1
|
Lu X, Lei Y, Xu Z, Cheng Z, Liu M, Tai Y, Han X, Hao Z, Li M, Zhang D, Yong H, Han J, Wang Z, Li WX, Weng J, Zhou Z, Li X. Natural variations in the promoter of ZmDeSI2 encoding a deSUMOylating isopeptidase controls kernel methionine content in maize. MOLECULAR PLANT 2025; 18:872-891. [PMID: 40269497 DOI: 10.1016/j.molp.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/31/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
Improving the methionine (Met) content in maize kernels is of key importance to the animal feed industry; however, the genetic and molecular mechanisms governing maize kernel Met content remain largely unexplored. In this study, we leveraged a panel consisting of 348 diverse inbred maize lines to explore the genetic and molecular mechanisms that control kernel Met levels. A genome-wide association study followed by transcriptomic analysis identified the deSUMOylating isopeptidase gene ZmDeSI2. Further biochemical experiments revealed that ZmDeSI2 directly reduces the SUMOylation and accumulation of the sulfite reductase ZmSIR, thereby repressing Met accumulation. Natural variants in the ZmDeSI2 promoter region were found to serve as key determinants of the expression of this gene, predominantly due to the absence or presence of a ZmWRKY105 transcription factor binding site. The elite ZmDeSI2Hap2 haplotype without this binding site in the ZmDeSI2 promoter was associated with a 1.36-fold increase in Met levels in the kernels of modified near-isogenic lines generated through marker-assisted breeding. Taken together, these results provide new insights into the molecular processes that control Met biosynthesis, highlighting an elite natural variant suitable for application in maize breeding for Met biofortification.
Collapse
Affiliation(s)
- Xin Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhong Lei
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhennan Xu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zixiang Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meng Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuxin Tai
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohua Han
- Institute of Food Crops, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Zhuanfang Hao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingshun Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Degui Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongjun Yong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jienan Han
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenhua Wang
- Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Wen-Xue Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianfeng Weng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Zhiqiang Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xinhai Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
2
|
Hussain MA, Pitann B, Mühling KH. Combined Effect of Melatonin and Sulfur on Alleviating Waterlogging Stress in Rapeseed. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2025; 6:e70050. [PMID: 40160887 PMCID: PMC11950158 DOI: 10.1002/pei3.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Melatonin, a multifunctional, non-toxic regulatory molecule, plays a crucial role in enhancing tolerance to abiotic stress, which is tightly linked to S metabolism. Despite the proven efficacy of sulfur (S) in enhancing abiotic stress tolerance, the combined effect of S and melatonin in stress mitigation remains to be elucidated. This is particularly relevant in the context of climate change, where the increased occurrence of waterlogging stress increases the risk of reduced S availability, leading to reduced yield and quality in rapeseed. The objective of this study is to examine the impact of a combination of foliar melatonin and sulfur, when administered to soil or leaves, on the response of plants to waterlogging stress. The experimental design involved the supplementation of rapeseed (Brassica napus L.) plants with sulfur (S) to either the soil (0.2 g kg-1) or the leaves (300 ppm) 5 days prior to stress induction. The plants were subjected to waterlogging at BBCH-31 for a period of 7 days, preceded by a pretreatment 2 days prior to the stress with melatonin (200 μM). In comparison, untreated plants subjected to waterlogging showed a significant reduction in growth, nutrient uptake, photosynthetic activity, and sugar content but an increase in the antioxidant defense system. However, the application of melatonin significantly mitigated the adverse effects of waterlogging stress. In comparison with the control, soil-S application exhibited higher efficacy than foliar S application in increasing plant resistance, as reflected by improved dry weight (+50%), photosynthesis (+12%), stomatal conductance (+40%), sulfur (+40%), magnesium (+59%), and reduced hydrogen peroxide (-22%) and lipid peroxidase (-26%). This combination also increased antioxidant defense by increasing catalase (+43%), glutathione reductase (+17%), ascorbate peroxidase (+47%), ascorbate (+39%), and glutathione (+40%) contents, in contrast to untreated waterlogged plants. The study underlines the potential of melatonin and sulfur as effective agents to alleviate waterlogging stress.
Collapse
Affiliation(s)
- Md Arif Hussain
- Institute of Plant Nutrition and Soil ScienceKiel UniversityKielGermany
| | - Britta Pitann
- Institute of Plant Nutrition and Soil ScienceKiel UniversityKielGermany
| | | |
Collapse
|
3
|
Rezazadeh H, Ghanati F, Bonfill M, Nasibi F, Mohammadi Ballakuti N. Enhancement of paclitaxel production by Neopestalotiopsis vitis via optimization of growth conditions. PLoS One 2024; 19:e0309325. [PMID: 39405307 PMCID: PMC11478870 DOI: 10.1371/journal.pone.0309325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/02/2024] [Indexed: 10/19/2024] Open
Abstract
Accessibility of paclitaxel and other taxoids from natural resources is restricted. Endophytic fungi are novel, rapidly growing resources for producing these compounds. Neopestalotiopsis vitis (N. vitis) has been recently isolated from Corylus avellana, and its ability to produce a variety of taxoids has been detected and confirmed by analytical methods. Simultaneous growth and high production of taxoids by application of different sorts and concentrations of carbon and nitrogen were targeted in the present research. These criteria were assessed in different acidities (pH 4.0-7.0), carbon sources (sucrose, fructose, glucose, mannitol, sorbitol, and malt extract), and nitrogen forms (urea, ammonium nitrate, potassium nitrate, ammonium phosphate, and ammonium sulfate) by testing one parameter at a time approach. The first analysis introduced pH 7.0 as the best acidity of the medium for N. vitis, where the highest paclitaxel yield was generated. Further analysis introduced 3% Malt extract as the best carbon-providing medium. In the next step, the effects of nitrogen forms on the growth rate, paclitaxel yield, alkaloids, and amino acid contents were evaluated. Based on the results of this experiment, 5 mM ammonium sulfate was selected as the best nitrogen source to obtain the maximum biomass and paclitaxel yield. Overall, the results introduce a medium containing 3% (w/v) malt extract and 5 mM ammonium sulfate at pH 7.0 as the best medium in which N. vitis produces the highest paclitaxel yield coincident with rapid and sustainable growth. The findings pave the way for industrial manufacturing of taxoids.
Collapse
Affiliation(s)
- Hamzeh Rezazadeh
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Faezeh Ghanati
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Mercedes Bonfill
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Fatemeh Nasibi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | | |
Collapse
|
4
|
Balogh E, Kalapos B, Ahres M, Boldizsár Á, Gierczik K, Gulyás Z, Gyugos M, Szalai G, Novák A, Kocsy G. Far-Red Light Coordinates the Diurnal Changes in the Transcripts Related to Nitrate Reduction, Glutathione Metabolism and Antioxidant Enzymes in Barley. Int J Mol Sci 2022; 23:ijms23137479. [PMID: 35806480 PMCID: PMC9267158 DOI: 10.3390/ijms23137479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Spectral quality, intensity and period of light modify many regulatory and stress signaling pathways in plants. Both nitrate and sulfate assimilations must be synchronized with photosynthesis, which ensures energy and reductants for these pathways. However, photosynthesis is also a source of reactive oxygen species, whose levels are controlled by glutathione and other antioxidants. In this study, we investigated the effect of supplemental far-red (735 nm) and blue (450 nm) lights on the diurnal expression of the genes related to photoreceptors, the circadian clock, nitrate reduction, glutathione metabolism and various antioxidants in barley. The maximum expression of the investigated four photoreceptor and three clock-associated genes during the light period was followed by the peaking of the transcripts of the three redox-responsive transcription factors during the dark phase, while most of the nitrate and sulfate reduction, glutathione metabolism and antioxidant-enzyme-related genes exhibited high expression during light exposure in plants grown in light/dark cycles for two days. These oscillations changed or disappeared in constant white light during the subsequent two days. Supplemental far-red light induced the activation of most of the studied genes, while supplemental blue light did not affect or inhibited them during light/dark cycles. However, in constant light, several genes exhibited greater expression in blue light than in white and far-red lights. Based on a correlation analysis of the gene expression data, we propose a major role of far-red light in the coordinated transcriptional adjustment of nitrate reduction, glutathione metabolism and antioxidant enzymes to changes of the light spectrum.
Collapse
|
5
|
S-Assimilation Influences in Carrageenan Biosynthesis Genes during Ethylene-Induced Carposporogenesis in Red Seaweed Grateloupia imbricata. Mar Drugs 2022; 20:md20070436. [PMID: 35877729 PMCID: PMC9320806 DOI: 10.3390/md20070436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
The synthesis of cell-wall sulfated galactans proceeds through UDP galactose, a major nucleotide sugar in red seaweed, whilst sulfate is transported through S-transporters into algae. Moreover, synthesis of ethylene, a volatile plant growth regulator that plays an important role in red seaweed reproduction, occurs through S-adenosyl methionine. This means that sulfur metabolism is involved in reproduction events as well as sulfated galactan synthesis of red seaweed. In this work we study the effects of methionine and MgSO4 on gene expression of polygalactan synthesis through phosphoglucomutase (PGM) and galactose 1 phosphate uridyltransferase (GALT) and of sulfate assimilation (S-transporter and sulfate adenylyltransferase, SAT) using treatment of ethylene for 15 min, which elicited cystocarp development in Grateloupia imbricata. Also, expressions of carbohydrate sulfotransferase and galactose-6-sulfurylase in charge of the addition and removal of sulfate groups to galactans backbone were examined. Outstanding results occurred in the presence of methionine, which provoked an increment in transcript number of genes encoding S-transporter and assimilation compared to controls regardless of the development stage of thalli. Otherwise, methionine diminished the transcript levels of PGM and GALT and expressions are associated with the fertilization stage of thalli of G. imbricata. As opposite, methionine and MgSO4 did not affect the transcript number of carbohydrate sulfotransferase and galactose-6-sulfurylase. Nonetheless, differential expression was obtained for sulfurylases according to the development stages of thalli of G. imbricata.
