soddu A, Laureys S, Gómez F. Reconfiguration of large-scale functional connectivity in patients with disorders of consciousness. Brain Behav 2020; 10:e1476. [PMID: 31773918 PMCID: PMC6955826 DOI: 10.1002/brb3.1476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/23/2019] [Accepted: 10/11/2019] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Functional connectivity alterations within individual resting state networks (RSNs) are linked to disorders of consciousness (DOC). If these alterations influence the interaction quality with other RNSs, then, brain alterations in patients with DOC would be characterized by connectivity changes in the large-scale model composed of RSNs. How are functional interactions between RSNs influenced by internal alterations of individual RSNs? Do the functional alterations induced by DOC change some key properties of the large-scale network, which have been suggested to be critical for the consciousness emergence? Here, we use network analysis to measure functional connectivity in patients with DOC and address these questions. We hypothesized that network properties provide descriptions of brain functional reconfiguration associated with consciousness alterations. METHODS We apply nodal and global network measurements to study the reconfiguration linked with the disease severity. We study changes in integration, segregation, and centrality properties of the functional connectivity between the RSNs in subjects with different levels of consciousness. RESULTS Our analysis indicates that nodal measurements are more sensitive to disease severity than global measurements, particularly, for functional connectivity of sensory and cognitively related RSNs. CONCLUSION The network property alterations of functional connectivity in different consciousness levels suggest a whole-brain topological reorganization of the large-scale functional connectivity in patients with DOC.
Collapse
Affiliation(s)
- Darwin E. Martínez
- Department of Systems and Computing EngineeringFacultad de IngenieríaUniversidad Nacional de ColombiaBogotáColombia
- Department of Systems EngineeringUniversidad CentralBogotáColombia
| | - Jorge Rudas
- Department of BiotechnologyUniversidad Nacional de ColombiaBogotáColombia
| | - Athena Demertzi
- Coma Science GroupGIGA‐Research and Cyclotron Research CentreUniversity of LiègeLiègeBelgium
| | | | - Andrea Soddu
- Physics and Astronomy DepartmentBrain and Mind InstituteWestern UniversityLondonONCanada
| | - Steven Laureys
- Coma Science GroupGIGA‐Research and Cyclotron Research CentreUniversity of LiègeLiègeBelgium
| | - Francisco Gómez
- Departamento de MatemáticasFacultad de CienciasUniversidad Nacional de ColombiaBogotáColombia
| |
Collapse
|
50
|
Gil F, Padilla N, Soria-Pastor S, Setoain X, Boget T, Rumiá J, Roldán P, Reyes D, Bargalló N, Conde E, Pintor L, Vernet O, Manzanares I, Ådén U, Carreño M, Donaire A. Beyond the Epileptic Focus: Functional Epileptic Networks in Focal Epilepsy. Cereb Cortex 2019; 30:2338-2357. [DOI: 10.1093/cercor/bhz243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Focal epilepsy can be conceptualized as a network disorder, and the functional epileptic network can be described as a complex system of multiple brain areas that interact dynamically to generate epileptic activity. However, we still do not fully understand the functional architecture of epileptic networks. We studied a cohort of 21 patients with extratemporal focal epilepsy. We used independent component analysis of functional magnetic resonance imaging (fMRI) data. In order to identify the epilepsy-related components, we examined the general linear model-derived electroencephalography-fMRI (EEG–fMRI) time courses associated with interictal epileptic activity as intrinsic hemodynamic epileptic biomarkers. Independent component analysis revealed components related to the epileptic time courses in all 21 patients. Each epilepsy-related component described a network of spatially distributed brain areas that corresponded to the specific epileptic network in each patient. We also provided evidence for the interaction between the epileptic activity generated at the epileptic network and the physiological resting state networks. Our findings suggest that independent component analysis, guided by EEG–fMRI epileptic time courses, have the potential to define the functional architecture of the epileptic network in a noninvasive way. These data could be useful in planning invasive EEG electrode placement, guiding surgical resections, and more effective therapeutic interventions.
Collapse
Affiliation(s)
- Francisco Gil
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, CP 08036, Barcelona, Spain
| | - Nelly Padilla
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Sara Soria-Pastor
- Department of Psychiatry, Consorci Sanitari del Maresme, Hospital of Mataro, CP 08304, Mataro, Spain
| | - Xavier Setoain
- Epilepsy Program, Department of Nuclear Medicine, Hospital Clínic, CDIC, CP 08036, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Clinical and Experimental Neuroscience, Clinical Neurophysiology, CP 08036, Barcelona, Spain
- Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Barcelona, CP 08036, Barcelona, Spain
| | - Teresa Boget
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Clinical and Experimental Neuroscience, Clinical Neurophysiology, CP 08036, Barcelona, Spain
- Epilepsy Program, Department of Neuropsychology, Hospital Clínic, Neuroscience Institute, CP 08036, Barcelona, Spain
| | - Jordi Rumiá
- Epilepsy Program, Department of Neurosurgery, Hospital Clínic, Neuroscience Institute, CP 08036, Barcelona, Spain
| | - Pedro Roldán
- Epilepsy Program, Department of Neurosurgery, Hospital Clínic, Neuroscience Institute, CP 08036, Barcelona, Spain
| | - David Reyes
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, CP 08036, Barcelona, Spain
| | - Núria Bargalló
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Clinical and Experimental Neuroscience, Clinical Neurophysiology, CP 08036, Barcelona, Spain
- Epilepsy Program, Department of Radiology, Hospital Clínic, CDIC, CP 08036, Barcelona, Spain
| | - Estefanía Conde
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, CP 08036, Barcelona, Spain
| | - Luis Pintor
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Clinical and Experimental Neuroscience, Clinical Neurophysiology, CP 08036, Barcelona, Spain
- Epilepsy Program, Department of Psychiatry, Hospital Clínic, CDIC, CP 08036, Barcelona, Spain
| | - Oriol Vernet
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, CP 08036, Barcelona, Spain
| | - Isabel Manzanares
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, CP 08036, Barcelona, Spain
| | - Ulrika Ådén
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Mar Carreño
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, CP 08036, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Clinical and Experimental Neuroscience, Clinical Neurophysiology, CP 08036, Barcelona, Spain
| | - Antonio Donaire
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, CP 08036, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Clinical and Experimental Neuroscience, Clinical Neurophysiology, CP 08036, Barcelona, Spain
- Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Barcelona, CP 08036, Barcelona, Spain
| |
Collapse
|