Collapse
|
6
|
Nakladal D, Lambooy SPH, Mišúth S, Čepcová D, Joschko CP, Buiten A, Goris M, Hoogstra‐Berends F, Kloosterhuis NJ, Huijkman N, Sluis B, Diercks GF, Buikema JH, Henning RH, Deelman LE. Homozygous whole body
Cbs
knockout in adult mice features minimal pathology during ageing despite severe homocysteinemia. FASEB J 2022; 36:e22260. [DOI: 10.1096/fj.202101550r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 11/11/2022]
Affiliation(s)
- D. Nakladal
- Department of Clinical Pharmacy and Pharmacology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - S. P. H. Lambooy
- Department of Clinical Pharmacy and Pharmacology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - S. Mišúth
- Department of Clinical Pharmacy and Pharmacology University of Groningen University Medical Center Groningen Groningen The Netherlands
- Department of Pharmacology & Toxicology Faculty of Pharmacy Comenius University in Bratislava Bratislava Slovakia
| | - D. Čepcová
- Department of Clinical Pharmacy and Pharmacology University of Groningen University Medical Center Groningen Groningen The Netherlands
- Department of Pharmacology & Toxicology Faculty of Pharmacy Comenius University in Bratislava Bratislava Slovakia
| | - C. P. Joschko
- Department of Clinical Pharmacy and Pharmacology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - A. Buiten
- Department of Clinical Pharmacy and Pharmacology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - M. Goris
- Department of Clinical Pharmacy and Pharmacology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - F. Hoogstra‐Berends
- Department of Clinical Pharmacy and Pharmacology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - N. J. Kloosterhuis
- Department of Pediatrics University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - N. Huijkman
- iPSC/CRISPR Center Groningen University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - B. Sluis
- Department of Pediatrics University of Groningen University Medical Center Groningen Groningen The Netherlands
- iPSC/CRISPR Center Groningen University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - G. F. Diercks
- Department of Dermatology Center for Blistering Diseases University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - J. H. Buikema
- Department of Clinical Pharmacy and Pharmacology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - R. H. Henning
- Department of Clinical Pharmacy and Pharmacology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - L. E. Deelman
- Department of Clinical Pharmacy and Pharmacology University of Groningen University Medical Center Groningen Groningen The Netherlands
| |
Collapse
|
7
|
Nitrate Regulates Maize Root Transcriptome through Nitric Oxide Dependent and Independent Mechanisms. Int J Mol Sci 2021; 22:ijms22179527. [PMID: 34502437 PMCID: PMC8431222 DOI: 10.3390/ijms22179527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/21/2022] Open
Abstract
Maize root responds to nitrate by modulating its development through the coordinated action of many interacting players. Nitric oxide is produced in primary root early after the nitrate provision, thus inducing root elongation. In this study, RNA sequencing was applied to discover the main molecular signatures distinguishing the response of maize root to nitrate according to their dependency on, or independency of, nitric oxide, thus discriminating the signaling pathways regulated by nitrate through nitric oxide from those regulated by nitrate itself of by further downstream factors. A set of subsequent detailed functional annotation tools (Gene Ontology enrichment, MapMan, KEGG reconstruction pathway, transcription factors detection) were used to gain further information and the lateral root density was measured both in the presence of nitrate and in the presence of nitrate plus cPTIO, a specific NO scavenger, and compared to that observed for N-depleted roots. Our results led us to identify six clusters of transcripts according to their responsiveness to nitric oxide and to their regulation by nitrate provision. In general, shared and specific features for the six clusters were identified, allowing us to determine the overall root response to nitrate according to its dependency on nitric oxide.
Collapse
|
8
|
Kurt F, Filiz E, Aydın A. Genome-wide identification of serine acetyltransferase (SAT) gene family in rice (Oryza sativa) and their expressions under salt stress. Mol Biol Rep 2021; 48:6277-6290. [PMID: 34389920 DOI: 10.1007/s11033-021-06620-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/03/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Assimilation of sulfur to cysteine (Cys) occurs in presence of serine acetyltransferase (SAT). Drought and salt stresses are known to be regulated by abscisic acid, whose biosynthesis is limited by Cys. Cys is formed by cysteine synthase complex depending on SAT and OASTL enzymes. Functions of some SAT genes were identified in Arabidopsis; however, it is not known how SAT genes are regulated in rice (Oryza sativa) under salt stress. METHODS AND RESULTS Sequence, protein domain, gene structure, nucleotide, phylogenetic, selection, gene duplication, motif, synteny, digital expression and co-expression, secondary and tertiary protein structures, and binding site analyses were conducted. The wet-lab expressions of OsSAT genes were also tested under salt stress. OsSATs have underwent purifying selection. Segmental and tandem duplications may be driving force of structural and functional divergences of OsSATs. The digital expression analyses of OsSATs showed that jasmonic acid (JA) was the only hormone inducing the expressions of OsSAT1;1, OsSAT2;1, and OsSAT2;2 whereas auxin and ABA only triggered OsSAT1;1 expression. Leaf blade is the only plant organ where all OsSATs but OsSAT1;1 were expressed. Wet-lab expressions of OsSATs indicated that OsSAT1;1, OsSAT1;2 and OsSAT1;3 genes were upregulated at different exposure times of salt stress. CONCLUSIONS OsSAT1;1, expressed highly in rice roots, may be a hub gene regulated by cross-talk of JA, ABA and auxin hormones. The cross-talk of the mentioned hormones and the structural variations of OsSAT proteins may also explain the different responses of OsSATs to salt stress.
Collapse
Affiliation(s)
- Fırat Kurt
- Department of Plant Production and Technologies, Faculty of Applied Sciences, Mus Alparslan University, Mus, Turkey
| | - Ertugrul Filiz
- Department of Crop and Animal Production, Cilimli Vocational School, Duzce University, Cilimli, Duzce, Turkey.
| | - Adnan Aydın
- Department of Agricultural Biotechnology, Faculty of Agriculture, Iğdır University, Iğdır, Turkey
| |
Collapse
|
9
|
Zheng YY, Wu Y, Begley TJ, Sheng J. Sulfur modification in natural RNA and therapeutic oligonucleotides. RSC Chem Biol 2021; 2:990-1003. [PMID: 34458821 PMCID: PMC8341892 DOI: 10.1039/d1cb00038a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/22/2021] [Indexed: 11/21/2022] Open
Abstract
Sulfur modifications have been discovered on both DNA and RNA. Sulfur substitution of oxygen atoms at nucleobase or backbone locations in the nucleic acid framework led to a wide variety of sulfur-modified nucleosides and nucleotides. While the discovery, regulation and functions of DNA phosphorothioate (PS) modification, where one of the non-bridging oxygen atoms is replaced by sulfur on the DNA backbone, are important topics, this review focuses on the sulfur modification in natural cellular RNAs and therapeutic nucleic acids. The sulfur modifications on RNAs exhibit diversity in terms of modification location and cellular function, but the various sulfur modifications share common biosynthetic strategies across RNA species, cell types and domains of life. The first section reviews the post-transcriptional sulfur modifications on nucleobases with an emphasis on thiouridine on tRNA and phosphorothioate modification on RNA backbones, as well as the functions of the sulfur modifications on different species of cellular RNAs. The second section reviews the biosynthesis of different types of sulfur modifications and summarizes the general strategy for the biosynthesis of sulfur-containing RNA residues. One of the main goals of investigating sulfur modifications is to aid the genomic drug development pipeline and enhance our understandings of the rapidly growing nucleic acid-based gene therapies. The last section of the review focuses on the current drug development strategies employing sulfur substitution of oxygen atoms in therapeutic RNAs.
Collapse
Affiliation(s)
- Ya Ying Zheng
- Department of Chemistry, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
- The RNA Institute, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
| | - Ying Wu
- Department of Chemistry, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
- The RNA Institute, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
| | - Thomas J Begley
- The RNA Institute, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
- Department of Biological Science, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
| | - Jia Sheng
- Department of Chemistry, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
- The RNA Institute, University at Albany, State University of New York 1400 Washington Ave. Albany NY 12222 USA
| |
Collapse
|
10
|
Nduni MN, Osano AM, Chaka B. Synthesis and characterization of aluminium oxide nanoparticles from waste aluminium foil and potential application in aluminium-ion cell. CLEANER ENGINEERING AND TECHNOLOGY 2021; 3:100108. [DOI: 10.1016/j.clet.2021.100108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
|
11
|
Carfagna S, Salbitani G, Innangi M, Menale B, De Castro O, Di Martino C, Crawford TW. Simultaneous Biochemical and Physiological Responses of the Roots and Leaves of Pancratium maritimum (Amaryllidaceae) to Mild Salt Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:345. [PMID: 33670404 PMCID: PMC7918514 DOI: 10.3390/plants10020345] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 11/17/2022]
Abstract
Pancratium maritimum (Amaryllidaceae) is a bulbous geophyte growing on coastal sands. In this study, we investigated changes in concentrations of metabolites in the root and leaf tissue of P. maritimum in response to mild salt stress. Changes in concentrations of osmolytes, glutathione, sodium, mineral nutrients, enzymes, and other compounds in the leaves and roots were measured at 0, 3, and 10 days during a 10-day exposure to two levels of mild salt stress, 50 mM NaCl or 100 mM NaCl in sandy soil from where the plants were collected in dunes near Cuma, Italy. Sodium accumulated in the roots, and relatively little was translocated to the leaves. At both concentrations of NaCl, higher values of the concentrations of oxidized glutathione disulfide (GSSG), compared to reduced glutathione (GSH), in roots and leaves were associated with salt tolerance. The concentration of proline increased more in the leaves than in the roots, and glycine betaine increased in both roots and leaves. Differences in the accumulation of organic osmolytes and electron donors synthesized in both leaves and roots demonstrate that osmoregulatory and electrical responses occur in these organs of P. maritimum under mild salt stress.
Collapse
Affiliation(s)
- Simona Carfagna
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, 80126 Napoli, Italy; (S.C.); (G.S.); (B.M.); (O.D.C.)
| | - Giovanna Salbitani
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, 80126 Napoli, Italy; (S.C.); (G.S.); (B.M.); (O.D.C.)
| | - Michele Innangi
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, 81100 Caserta, Italy;
| | - Bruno Menale
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, 80126 Napoli, Italy; (S.C.); (G.S.); (B.M.); (O.D.C.)
| | - Olga De Castro
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, 80126 Napoli, Italy; (S.C.); (G.S.); (B.M.); (O.D.C.)
| | - Catello Di Martino
- Dipartimento di Agricoltura, Ambiente ed Alimenti, Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Thomas W. Crawford
- Dipartimento di Agricoltura, Ambiente ed Alimenti, Università degli Studi del Molise, 86100 Campobasso, Italy
| |
Collapse
|
12
|
Kong SL, Abdullah SNA, Ho CL, Musa MHB, Yeap WC. Comparative transcriptome analysis reveals novel insights into transcriptional responses to phosphorus starvation in oil palm (Elaeis guineensis) root. BMC Genom Data 2021; 22:6. [PMID: 33568046 PMCID: PMC7863428 DOI: 10.1186/s12863-021-00962-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phosphorus (P), in its orthophosphate form (Pi) is an essential macronutrient for oil palm early growth development in which Pi deficiency could later on be reflected in lower biomass production. Application of phosphate rock, a non-renewable resource has been the common practice to increase Pi accessibility and maintain crop productivity in Malaysia. However, high fixation rate of Pi in the native acidic tropical soils has led to excessive utilization of P fertilizers. This has caused serious environmental pollutions and cost increment. Even so, the Pi deficiency response mechanism in oil palm as one of the basic prerequisites for crop improvement remains largely unknown. RESULTS Using total RNA extracted from young roots as template, we performed a comparative transcriptome analysis on oil palm responding to 14d and 28d of Pi deprivation treatment and under adequate Pi supply. By using Illumina HiSeq4000 platform, RNA-Seq analysis was successfully conducted on 12 paired-end RNA-Seq libraries and generated more than 1.2 billion of clean reads in total. Transcript abundance estimated by fragments per kilobase per million fragments (FPKM) and differential expression analysis revealed 36 and 252 genes that are differentially regulated in Pi-starved roots at 14d and 28d, respectively. Genes possibly involved in regulating Pi homeostasis, nutrient uptake and transport, hormonal signaling and gene transcription were found among the differentially expressed genes. CONCLUSIONS Our results showed that the molecular response mechanism underlying Pi starvation in oil palm is complexed and involved multilevel regulation of various sensing and signaling components. This contribution would generate valuable genomic resources in the effort to develop oil palm planting materials that possess Pi-use efficient trait through molecular manipulation and breeding programs.
Collapse
Affiliation(s)
- Sze-Ling Kong
- Laboratory of Sustainable Agronomy and Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Siti Nor Akmar Abdullah
- Laboratory of Sustainable Agronomy and Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Agriculture Technology, Faculty of Agriculture, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Chai-Ling Ho
- Laboratory of Sustainable Agronomy and Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohamed Hanafi Bin Musa
- Department of Land Management, Faculty of Agriculture, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Wan-Chin Yeap
- Sime Darby Technology Centre Sdn. Bhd., Block A, UPM-MTDC Technology Centre III, Lebuh Silikon, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
13
|
Tiwari B, Habermann K, Arif MA, Top O, Frank W. Identification of Small RNAs During High Light Acclimation in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:656657. [PMID: 34211484 PMCID: PMC8239388 DOI: 10.3389/fpls.2021.656657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/21/2021] [Indexed: 05/19/2023]
Abstract
The biological significance of non-coding RNAs (ncRNAs) has been firmly established to be important for the regulation of genes involved in stress acclimation. Light plays an important role for the growth of plants providing the energy for photosynthesis; however, excessive light conditions can also cause substantial defects. Small RNAs (sRNAs) are a class of non-coding RNAs that regulate transcript levels of protein-coding genes and mediate epigenetic silencing. Next generation sequencing facilitates the identification of small non-coding RNA classes such as miRNAs (microRNAs) and small-interfering RNAs (siRNAs), and long non-coding RNAs (lncRNAs), but changes in the ncRNA transcriptome in response to high light are poorly understood. We subjected Arabidopsis plants to high light conditions and performed a temporal in-depth study of the transcriptome data after 3 h, 6 h, and 2 days of high light treatment. We identified a large number of high light responsive miRNAs and sRNAs derived from NAT gene pairs, lncRNAs and TAS transcripts. We performed target predictions for differentially expressed miRNAs and correlated their expression levels through mRNA sequencing data. GO analysis of the targets revealed an overrepresentation of genes involved in transcriptional regulation. In A. thaliana, sRNA-mediated regulation of gene expression in response to high light treatment is mainly carried out by miRNAs and sRNAs derived from NAT gene pairs, and from lncRNAs. This study provides a deeper understanding of sRNA-dependent regulatory networks in high light acclimation.
Collapse
|
14
|
A Model Roseobacter, Ruegeria pomeroyi DSS-3, Employs a Diffusible Killing Mechanism To Eliminate Competitors. mSystems 2020; 5:5/4/e00443-20. [PMID: 32788406 PMCID: PMC7426152 DOI: 10.1128/msystems.00443-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Roseobacter clade is a group of alphaproteobacteria that have diverse metabolic and regulatory capabilities. They are abundant in marine environments and have a substantial role in marine ecology and biogeochemistry. However, interactions between roseobacters and other bacterioplankton have not been extensively explored. In this study, we identify a killing mechanism in the model roseobacter Ruegeria pomeroyi DSS-3 by coculturing it with a group of phylogenetically diverse bacteria. The killing mechanism is diffusible and occurs when cells are grown both on surfaces and in suspension and is dependent on cell density. A screen of random transposon mutants revealed that the killing phenotype, as well as resistance to killing, require genes within an ∼8-kb putative gamma-butyrolactone synthesis gene cluster, which resembles similar pheromone-sensing systems in actinomycetes that regulate secondary metabolite production, including antimicrobials. Transcriptomics revealed the gene cluster is highly upregulated in wild-type DSS-3 compared to a nonkiller mutant when grown in liquid coculture with a roseobacter target. Our findings show that R. pomeroyi has the capability to eliminate closely and distantly related competitors, providing a mechanism to alter the community structure and function in its native habitats.IMPORTANCE Bacteria carry out critical ecological and biogeochemical processes and form the foundations of ecosystems. Identifying the factors that influence microbial community composition and the functional capabilities encoded within them is key to predicting how microbes impact an ecosystem. Because microorganisms must compete for limited space and nutrients to promote their own propagation, they have evolved diverse mechanisms to outcompete or kill competitors. However, the genes and regulatory strategies that promote such competitive abilities are largely underexplored, particularly in free-living marine bacteria. Here, genetics and omics techniques are used to investigate how a model marine bacterium is capable of quickly eliminating natural competitors in coculture. We determined that a previously uncharacterized horizontally acquired gene cluster is required for this bacterium to kill diverse competitors. This work represents an important step toward understanding the mechanisms bacterial populations can use to become dominant members in marine microbial communities.
Collapse
|
15
|
Allahham A, Kanno S, Zhang L, Maruyama-Nakashita A. Sulfur Deficiency Increases Phosphate Accumulation, Uptake, and Transport in Arabidopsis thaliana. Int J Mol Sci 2020; 21:ijms21082971. [PMID: 32340187 PMCID: PMC7215917 DOI: 10.3390/ijms21082971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 01/03/2023] Open
Abstract
Recent studies have shown various metabolic and transcriptomic interactions between sulfur (S) and phosphorus (P) in plants. However, most studies have focused on the effects of phosphate (Pi) availability and P signaling pathways on S homeostasis, whereas the effects of S availability on P homeostasis remain largely unknown. In this study, we investigated the interactions between S and P from the perspective of S availability. We investigated the effects of S availability on Pi uptake, transport, and accumulation in Arabidopsis thaliana grown under sulfur sufficiency (+S) and deficiency (-S). Total P in shoots was significantly increased under -S owing to higher Pi accumulation. This accumulation was facilitated by increased Pi uptake under -S. In addition, -S increased root-to-shoot Pi transport, which was indicated by the increased Pi levels in xylem sap under -S. The -S-increased Pi level in the xylem sap was diminished in the disruption lines of PHT1;9 and PHO1, which are involved in root-to-shoot Pi transport. Our findings indicate a new aspect of the interaction between S and P by listing the increased Pi accumulation as part of -S responses and by highlighting the effects of -S on Pi uptake, transport, and homeostasis.
Collapse
Affiliation(s)
- Alaa Allahham
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (A.A.); (L.Z.)
| | - Satomi Kanno
- Institute for Advanced Research, NAIAS, Nagoya University, Frocho, Chikusa, Nagoya 464-8601, Japan;
| | - Liu Zhang
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (A.A.); (L.Z.)
| | - Akiko Maruyama-Nakashita
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (A.A.); (L.Z.)
- Correspondence: ; Tel.: +81-92-802-4712
| |
Collapse
|
16
|
Yamaguchi C, Khamsalath S, Takimoto Y, Suyama A, Mori Y, Ohkama-Ohtsu N, Maruyama-Nakashita A. SLIM1 Transcription Factor Promotes Sulfate Uptake and Distribution to Shoot, Along with Phytochelatin Accumulation, Under Cadmium Stress in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9020163. [PMID: 32013219 PMCID: PMC7076661 DOI: 10.3390/plants9020163] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 01/31/2023]
Abstract
Sulfur (S) assimilation, which is initiated by sulfate uptake, generates cysteine, the substrate for glutathione (GSH) and phytochelatin (PC) synthesis. GSH and PC contribute to cadmium (Cd) detoxification by capturing it for sequestration. Although Cd exposure is known to induce the expression of S-assimilating enzyme genes, including sulfate transporters (SULTRs), mechanisms of their transcriptional regulation are not well understood. Transcription factor SLIM1 controls transcriptional changes during S deficiency (-S) in Arabidopsis thaliana. We examined the potential involvement of SLIM1 in inducing the S assimilation pathway and PC accumulation. Cd treatment reduced the shoot fresh weight in the sulfur limitation1 (slim1) mutant but not in the parental line (1;2PGN). Cd-induced increases of sulfate uptake and SULTR1;2 expressions were diminished in the slim1 mutant, suggesting that SLIM1 is involved in inducing sulfate uptake during Cd exposure. The GSH and PC levels were lower in slim1 than in the parental line, indicating that SLIM1 was required for increasing PC during Cd treatment. Hence, SLIM1 indirectly contributes to Cd tolerance of plants by inducing -S responses in the cell caused by depleting the GSH pool, which is consumed by enhanced PC synthesis and sequestration to the vacuole.
Collapse
Affiliation(s)
- Chisato Yamaguchi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.Y.); (S.K.); (A.S.); (Y.M.)
- NARO Tohoku Agricultural Research Center, 4 Akahira, Shimo-Kuriyagawa, Morioka 020-0198, Japan
| | - Soudthedlath Khamsalath
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.Y.); (S.K.); (A.S.); (Y.M.)
- Ministry of Science and Technology, Biotechnology and Ecology Institute, Genetic Resources Division, Don Teaw village, KM 14 office, Tha Ngon Road, Xaythany district, Vientiane 01170, Laos
| | - Yuki Takimoto
- Faculty of Bioscience, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji-town, Fukui 910-1195, Japan;
| | - Akiko Suyama
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.Y.); (S.K.); (A.S.); (Y.M.)
- Department of Food and Fermentation Sciences, Faculty of Food and Nutrition Sciences, Beppu University, 82 Kita-Ishigaki, Beppu, Oita 874-8501, Japan
| | - Yuki Mori
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.Y.); (S.K.); (A.S.); (Y.M.)
| | - Naoko Ohkama-Ohtsu
- Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan;
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Akiko Maruyama-Nakashita
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.Y.); (S.K.); (A.S.); (Y.M.)
- Faculty of Bioscience, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji-town, Fukui 910-1195, Japan;
- Correspondence: ; Tel.: +81-92-802-4712
| |
Collapse
|
17
|
Chen Z, Zhao PX, Miao ZQ, Qi GF, Wang Z, Yuan Y, Ahmad N, Cao MJ, Hell R, Wirtz M, Xiang CB. SULTR3s Function in Chloroplast Sulfate Uptake and Affect ABA Biosynthesis and the Stress Response. PLANT PHYSIOLOGY 2019; 180:593-604. [PMID: 30837346 PMCID: PMC6501079 DOI: 10.1104/pp.18.01439] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/28/2019] [Indexed: 05/20/2023]
Abstract
Plants are major sulfur reducers in the global sulfur cycle. Sulfate, the major natural sulfur source in soil, is absorbed by plant roots and transported into plastids, where it is reduced and assimilated into Cys for further metabolic processes. Despite its importance, how sulfate is transported into plastids is poorly understood. We previously demonstrated using single Arabidopsis (Arabidopsis thaliana) genetic mutants that each member of the sulfate transporter (SULTR) subfamily 3 was able to transport sulfate across the chloroplast envelope membrane. To resolve the function of SULTR3s, we constructed a sultr3 quintuple mutant completely knocking out all five members of the subfamily. Here we report that all members of the SULTR3 subfamily show chloroplast membrane localization. Sulfate uptake by chloroplasts of the quintuple mutant is reduced by more than 50% compared with the wild type. Consequently, Cys and abscisic acid (ABA) content are reduced to ∼67 and ∼20% of the wild-type level, respectively, and strong positive correlations are found among sulfate, Cys, and ABA content. The sultr3 quintuple mutant shows obvious growth retardation with smaller rosettes and shorter roots. Seed germination of the sultr3 quintuple mutant is hypersensitive to exogenous ABA and salt stress, but is rescued by sulfide supplementation. Furthermore, sulfate-induced stomatal closure is abolished in the quintuple mutant, strongly suggesting that chloroplast sulfate is required for stomatal closure. Our genetic analyses unequivocally demonstrate that sulfate transporter subfamily 3 is responsible for more than half of the chloroplast sulfate uptake and influences downstream sulfate assimilation and ABA biosynthesis.
Collapse
Affiliation(s)
- Zhen Chen
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ping-Xia Zhao
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zi-Qing Miao
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Guo-Feng Qi
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhen Wang
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
- Shanghai Center for Plant Stress Biology, CAS, Shanghai 201602, China
| | - Yang Yuan
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Nisar Ahmad
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
- Department of Biotechnology, University of Science and Technology, 28100 Bannu, Pakistan
| | - Min-Jie Cao
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
- Shanghai Center for Plant Stress Biology, CAS, Shanghai 201602, China
| | - Ruediger Hell
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Cheng-Bin Xiang
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
18
|
Joshi NC, Meyer AJ, Bangash SAK, Zheng ZL, Leustek T. Arabidopsis γ-glutamylcyclotransferase affects glutathione content and root system architecture during sulfur starvation. THE NEW PHYTOLOGIST 2019; 221:1387-1397. [PMID: 30368820 DOI: 10.1111/nph.15466] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
γ-Glutamylcyclotransferase initiates glutathione degradation to component amino acids l-glutamate, l-cysteine and l-glycine. The enzyme is encoded by three genes in Arabidopsis thaliana, one of which (GGCT2;1) is transcriptionally upregulated by starvation for the essential macronutrient sulfur (S). Regulation by S-starvation suggests that GGCT2;1 mobilizes l-cysteine from glutathione when there is insufficient sulfate for de novo l-cysteine synthesis. The response of wild-type seedlings to S-starvation was compared to ggct2;1 null mutants. S-starvation causes glutathione depletion in S-starved wild-type seedlings, but higher glutathione is maintained in the primary root tip than in other seedling tissues. Although GGCT2;1 is induced throughout seedlings, its expression is concentrated in the primary root tip where it activates the γ-glutamyl cycle. S-starved wild-type plants also produce longer primary roots, and lateral root growth is suppressed. While glutathione is also rapidly depleted in ggct2;1 null seedlings, much higher glutathione is maintained in the primary root tip compared to the wild-type. S-starved ggct2;1 primary roots grow longer than the wild-type, and lateral root growth is not suppressed. These results point to a role for GGCT2;1 in S-starvation-response changes to root system architecture through activity of the γ-glutamyl cycle in the primary root tip. l-Cysteine mobilization from glutathione is not solely a function of GGCT2;1.
Collapse
Affiliation(s)
- Naveen C Joshi
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Andreas J Meyer
- INRES - Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Sajid A K Bangash
- INRES - Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Zhi-Liang Zheng
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY, 10468, USA
| | - Thomas Leustek
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
19
|
Bartoli F, Royer M, Coinchelin D, Le Thiec D, Rose C, Robin C, Echevarria G. Multiscale and age-dependent leaf nickel in the Ni-hyperaccumulator Leptoplax emarginata. Ecol Res 2018. [DOI: 10.1007/s11284-018-1594-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
De Castro O, Innangi M, Menale B, Carfagna S. O-acetylserine(thio)lyase (OAS-TL) molecular expression in Pancratium maritimum L. (Amaryllidaceae) under salt stress. PLANTA 2018; 247:773-777. [PMID: 29404681 DOI: 10.1007/s00425-018-2855-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/26/2018] [Indexed: 06/07/2023]
Abstract
Different levels of salt stress affected the OAS-TL expression levels in Pancratium maritimum organs (bulb, leaf and root). A detailed method has been described for the identification of the conserved domain of the OAS-TL cDNA in sea daffodil given the scarce data available for the Amaryllidaceae family. Pancratium maritimum or sea daffodil (Amaryllidaceae) is a bulbous geophyte growing on coastal sands. In this study, we investigated the involvement of cysteine synthesis for salt tolerance through the expression of the enzyme O-acetylserine(thio)lyase (OAS-TL) during the stress response to NaCl treatments in P. maritimum. Quantitative real-time PCR was used in different organs (bulb, leaf and root).
Collapse
Affiliation(s)
- Olga De Castro
- Department of Biology, University of Naples Federico II, Via Foria 223, Botanical Garden, 80139, Naples, Italy.
| | - Michele Innangi
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Bruno Menale
- Department of Biology, University of Naples Federico II, Via Foria 223, Botanical Garden, 80139, Naples, Italy
| | - Simona Carfagna
- Department of Biology, University of Naples Federico II, Via Foria 223, Botanical Garden, 80139, Naples, Italy
| |
Collapse
|
21
|
Kurmanbayeva A, Bekturova A, Srivastava S, Soltabayeva A, Asatryan A, Ventura Y, Khan MS, Salazar O, Fedoroff N, Sagi M. Higher Novel L-Cys Degradation Activity Results in Lower Organic-S and Biomass in Sarcocornia than the Related Saltwort, Salicornia. PLANT PHYSIOLOGY 2017; 175:272-289. [PMID: 28743765 PMCID: PMC5580768 DOI: 10.1104/pp.17.00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/22/2017] [Indexed: 05/08/2023]
Abstract
Salicornia and Sarcocornia are almost identical halophytes whose edible succulent shoots hold promise for commercial production in saline water. Enhanced sulfur nutrition may be beneficial to crops naturally grown on high sulfate. However, little is known about sulfate nutrition in halophytes. Here we show that Salicornia europaea (ecotype RN) exhibits a significant increase in biomass and organic-S accumulation in response to supplemental sulfate, whereas Sarcocornia fruticosa (ecotype VM) does not, instead exhibiting increased sulfate accumulation. We investigated the role of two pathways on organic-S and biomass accumulation in Salicornia and Sarcoconia: the sulfate reductive pathway that generates Cys and l-Cys desulfhydrase that degrades Cys to H2S, NH3, and pyruvate. The major function of O-acetyl-Ser-(thiol) lyase (OAS-TL; EC 2.5.1.47) is the formation of l-Cys, but our study shows that the OAS-TL A and OAS-TL B of both halophytes are enzymes that also degrade l-Cys to H2S. This activity was significantly higher in Sarcocornia than in Salicornia, especially upon sulfate supplementation. The activity of the sulfate reductive pathway key enzyme, adenosine 5'-phosphosulfate reductase (APR, EC 1.8.99.2), was significantly higher in Salicornia than in Sarcocornia These results suggest that the low organic-S level in Sarcocornia is the result of high l-Cys degradation rate by OAS-TLs, whereas the greater organic-S and biomass accumulation in Salicornia is the result of higher APR activity and low l-Cys degradation rate, resulting in higher net Cys biosynthesis. These results present an initial road map for halophyte growers to attain better growth rates and nutritional value of Salicornia and Sarcocornia.
Collapse
Affiliation(s)
- Assylay Kurmanbayeva
- Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Israel
| | - Aizat Bekturova
- Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Israel
| | - Sudhakar Srivastava
- Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Israel
| | - Aigerim Soltabayeva
- Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Israel
| | - Armine Asatryan
- Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Israel
| | - Yvonne Ventura
- Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Israel
| | - Mohammad Suhail Khan
- King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Octavio Salazar
- King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Nina Fedoroff
- King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
- Evan Pugh Professor Emerita, Penn State University, State College, Pennsylvania
| | - Moshe Sagi
- Plant Stress Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Israel
| |
Collapse
|
22
|
Kaushik A, Ekka MK, Kumaran S. Two Distinct Assembly States of the Cysteine Regulatory Complex of Salmonella typhimurium Are Regulated by Enzyme-Substrate Cognate Pairs. Biochemistry 2017; 56:2385-2399. [PMID: 28414426 DOI: 10.1021/acs.biochem.6b01204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS), which catalyze the last two steps of cysteine biosynthesis, interact and form the cysteine regulatory complex (CRC). The current model of Salmonella typhimurium predicts that CRC is composed of one [SAT]hexamer unit and two molecules of [OASS]dimer. However, it is not clear why [SAT]hexamer cannot engage all of its six high-affinity binding sites. We examined the assembly state(s) of CRC by size exclusion chromatography, analytical ultracentrifugation (AUC), isothermal titration calorimetry (ITC), and surface plasmon resonance (SPR) approaches. We show that CRC exists in two major assembly states, low-molecular weight (CRC1; 1[SAT]hexamer + 2[OASS]dimer) and high-molecular weight (CRC2; 1[SAT]hexamer + 4[OASS]dimer) states. Along with AUC results, ITC and SPR studies show that [OASS]dimer binds to [SAT]hexamer in a stepwise manner but the formation of fully saturated CRC3 (1[SAT]hexamer + 6[OASS]dimer) is not favorable. The fraction of CRC2 increases as the [OASS]dimer/[SAT]hexamer ratio increases to >4-fold, but CRC2 can be selectively dissociated into either CRC1 or free enzymes, in the presence of OAS and sulfide, in a concentration-dependent manner. Together, we show that CRC is a regulatable multienzyme assembly, sensitive to OASS-substrate(s) levels but subject to negative cooperativity and steric hindrance. Our results constitute the first report of the dual-assembly-state nature of CRC and suggest that physiological conditions, which limit sulfate uptake, would favor CRC1 over CRC2.
Collapse
Affiliation(s)
- Abhishek Kaushik
- G. N. Ramachandran Protein Center, Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology (IMTECH) , Sector 39-A, Chandigarh 160036, India
| | - Mary Krishna Ekka
- G. N. Ramachandran Protein Center, Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology (IMTECH) , Sector 39-A, Chandigarh 160036, India
| | - Sangaralingam Kumaran
- G. N. Ramachandran Protein Center, Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology (IMTECH) , Sector 39-A, Chandigarh 160036, India
| |
Collapse
|
23
|
Kurmanbayeva A, Brychkova G, Bekturova A, Khozin I, Standing D, Yarmolinsky D, Sagi M. Determination of Total Sulfur, Sulfate, Sulfite, Thiosulfate, and Sulfolipids in Plants. Methods Mol Biol 2017; 1631:253-271. [PMID: 28735402 DOI: 10.1007/978-1-4939-7136-7_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In response to oxidative stress the biosynthesis of the ROS scavenger, glutathione is induced. This requires the induction of the sulfate reduction pathway for an adequate supply of cysteine, the precursor for glutathione. Cysteine also acts as the sulfur donor for the sulfuration of the molybdenum cofactor, crucial for the last step of ABA biosynthesis. Sulfate and sulfite are, respectively, the precursor and intermediate for cysteine biosynthesis and there is evidence for stress-induced sulfate uptake and further downstream, enhanced sulfite generation by 5'-phosphosulfate (APS) reductase (APR, EC 1.8.99.2) activity. Sulfite reductase (SiR, E.C.1.8.7.1) protects the chloroplast against toxic levels of sulfite by reducing it to sulfide. In case of sulfite accumulation as a result of air pollution or stress-induced premature senescence, such as in extended darkness, sulfite can be oxidized to sulfate by sulfite oxidase. Additionally sulfite can be catalyzed to thiosulfate by sulfurtransferases or to UDP-sulfoquinovose by SQD1, being the first step toward sulfolipid biosynthesis.Determination of total sulfur in plants can be accomplished using many techniques such as ICP-AES, high-frequency induction furnace, high performance ion chromatography, sulfur combustion analysis, and colorimetric titration. Here we describe a total sulfur detection method in plants by elemental analyzer (EA). The used EA method is simple, sensitive, and accurate, and can be applied for the determination of total S content in plants.Sulfate anions in the soil are the main source of sulfur, required for normal growth and development, of plants. Plants take up sulfate ions from the soil, which are then reduced and incorporated into organic matter. Plant sulfate content can be determined by ion chromatography with carbonate eluents.Sulfite is an intermediate in the reductive assimilation of sulfate to the essential amino acids cysteine and methionine, and is cytotoxic above a certain threshold if not rapidly metabolized and can wreak havoc at the cellular and whole plant levels. Plant sulfite content affects carbon and nitrogen homeostasis Therefore, methods capable of determining sulfite levels in plants are of major importance. Here we present two robust laboratory protocols which can be used for sulfite detection in plants.Thiosulfate is an essential sulfur intermediate less toxic than sulfite which is accumulating in plants in response to sulfite accumulation. The complexity of thiosulfate detection is linked to its chemical properties. Here we present a rapid, sensitive, and accurate colorimetric method based on the enzymatic conversion of thiosulfate to thiocyanate.The plant sulfolipid sulfoquinovosyldiacylglycerol (SQDG) accounts for a large fraction of organic sulfur in the biosphere. Aside from sulfur amino acids, SQDG represents a considerable sink for sulfate in plants and is the only sulfur-containing anionic glycerolipid that is found in the photosynthetic membranes of plastids. We present the separation of sulfolipids from other fatty acids in two simple ways: by one- and two-dimensional thin-layer chromatography.
Collapse
Affiliation(s)
- Assylay Kurmanbayeva
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University, Sede Boqer Campus, P.O.B. 653, Beer Sheva, 84105, Israel
| | - Galina Brychkova
- Plant and AgriBiosciences Research Centre (PABC), School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland
| | - Aizat Bekturova
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University, Sede Boqer Campus, P.O.B. 653, Beer Sheva, 84105, Israel
| | - Inna Khozin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University, Sede Boqer Campus, P.O.B. 653, Beer Sheva, 84105, Israel
| | - Dominic Standing
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University, Sede Boqer Campus, P.O.B. 653, Beer Sheva, 84105, Israel
| | - Dmitry Yarmolinsky
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University, Sede Boqer Campus, P.O.B. 653, Beer Sheva, 84105, Israel
| | - Moshe Sagi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University, Sede Boqer Campus, P.O.B. 653, Beer Sheva, 84105, Israel.
| |
Collapse
|
24
|
Garai S, Tripathy BC. Alleviation of Nitrogen and Sulfur Deficiency and Enhancement of Photosynthesis in Arabidopsis thaliana by Overexpression of Uroporphyrinogen III Methyltransferase ( UPM1). FRONTIERS IN PLANT SCIENCE 2017; 8:2265. [PMID: 29472934 PMCID: PMC5810253 DOI: 10.3389/fpls.2017.02265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 12/27/2017] [Indexed: 05/12/2023]
Abstract
Siroheme, an iron-containing tetrapyrrole, is the prosthetic group of nitrite reductase (NiR) and sulfite reductase (SiR); it is synthesized from uroporphyrinogen III, an intermediate of chlorophyll biosynthesis, and is required for nitrogen (N) and sulfur (S) assimilation. Further, uroporphyrinogen III methyltransferase (UPM1), responsible for two methylation reactions to form dihydrosirohydrochlorin, diverts uroporphyrinogen III from the chlorophyll biosynthesis pathway toward siroheme synthesis. AtUPM1 [At5g40850] was used to produce both sense and antisense plants of Arabidopsis thaliana in order to modulate siroheme biosynthesis. In our experiments, overexpression of AtUPM1 signaled higher NiR (NII) and SiR gene and gene product expression. Increased NII expression was found to regulate and enhance the transcript and protein abundance of nitrate reductase (NR). We suggest that elevated NiR, NR, and SiR expression must have contributed to the increased synthesis of S containing amino acids in AtUPM1overexpressors, observed in our studies. We note that due to higher N and S assimilation in these plants, total protein content had increased in these plants. Consequently, chlorophyll biosynthesis increased in these sense plants. Higher chlorophyll and protein content of plants upregulated photosynthetic electron transport and carbon assimilation in the sense plants. Further, we have observed increased plant biomass in these plants, and this must have been due to increased N, S, and C assimilation. On the other hand, in the antisense plants, the transcript abundance, and protein content of NiR, and SiR was shown to decrease, resulting in reduced total protein and chlorophyll content. This led to a decrease in photosynthetic electron transport rate, carbon assimilation and plant biomass in these antisense plants. Under nitrogen or sulfur starvation conditions, the overexpressors had higher protein content and photosynthetic electron transport rate than the wild type (WT). Conversely, the antisense plants had lower protein content and photosynthetic efficiency in N-deficient environment. Our results clearly demonstrate that upregulation of siroheme biosynthesis leads to increased nitrogen and sulfur assimilation, and this imparts tolerance to nitrogen and sulfur deficiency in Arabidopsis thaliana plants.
Collapse
|
25
|
Boldrin PF, de Figueiredo MA, Yang Y, Luo H, Giri S, Hart JJ, Faquin V, Guilherme LRG, Thannhauser TW, Li L. Selenium promotes sulfur accumulation and plant growth in wheat (Triticum aestivum). PHYSIOLOGIA PLANTARUM 2016; 158:80-91. [PMID: 27152969 DOI: 10.1111/ppl.12465] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 03/31/2016] [Indexed: 05/19/2023]
Abstract
Selenium (Se) is an essential micronutrient for animals and humans and a target for biofortification in crops. Sulfur (S) is a crucial nutrient for plant growth. To gain better understanding of Se and S nutrition and interaction in plants, the effects of Se dosages and forms on plant growth as well as on S level in seven wheat lines were examined. Low dosages of both selenate and selenite supplements were found to enhance wheat shoot biomass and show no inhibitory effect on grain production. The stimulation on plant growth was correlated with increased APX antioxidant enzyme activity. Se forms were found to exert different effects on S metabolism in wheat plants. Selenate treatment promoted S accumulation, which was not observed with selenite supplement. An over threefold increase of S levels following selenate treatment at low dosages was observed in shoots of all wheat lines. Analysis of the sulfate transporter gene expression revealed an increased transcription of SULTR1;1, SULTR1;3 and SULTR4;1 in roots following 10 μM Na2 SeO4 treatment. Mass spectrometry-based targeted protein quantification confirmed the gene expression results and showed enhanced protein levels. The results suggest that Se treatment mimics S deficiency to activate specific sulfate transporter expression to stimulate S uptake, resulting in the selenate-induced S accumulation. This study supports that plant growth and nutrition benefit from low dosages of Se fertilization and provides information on the basis underlying Se-induced S accumulation in plants.
Collapse
Affiliation(s)
- Paulo F Boldrin
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Department of Soil Science, Federal University of Lavras, Lavras 37200-000, Brazil
| | - Marislaine A de Figueiredo
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Department of Agriculture, Federal University of Lavras, Lavras, Brazil
| | - Yong Yang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Hongmei Luo
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Shree Giri
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Jonathan J Hart
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Valdemar Faquin
- Department of Soil Science, Federal University of Lavras, Lavras 37200-000, Brazil
| | - Luiz R G Guilherme
- Department of Soil Science, Federal University of Lavras, Lavras 37200-000, Brazil
| | - Theorodore W Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
26
|
Achibat H, AlOmari NA, Messina F, Sancineto L, Khouili M, Santi C. Organoselenium Compounds as Phytochemicals from the Natural Kingdom. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501001119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Selenium is naturally present in soils but it is also produced by pollution from human activities into the environment. Its incorporation into plants affords organoselenium metabolites that, depending on the nature of the molecules and the plant species, can be incorporated into proteins, stored or eliminated by volatilization. The possibility to use the selenium metabolism of some plants as a method for bioremediation and, at the main time, as a source of selenated phytochemicals is here discussed taking into consideration the growing interest in organic selenium derivatives as new potential therapeutic agents.
Collapse
Affiliation(s)
- Hanane Achibat
- Laboratoire de Chimie Organique & Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, BP 523, 23000 Béni-Mellal, Morocco
| | - Nohad A AlOmari
- Department of pharmaceutical Chemistry/ college of Pharmacy/ university of Mosul, Avro City, Building A15/ 36 Duhok, Iraq
| | - Federica Messina
- Department of Pharmaceutical Sciences, University of Perugia, current address KPS tech Via delle fascine 14 06132 Perugia, Italy
| | - Luca Sancineto
- Department of Pharmaceutical Sciences, Group of Catalysis and Organic Green Chemistry, University of Perugia, Via del Liceo -1 - 06100 Perugia, Italy
| | - Mostafa Khouili
- Laboratoire de Chimie Organique & Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, BP 523, 23000 Béni-Mellal, Morocco
| | - Claudio Santi
- Department of Pharmaceutical Sciences, Group of Catalysis and Organic Green Chemistry, University of Perugia, Via del Liceo -1 - 06100 Perugia, Italy
| |
Collapse
|
27
|
Salbitani G, Vona V, Bottone C, Petriccione M, Carfagna S. Sulfur Deprivation Results in Oxidative Perturbation in Chlorella sorokiniana (211/8k). PLANT & CELL PHYSIOLOGY 2015; 56:897-905. [PMID: 25647328 DOI: 10.1093/pcp/pcv015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Indexed: 05/08/2023]
Abstract
Sulfur deficiency in plant cells has not been considered as a potential abiotic factor that can induce oxidative stress. We studied the antioxidant defense system of Chlorella sorokiniana cultured under sulfur (S) deficiency, imposed for a maximum period of 24 h, to evaluate the effect of an S shortage on oxidative stress. S deprivation induced an immediate (30 min) but transient increase in the intracellular H2O2 content, which suggests that S limitation can lead to a temporary redox disturbance. After 24 h, S deficiency in Chlorella cells decreased the glutathione content to <10% of the value measured in cells that were not subjected to S deprivation. Consequently, we assumed that the cellular antioxidative mechanisms could be altered by a decrease in the total glutathione content. The total ascorbate pool increased within 2 h after the initiation of S depletion, and remained high until 6 h; however, ascorbate regeneration was inhibited under limited S conditions, indicated by a significant decrease in the ascorbate/dehydroascorbate (AsA/DHA) ratios. Furthermore, ascorbate peroxidase (APX) and superoxide dismutase (SOD) were activated under S deficiency, but we assumed that these enzymes were involved in maintaining the cellular H2O2 balance for at least 4 h after the initiation of S starvation. We concluded that S deprivation triggers redox changes and induces antioxidant enzyme activities in Chlorella cells. The accumulation of total ascorbate, changes in the reduced glutathione/oxidized glutathione (GSH/GSSG) ratios and an increase in the activity of SOD and APX enzymes indicate that oxidative perturbation occurs during S deprivation.
Collapse
Affiliation(s)
- Giovanna Salbitani
- Dipartimento di Biologia, Università di Napoli Federico II, Via Foria 223, I-80139 Napoli, Italy
| | - Vincenza Vona
- Dipartimento di Biologia, Università di Napoli Federico II, Via Foria 223, I-80139 Napoli, Italy
| | - Claudia Bottone
- Dipartimento di Biologia, Università di Napoli Federico II, Via Foria 223, I-80139 Napoli, Italy
| | - Milena Petriccione
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Unità di ricerca per la Frutticoltura, Via Torrino 2, 81100 Caserta, Italy
| | - Simona Carfagna
- Dipartimento di Biologia, Università di Napoli Federico II, Via Foria 223, I-80139 Napoli, Italy
| |
Collapse
|
28
|
Pivato M, Fabrega-Prats M, Masi A. Low-molecular-weight thiols in plants: Functional and analytical implications. Arch Biochem Biophys 2014; 560:83-99. [DOI: 10.1016/j.abb.2014.07.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 01/15/2023]
|
29
|
Yarmolinsky D, Brychkova G, Fluhr R, Sagi M. Sulfite reductase protects plants against sulfite toxicity. PLANT PHYSIOLOGY 2013; 161:725-43. [PMID: 23221833 PMCID: PMC3561015 DOI: 10.1104/pp.112.207712] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/06/2012] [Indexed: 05/03/2023]
Abstract
Plant sulfite reductase (SiR; Enzyme Commission 1.8.7.1) catalyzes the reduction of sulfite to sulfide in the reductive sulfate assimilation pathway. Comparison of SiR expression in tomato (Solanum lycopersicum 'Rheinlands Ruhm') and Arabidopsis (Arabidopsis thaliana) plants revealed that SiR is expressed in a different tissue-dependent manner that likely reflects dissimilarity in sulfur metabolism between the plant species. Using Arabidopsis and tomato SiR mutants with modified SiR expression, we show here that resistance to ectopically applied sulfur dioxide/sulfite is a function of SiR expression levels and that plants with reduced SiR expression exhibit higher sensitivity than the wild type, as manifested in pronounced leaf necrosis and chlorophyll bleaching. The sulfite-sensitive mutants accumulate applied sulfite and show a decline in glutathione levels. In contrast, mutants that overexpress SiR are more tolerant to sulfite toxicity, exhibiting little or no damage. Resistance to high sulfite application is manifested by fast sulfite disappearance and an increase in glutathione levels. The notion that SiR plays a role in the protection of plants against sulfite is supported by the rapid up-regulation of SiR transcript and activity within 30 min of sulfite injection into Arabidopsis and tomato leaves. Peroxisomal sulfite oxidase transcripts and activity levels are likewise promoted by sulfite application as compared with water injection controls. These results indicate that, in addition to participating in the sulfate assimilation reductive pathway, SiR also plays a role in protecting leaves against the toxicity of sulfite accumulation.
Collapse
Affiliation(s)
- Dmitry Yarmolinsky
- Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., M.S.); and Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| | - Galina Brychkova
- Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., M.S.); and Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| | - Robert Fluhr
- Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., M.S.); and Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| | - Moshe Sagi
- Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., M.S.); and Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| |
Collapse
|
30
|
Hell R, Wirtz M. Molecular Biology, Biochemistry and Cellular Physiology of Cysteine Metabolism in Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2011; 9:e0154. [PMID: 22303278 PMCID: PMC3268551 DOI: 10.1199/tab.0154] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cysteine is one of the most versatile molecules in biology, taking over such different functions as catalysis, structure, regulation and electron transport during evolution. Research on Arabidopsis has contributed decisively to the understanding of cysteine synthesis and its role in the assimilatory pathways of S, N and C in plants. The multimeric cysteine synthase complex is present in the cytosol, plastids and mitochondria and forms the centre of a unique metabolic sensing and signaling system. Its association is reversible, rendering the first enzyme of cysteine synthesis active and the second one inactive, and vice-versa. Complex formation is triggered by the reaction intermediates of cysteine synthesis in response to supply and demand and gives rise to regulation of genes of sulfur metabolism to adjust cellular sulfur homeostasis. Combinations of biochemistry, forward and reverse genetics, structural- and cell-biology approaches using Arabidopsis have revealed new enzyme functions and the unique pattern of spatial distribution of cysteine metabolism in plant cells. These findings place the synthesis of cysteine in the centre of the network of primary metabolism.
Collapse
Affiliation(s)
- Rüdiger Hell
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| |
Collapse
|
31
|
Noctor G, Queval G, Mhamdi A, Chaouch S, Foyer CH. Glutathione. THE ARABIDOPSIS BOOK 2011; 9:e0142. [PMID: 22303267 PMCID: PMC3267239 DOI: 10.1199/tab.0142] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Glutathione is a simple sulfur compound composed of three amino acids and the major non-protein thiol in many organisms, including plants. The functions of glutathione are manifold but notably include redox-homeostatic buffering. Glutathione status is modulated by oxidants as well as by nutritional and other factors, and can influence protein structure and activity through changes in thiol-disulfide balance. For these reasons, glutathione is a transducer that integrates environmental information into the cellular network. While the mechanistic details of this function remain to be fully elucidated, accumulating evidence points to important roles for glutathione and glutathione-dependent proteins in phytohormone signaling and in defense against biotic stress. Work in Arabidopsis is beginning to identify the processes that govern glutathione status and that link it to signaling pathways. As well as providing an overview of the components that regulate glutathione homeostasis (synthesis, degradation, transport, and redox turnover), the present discussion considers the roles of this metabolite in physiological processes such as light signaling, cell death, and defense against microbial pathogen and herbivores.
Collapse
Affiliation(s)
- Graham Noctor
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris sud 11, 91405 Orsay cedex, France
| | - Guillaume Queval
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris sud 11, 91405 Orsay cedex, France
- Present address: Department of Plant Systems Biology, Flanders Institute for Biotechnology and Department of Plant Biotechnologyand Genetics, Gent University, 9052 Gent, Belgium
| | - Amna Mhamdi
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris sud 11, 91405 Orsay cedex, France
| | - Sejir Chaouch
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris sud 11, 91405 Orsay cedex, France
| | - Christine H. Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
32
|
Höller K, Király L, Künstler A, Müller M, Gullner G, Fattinger M, Zechmann B. Enhanced glutathione metabolism is correlated with sulfur-induced resistance in Tobacco mosaic virus-infected genetically susceptible Nicotiana tabacum plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1448-59. [PMID: 20923352 DOI: 10.1094/mpmi-05-10-0117] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sulfur-induced resistance, also known as sulfur-enhanced defense (SIR/SED) was investigated in Nicotiana tabacum cv. Samsun nn during compatible interaction with Tobacco mosaic virus (TMV) in correlation with glutathione metabolism. To evaluate the influence of sulfur nutritional status on virus infection, tobacco plants were treated with nutrient solutions containing either sufficient sulfate (+S) or no sulfate (-S). Sufficient sulfate supply resulted in a suppressed and delayed symptom development and diminished virus accumulation over a period of 14 days after inoculation as compared with -S conditions. Expression of the defense marker gene PR-1a was markedly upregulated in sulfate-treated plants during the first day after TMV inoculation. The occurrence of SIR/SED correlated with a higher level of activity of sulfate assimilation, cysteine, and glutathione metabolism in plants treated with sulfate. Additionally, two key genes involved in cysteine and glutathione biosynthesis (encoding adenosine 5'-phosphosulfate reductase and γ-glutamylcysteine synthetase, respectively) were upregulated within the first day after TMV inoculation under +S conditions. Sulfate withdrawal from the soil was accelerated at the beginning of the infection, whereas it declined in the long term, leading to an accumulation of sulfur in the soil of plants grown with sulfate. This observation could be correlated with a decrease in sulfur contents in TMV-infected leaves in the long term. In summary, this is the first study that demonstrates a link between the activation of cysteine and glutathione metabolism and the induction of SIR/SED during a compatible plant-virus interaction in tobacco plants, indicating a general mechanism behind SIR/SED.
Collapse
Affiliation(s)
- Kerstin Höller
- University of Graz, Institute of Plant Sciences, Schubertstrasse 51, 8010 Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
33
|
Paulose B, Kandasamy S, Dhankher OP. Expression profiling of Crambe abyssinica under arsenate stress identifies genes and gene networks involved in arsenic metabolism and detoxification. BMC PLANT BIOLOGY 2010; 10:108. [PMID: 20546591 PMCID: PMC3095275 DOI: 10.1186/1471-2229-10-108] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Accepted: 06/14/2010] [Indexed: 05/17/2023]
Abstract
BACKGROUND Arsenic contamination is widespread throughout the world and this toxic metalloid is known to cause cancers of organs such as liver, kidney, skin, and lung in human. In spite of a recent surge in arsenic related studies, we are still far from a comprehensive understanding of arsenic uptake, detoxification, and sequestration in plants. Crambe abyssinica, commonly known as 'abyssinian mustard', is a non-food, high biomass oil seed crop that is naturally tolerant to heavy metals. Moreover, it accumulates significantly higher levels of arsenic as compared to other species of the Brassicaceae family. Thus, C. abyssinica has great potential to be utilized as an ideal inedible crop for phytoremediation of heavy metals and metalloids. However, the mechanism of arsenic metabolism in higher plants, including C. abyssinica, remains elusive. RESULTS To identify the differentially expressed transcripts and the pathways involved in arsenic metabolism and detoxification, C. abyssinica plants were subjected to arsenate stress and a PCR-Select Suppression Subtraction Hybridization (SSH) approach was employed. A total of 105 differentially expressed subtracted cDNAs were sequenced which were found to represent 38 genes. Those genes encode proteins functioning as antioxidants, metal transporters, reductases, enzymes involved in the protein degradation pathway, and several novel uncharacterized proteins. The transcripts corresponding to the subtracted cDNAs showed strong upregulation by arsenate stress as confirmed by the semi-quantitative RT-PCR. CONCLUSIONS Our study revealed novel insights into the plant defense mechanisms and the regulation of genes and gene networks in response to arsenate toxicity. The differential expression of transcripts encoding glutathione-S-transferases, antioxidants, sulfur metabolism, heat-shock proteins, metal transporters, and enzymes in the ubiquitination pathway of protein degradation as well as several unknown novel proteins serve as molecular evidence for the physiological responses to arsenate stress in plants. Additionally, many of these cDNA clones showing strong upregulation due to arsenate stress could be used as valuable markers. Further characterization of these differentially expressed genes would be useful to develop novel strategies for efficient phytoremediation as well as for engineering arsenic tolerant crops with reduced arsenic translocation to the edible parts of plants.
Collapse
Affiliation(s)
- Bibin Paulose
- Department of Plant, Soil, and Insect Sciences, University of Massachusetts, Amherst, MA 01002, USA
| | - Suganthi Kandasamy
- Department of Plant, Soil, and Insect Sciences, University of Massachusetts, Amherst, MA 01002, USA
- Undergraduate Student, School of Arts and Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Om Parkash Dhankher
- Department of Plant, Soil, and Insect Sciences, University of Massachusetts, Amherst, MA 01002, USA
| |
Collapse
|
34
|
Khan MS, Haas FH, Allboje Samami A, Moghaddas Gholami A, Bauer A, Fellenberg K, Reichelt M, Hänsch R, Mendel RR, Meyer AJ, Wirtz M, Hell R. Sulfite reductase defines a newly discovered bottleneck for assimilatory sulfate reduction and is essential for growth and development in Arabidopsis thaliana. THE PLANT CELL 2010; 22:1216-31. [PMID: 20424176 PMCID: PMC2879758 DOI: 10.1105/tpc.110.074088] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 03/18/2010] [Accepted: 04/05/2010] [Indexed: 05/18/2023]
Abstract
The role of sulfite reductase (SiR) in assimilatory reduction of inorganic sulfate to sulfide has long been regarded as insignificant for control of flux in this pathway. Two independent Arabidopsis thaliana T-DNA insertion lines (sir1-1 and sir1-2), each with an insertion in the promoter region of SiR, were isolated. sir1-2 seedlings had 14% SiR transcript levels compared with the wild type and were early seedling lethal. sir1-1 seedlings had 44% SiR transcript levels and were viable but strongly retarded in growth. In mature leaves of sir1-1 plants, the levels of SiR transcript, protein, and enzymatic activity ranged between 17 and 28% compared with the wild type. The 28-fold decrease of incorporation of (35)S label into Cys, glutathione, and protein in sir1-1 showed that the decreased activity of SiR generated a severe bottleneck in the assimilatory sulfate reduction pathway. Root sulfate uptake was strongly enhanced, and steady state levels of most of the sulfur-related metabolites, as well as the expression of many primary metabolism genes, were changed in leaves of sir1-1. Hexose and starch contents were decreased, while free amino acids increased. Inorganic carbon, nitrogen, and sulfur composition was also severely altered, demonstrating strong perturbations in metabolism that differed markedly from known sulfate deficiency responses. The results support that SiR is the only gene with this function in the Arabidopsis genome, that optimal activity of SiR is essential for normal growth, and that its downregulation causes severe adaptive reactions of primary and secondary metabolism.
Collapse
Affiliation(s)
- Muhammad Sayyar Khan
- Heidelberg Institute for Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Florian Heinrich Haas
- Heidelberg Institute for Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Arman Allboje Samami
- Heidelberg Institute for Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | | - Andrea Bauer
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | | | - Robert Hänsch
- Technical University Braunschweig, Institute of Plant Biology, 38106 Braunschweig, Germany
| | - Ralf R. Mendel
- Technical University Braunschweig, Institute of Plant Biology, 38106 Braunschweig, Germany
| | - Andreas J. Meyer
- Heidelberg Institute for Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Markus Wirtz
- Heidelberg Institute for Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Rüdiger Hell
- Heidelberg Institute for Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
35
|
Papenbrock J, Riemenschneider A, Kamp A, Schulz-Vogt HN, Schmidt A. Characterization of cysteine-degrading and H2S-releasing enzymes of higher plants - from the field to the test tube and back. PLANT BIOLOGY (STUTTGART, GERMANY) 2007; 9:582-8. [PMID: 17853358 DOI: 10.1055/s-2007-965424] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Due to the clean air acts and subsequent reduction of emission of gaseous sulfur compounds sulfur deficiency became one of the major nutrient disorders in Northern Europe. Typical sulfur deficiency symptoms can be diagnosed. Especially plants of the Cruciferae family are more susceptible against pathogen attack. Sulfur fertilization can in part recover or even increase resistance against pathogens in comparison to sulfur-deficient plants. The term sulfur-induced resistance (SIR) was introduced, however, the molecular basis for SIR is largely unknown. There are several sulfur-containing compounds in plants which might be involved in SIR, such as high levels of thiols, glucosinolates, cysteine-rich proteins, phytoalexins, elemental sulfur, or H2S. Probably more than one strategy is used by plants. Species- or even variety-dependent differences in the development of SIR are probably used. Our research focussed mainly on the release of H2S as defence strategy. In field experiments using different BRASSICA NAPUS genotypes it was shown that the genetic differences among BRASSICA genotypes lead to differences in sulfur content and L-cysteine desulfhydrase activity. Another field experiment demonstrated that sulfur supply and infection with PYRENOPEZIZA BRASSICA influenced L-cysteine desulfhydrase activity in BRASSICA NAPUS. Cysteine-degrading enzymes such as cysteine desulfhydrases are hypothesized to be involved in H2S release. Several L- and D-cysteine-specific desulfhydrase candidates have been isolated and partially analyzed from the model plant ARABIDOPSIS THALIANA. However, it cannot be excluded that H2S is also released in a partial back reaction of O-acetyl-L-serine(thiol)lyase or enzymes not yet characterized. For the exact determination of the H2S concentration in the cell a H2S-specific microsensor was used the first time for plant cells. The transfer of the results obtained for application back on BRASSICA was initiated.
Collapse
Affiliation(s)
- J Papenbrock
- Institut für Botanik, Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany.
| | | | | | | | | |
Collapse
|
36
|
Hänsch R, Lang C, Rennenberg H, Mendel RR. Significance of plant sulfite oxidase. PLANT BIOLOGY (STUTTGART, GERMANY) 2007; 9:589-95. [PMID: 17853359 DOI: 10.1055/s-2007-965433] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Sulfite oxidizing activities are known since years in animals, microorganisms, and also plants. Among plants, the only enzyme well characterized on molecular and biochemical level is the molybdoenzyme sulfite oxidase (SO). It oxidizes sulfite using molecular oxygen as electron acceptor, leading to the production of sulfate and hydrogen peroxide. The latter reaction product seems to be the reason why plant SO is localized in peroxisomes, because peroxisomal catalase is able to decompose hydrogen peroxide. On the other hand, we have indications for an additional reaction taking place in peroxisomes: sulfite can be nonenzymatically oxidized by hydrogen peroxide. This will promote the detoxification of hydrogen peroxide especially in the case of high amounts of sulfite. Hence we assume that SO could possibly serve as "safety valve" for detoxifying excess amounts of sulfite and protecting the cell from sulfitolysis. Supportive evidence for this assumption comes from experiments where we fumigated transgenic poplar plants overexpressing ARABIDOPSIS SO with SO(2) gas. In this paper, we try to explain sulfite oxidation in its co-regulation with sulfate assimilation and summarize other sulfite oxidizing activities described in plants. Finally we discuss the importance of sulfite detoxification in plants.
Collapse
Affiliation(s)
- R Hänsch
- Department of Plant Biology, Technical University of Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany.
| | | | | | | |
Collapse
|
37
|
Hänsch R, Mendel RR. Sulfite oxidation in plant peroxisomes. PHOTOSYNTHESIS RESEARCH 2005; 86:337-43. [PMID: 16307306 DOI: 10.1007/s11120-005-5221-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Accepted: 04/10/2005] [Indexed: 05/05/2023]
Abstract
For a long time, occurrence and nature of sulfite oxidase activity in higher plants were controversially discussed. During primary sulfate assimilation in the chloroplast, sulfate is reduced via sulfite to organic sulfide, which is essential for cysteine biosynthesis. However, it has also been reported that sulfite can be oxidized back to sulfate, e.g. when plants were subjected to SO2 gas. Recently, work from our laboratory has identified the sulfite oxidase as the fourth member of molybdenum-enzymes in plants. Here we discuss how nature separates the two counteracting pathways--sulfate assimilation and sulfite detoxification--into two different cell organelles and we will also discuss how these two processes are coregulated.
Collapse
Affiliation(s)
- Robert Hänsch
- Department of Plant Biology, Technical University of Braunschweig, Humboldtstrasse 1, 38106, Braunschweig, Germany
| | | |
Collapse
|
38
|
Riemenschneider A, Nikiforova V, Hoefgen R, De Kok LJ, Papenbrock J. Impact of elevated H(2)S on metabolite levels, activity of enzymes and expression of genes involved in cysteine metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2005; 43:473-83. [PMID: 15914014 DOI: 10.1016/j.plaphy.2005.04.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Accepted: 04/07/2005] [Indexed: 05/02/2023]
Abstract
The effects of elevated atmospheric hydrogen sulfide (H(2)S) levels (0.25, 0.5, and 0.75 microl l(-1)) have been investigated in a short-term exposure experiment (3-48 h) on the model plant Arabidopsis thaliana (L.) Heynh. in comparison to untreated control plants. The most pronounced effects of H(2)S fumigation could be observed on the metabolite level: the contents of the thiols cysteine and glutathione were increased up to 20- and fourfold, respectively. A direct positive correlation of the thiol contents with the H(2)S concentrations applied was observed. To elucidate the molecular basis for the increased thiol levels, enzyme activities, messenger RNA and protein steady-state levels of cysteine-synthesizing and degrading pathways have been determined. The enzyme activities of O-acetyl-l-serine(thiol)lyase (OAS-TL) (EC 4.2.99.8) and l-cysteine desulfhydrase (EC 4.4.1.-) proteins were not significantly higher at elevated H(2)S levels in comparison to untreated control plants. 3-Mercaptopyruvate sulfurtransferase (EC 2.8.1.2) activity was slightly higher after the longest H(2)S exposure times. Elevated H(2)S levels of 0.25 and 0.5 microl l(-1) had promoting effects on both mRNA and protein levels of cysteine-synthesizing and degrading enzymes whereas the highest H(2)S concentrations caused lower levels of expression combined with mild symptoms of oxidative stress, as the consequence of its phytotoxicity. The differences in the expression of the three different OAS-TL isoforms (cytoplasmic, plastidic and mitochondrial) by H(2)S were very small. Increasing concentrations of H(2)S and longer exposure times to H(2)S let to a reduction in the pool of O-acetyl-l-serine, the second precursor of cysteine, and N-acetyl-l-serine in the leaves and shoots, indicating a substrate depletion in agreement with the increased thiol levels.
Collapse
Affiliation(s)
- Anja Riemenschneider
- Institute for Botany, University of Hannover, Herrenhäuserstr. 2, D-30419 Hannover, Germany
| | | | | | | | | |
Collapse
|
39
|
Lyi SM, Heller LI, Rutzke M, Welch RM, Kochian LV, Li L. Molecular and biochemical characterization of the selenocysteine Se-methyltransferase gene and Se-methylselenocysteine synthesis in broccoli. PLANT PHYSIOLOGY 2005; 138:409-20. [PMID: 15863700 PMCID: PMC1104194 DOI: 10.1104/pp.104.056549] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 01/24/2005] [Accepted: 02/03/2005] [Indexed: 05/02/2023]
Abstract
Selenium (Se) plays an indispensable role in human nutrition and has been implicated to have important health benefits, including being a cancer preventative agent. While different forms of Se vary in their anticarcinogenic efficacy, Se-methylselenocysteine (SeMSC) has been demonstrated to be one of the most effective chemopreventative compounds. Broccoli (Brassica oleracea var. italica) is known for its ability to accumulate high levels of Se with the majority of the selenoamino acids in the form of Se-methylselenocysteine. Therefore, it serves as a good model to study the regulation of SeMSC accumulation in plants. A cDNA encoding selenocysteine Se-methyltransferase, the key enzyme responsible for SeMSC formation, was cloned from broccoli using a homocysteine S-methyltransferase gene probe from Arabidopsis (Arabidopsis thaliana). This clone, designated as BoSMT, was functionally expressed in Escherichia coli, and its identity was confirmed by its substrate specificity in the methylation of selenocysteine. The BoSMT gene represents a single copy sequence in the broccoli genome. Examination of BoSMT gene expression and SeMSC accumulation in response to selenate, selenite, and sulfate treatments showed that the BoSMT transcript and SeMSC synthesis were significantly up-regulated in plants exposed to selenate but were low in plants supplied with selenite. Simultaneous treatment of selenate with selenite significantly reduced SeMSC production. In addition, high levels of sulfate suppressed selenate uptake, resulting in a dramatic reduction of BoSMT mRNA level and SeMSC accumulation. Our results reveal that SeMSC accumulation closely correlated with the BoSMT gene expression and the total Se status in tissues and provide important information for maximizing the SeMSC production in this beneficial vegetable plant.
Collapse
Affiliation(s)
- Sangbom M Lyi
- United States Department of Agriculture Agricultural Research Service, Plant, Soil and Nutrition Laboratory, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
40
|
Riemenschneider A, Wegele R, Schmidt A, Papenbrock J. Isolation and characterization of a D-cysteine desulfhydrase protein from Arabidopsis thaliana. FEBS J 2005; 272:1291-304. [PMID: 15720402 DOI: 10.1111/j.1742-4658.2005.04567.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In several organisms D-cysteine desulfhydrase (D-CDes) activity (EC 4.1.99.4) was measured; this enzyme decomposes D-cysteine into pyruvate, H2S, and NH3. A gene encoding a putative D-CDes protein was identified in Arabidopsis thaliana (L) Heynh. based on high homology to an Escherichia coli protein called YedO that has D-CDes activity. The deduced Arabidopsis protein consists of 401 amino acids and has a molecular mass of 43.9 kDa. It contains a pyridoxal-5'-phosphate binding site. The purified recombinant mature protein had a Km for D-cysteine of 0.25 mm. Only D-cysteine but not L-cysteine was converted by D-CDes to pyruvate, H2S, and NH3. The activity was inhibited by aminooxy acetic acid and hydroxylamine, inhibitors specific for pyridoxal-5'-phosphate dependent proteins, at low micromolar concentrations. The protein did not exhibit 1-aminocyclopropane-1-carboxylate deaminase activity (EC 3.5.99.7) as homologous bacterial proteins. Western blot analysis of isolated organelles and localization studies using fusion constructs with the green fluorescent protein indicated an intracellular localization of the nuclear encoded D-CDes protein in the mitochondria. D-CDes RNA levels increased with proceeding development of Arabidopsis but decreased in senescent plants; D-CDes protein levels remained almost unchanged in the same plants whereas specific D-CDes activity was highest in senescent plants. In plants grown in a 12-h light/12-h dark rhythm D-CDes RNA levels were highest in the dark, whereas protein levels and enzyme activity were lower in the dark period than in the light indicating post-translational regulation. Plants grown under low sulfate concentration showed an accumulation of D-CDes RNA and increased protein levels, the D-CDes activity was almost unchanged. Putative in vivo functions of the Arabidopsisd-CDes protein are discussed.
Collapse
|
41
|
|
42
|
Saito K. Sulfur assimilatory metabolism. The long and smelling road. PLANT PHYSIOLOGY 2004; 136:2443-50. [PMID: 15375200 PMCID: PMC523311 DOI: 10.1104/pp.104.046755] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Revised: 06/22/2004] [Accepted: 06/23/2004] [Indexed: 05/18/2023]
Affiliation(s)
- Kazuki Saito
- Graduate School of Pharmaceutical Sciences, Chiba University, Inage-ku, Chiba 263-8522, Japan.
| |
Collapse
|
43
|
Abstract
Selenium is an essential nutrient for animals, microorganisms and some other eukaryotes. Although selenium has not been demonstrated to be essential in vascular plants, the ability of some plants to accumulate and transform selenium into bioactive compounds has important implications for human nutrition and health, and for the environment. Selenium-accumulating plants provide unique tools to help us understand selenium metabolism. They are also a source of genetic material that can be used to alter selenium metabolism and tolerance to help develop food crops that have enhanced levels of anticarcinogenic selenium compounds, as well as plants that are ideally suited for the phytoremediation of selenium-contaminated soils.
Collapse
Affiliation(s)
- Danielle R Ellis
- Department of Horticulture and Landscape Architecture, Purdue University, 1165 Horticulture Drive, West Lafayette, Indiana 47907-1165, USA
| | | |
Collapse
|
44
|
Watt DA. Aluminium-responsive genes in sugarcane: identification and analysis of expression under oxidative stress. JOURNAL OF EXPERIMENTAL BOTANY 2003; 54:1163-74. [PMID: 12654867 DOI: 10.1093/jxb/erg128] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Suppression subtractive hybridization (SSH) technology was used to gain preliminary insights into gene expression induced by the phytotoxic aluminium species, Al(3+), in sugarcane roots. Roots of hydroponically-grown Saccharum spp. hybrid cv. N19 were exposed to 221 microM Al(3+) at pH 4.1 for 24 h, a regime shown to inhibit root elongation by 43%, relative to unchallenged roots. Database comparisons revealed that, of a subset of 50 cDNAs ostensibly up-regulated by the metal in the root tips, 14 possessed putative identities indicative of involvement in signalling events and the regulation of gene expression, while the majority (28) were of unknown function. All of the 50 cDNAs sequenced displayed significant similarity to uncharacterized plant expressed sequence tags (ESTs), approximately half (23) of which had been derived from other graminaceous crop species that had been subject to a variety of stresses. Analysis of the expression of 288 putative Al(3+)-inducible genic fragments indicated higher levels of expression under oxidative (1 mM diamide for 4 h) rather than Al(3+) stress. By deploying SSH, this study has provided an indication of the nature of genes expressed in sugarcane roots under Al(3+) stress. It is anticipated that the information obtained will guide further exploration of the potential for manipulation of the Al tolerance characteristics of the crop.
Collapse
Affiliation(s)
- Derek A Watt
- Biotechnology Department, South African Sugar Association Experiment Station, Private Bag X02, Mount Edgecombe 4300, South Africa.
| |
Collapse
|
45
|
Ravina CG, Chang CI, Tsakraklides GP, McDermott JP, Vega JM, Leustek T, Gotor C, Davies JP. The sac mutants of Chlamydomonas reinhardtii reveal transcriptional and posttranscriptional control of cysteine biosynthesis. PLANT PHYSIOLOGY 2002; 130:2076-84. [PMID: 12481091 PMCID: PMC166719 DOI: 10.1104/pp.012484] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2002] [Revised: 08/11/2002] [Accepted: 08/22/2002] [Indexed: 05/20/2023]
Abstract
Algae and vascular plants are cysteine (Cys) prototrophs. They are able to import, reduce, and assimilate sulfate into Cys, methionine, and other organic sulfur-containing compounds. Characterization of genes encoding the enzymes required for Cys biosynthesis from the unicellular green alga Chlamydomonas reinhardtii reveals that transcriptional and posttranscriptional mechanisms regulate the pathway. The derived amino acid sequences of the C. reinhardtii genes encoding 5'-adenylylsulfate (APS) reductase and serine (Ser) acetyltransferase are orthologous to sequences from vascular plants. The Cys biosynthetic pathway of C. reinhardtii is regulated by sulfate availability. The steady-state level of transcripts and activity of ATP sulfurylase, APS reductase, Ser acetyltransferase, and O-acetyl-Ser (thiol) lyase increase when cells are deprived of sulfate. The sac1 mutation, which impairs C. reinhardtii ability to acclimate to sulfur-deficient conditions, prevents the increase in accumulation of the transcripts encoding these enzymes and also prevents the increase in activity of all the enzymes except APS reductase. The sac2 mutation, which does not affect accumulation of APS reductase transcripts, blocks the increase in APS reductase activity. These results suggest that APS reductase activity is regulated posttranscriptionally in a SAC2-dependent process.
Collapse
Affiliation(s)
- Cristina G Ravina
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, 41092 Sevilla, Spain
| | | | | | | | | | | | | | | |
Collapse
|