1
|
Izmailova ES, Middleton D, Yunis R, Lakeland J, Sowalsky K, Kling J, Ritchie A, Guo CC, Byrom B, Kern S. Implementing sensor-based digital health technologies in clinical trials: Key considerations from the eCOA Consortium. Clin Transl Sci 2024; 17:e70054. [PMID: 39491883 PMCID: PMC11532371 DOI: 10.1111/cts.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/02/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
The increased use of sensor-based digital health technologies (DHTs) in clinical trials brought to light concerns about implementation practices that might introduce burden on trial participants, resulting in suboptimal compliance and become an additional complicating factor in clinical trial conduct. These concerns may contribute to the lower-than-anticipated uptake of DHT deployment and data use for regulatory decision-making, despite well-articulated benefits. The Electronic Clinical Outcome Assessment (eCOA) Consortium gathered collective experience on deploying sensor-based DHTs and supplemented this with relevant literature focusing on mechanisms that may enhance participant compliance. The process for DHT implementation starts with identifying a clinical concept of interest followed by a digital measure selection, defining active or passive data capture and their sources, the number of sensors with respective body location, plus the duration and frequency of use in the context of perceived participant burden. Roundtable discussions among patient groups, physicians, and technology providers prior to protocol development can be very impactful for optimizing trial design. While diversity and inclusion are essential for any clinical trial, patient populations should be considered carefully in the context of trial-specific aims, requirements, and anticipated patient burden. Minimizing site burden includes assessment of training, research engagement, and logistical burden which needs to be triaged differently for early and late-stage clinical trials. Additional considerations include sharing trial results with study participants and leveraging publicly available data for compliance modeling. To the best of our knowledge, this report provides holistic considerations for sensor-based DHT implementation that may optimize participant compliance.
Collapse
|
2
|
Izmailova ES, Wagner JA, Bakker JP, Kilian R, Ellis R, Ohri N. A proposed multi-domain, digital model for capturing functional status and health-related quality of life in oncology. Clin Transl Sci 2024; 17:e13712. [PMID: 38266055 PMCID: PMC10774540 DOI: 10.1111/cts.13712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/22/2023] [Accepted: 12/07/2023] [Indexed: 01/26/2024] Open
Abstract
Whereas traditional oncology clinical trial endpoints remain key for assessing novel treatments, capturing patients' functional status is increasingly recognized as an important aspect for supporting clinical decisions and assessing outcomes in clinical trials. Existing functional status assessments suffer from various limitations, some of which may be addressed by adopting digital health technologies (DHTs) as a means of collecting both objective and self-reported outcomes. In this mini-review, we propose a device-agnostic multi-domain model for oncology capturing functional status, which includes physical activity data, vital signs, sleep variables, and measures related to health-related quality of life enabled by connected digital tools. By using DHTs for all aspects of data collection, our proposed model allows for high-resolution measurement of objective data as patients navigate their daily lives outside of the hospital setting. This is complemented by electronic questionnaires administered at intervals appropriate for each instrument. Preliminary testing and practical considerations to address before adoption are also discussed. Finally, we highlight multi-institutional pre-competitive collaborations as a means of successfully transitioning the proposed digitally enabled data collection model from feasibility studies to interventional trials and care management.
Collapse
Affiliation(s)
| | | | - Jessie P. Bakker
- Departments of Medicine and Neurology, Brigham and Women's HospitalBostonMassachusettsUSA
- Division of Sleep Medicine, Harvard Medical SchoolBostonMassachusettsUSA
| | - Rachel Kilian
- Koneksa HealthNew YorkNew YorkUSA
- SSI StrategyNew YorkNew YorkUSA
| | | | - Nitin Ohri
- Montefiore Medical Center, Albert Einstein College of MedicineBronxNew YorkUSA
| |
Collapse
|
3
|
Izmailova ES, Kilian R, Bakker JP, Evans S, Scotina AD, Reiss TF, Singh D, Wagner JA. Study protocol: A comparison of mobile and clinic-based spirometry for capturing the treatment effect in moderate asthma. Clin Transl Sci 2023; 16:2112-2122. [PMID: 37602889 PMCID: PMC10651656 DOI: 10.1111/cts.13615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
Several inefficiencies in drug development trial implementation may be improved by moving data collection from the clinic to mobile, allowing for more frequent measurements and therefore increased statistical power while aligning to a patient-centric approach to trial design. Sensor-based digital health technologies such as mobile spirometry (mSpirometry) are comparable to clinic spirometry for capturing outcomes, such as forced expiratory volume in 1 s (FEV1); however, the impact of remote spirometry measurements on the detection of treatment effect has not been investigated. A protocol for a multicenter, single-arm, open-label interventional trial of long-acting beta agonist (LABA) therapy among 60 participants with uncontrolled moderate asthma is described. Participants will complete twice-daily mSpirometry at home and clinic spirometry during weekly visits, alongside continuous use of a wrist-worn wearable and regular completion of several diaries capturing asthma symptoms as well as participant- and site-reported satisfaction and ease of use of mSpirometry. The co-primary objectives of this study are (A) to quantify the treatment effect of LABA therapy among participants with moderate asthma, using both clinical spirometry (FEV1c ) and mSpirometry (FEV1m ); and (B) to investigate whether FEV1m is as accurate as FEV1c in detecting the treatment effect using a mixed-effect model for repeated measures. Study results will help inform whether the deployment of mSpirometry and a wrist-worn wearable for remote data collection are feasible in a multicenter setting among participants with moderate asthma, which may then be generalizable to other populations with respiratory disease.
Collapse
Affiliation(s)
| | - Rachel Kilian
- Koneksa HealthNew YorkNew YorkUSA
- SSI StrategyNew YorkNew YorkUSA
| | - Jessie P. Bakker
- Department of MedicineBrigham and Women's HospitalBostonMassachusettsUSA
- Department of NeurologyBrigham and Women's HospitalBostonMassachusettsUSA
- Division of Sleep MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Shawna Evans
- Koneksa HealthNew YorkNew YorkUSA
- SSI StrategyNew YorkNew YorkUSA
| | | | | | - Dave Singh
- Medicines Evaluation Unit, University of ManchesterManchester University NHS Foundation TrustManchesterUK
| | | |
Collapse
|
4
|
Clay I, Peerenboom N, Connors DE, Bourke S, Keogh A, Wac K, Gur-Arie T, Baker J, Bull C, Cereatti A, Cormack F, Eggenspieler D, Foschini L, Ganea R, Groenen PM, Gusset N, Izmailova E, Kanzler CM, Leyens L, Lyden K, Mueller A, Nam J, Ng WF, Nobbs D, Orfaniotou F, Perumal TM, Piwko W, Ries A, Scotland A, Taptiklis N, Torous J, Vereijken B, Xu S, Baltzer L, Vetter T, Goldhahn J, Hoffmann SC. Reverse Engineering of Digital Measures: Inviting Patients to the Conversation. Digit Biomark 2023; 7:28-44. [PMID: 37206894 PMCID: PMC10189241 DOI: 10.1159/000530413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/07/2023] [Indexed: 05/21/2023] Open
Abstract
Background Digital measures offer an unparalleled opportunity to create a more holistic picture of how people who are patients behave in their real-world environments, thereby establishing a better connection between patients, caregivers, and the clinical evidence used to drive drug development and disease management. Reaching this vision will require achieving a new level of co-creation between the stakeholders who design, develop, use, and make decisions using evidence from digital measures. Summary In September 2022, the second in a series of meetings hosted by the Swiss Federal Institute of Technology in Zürich, the Foundation for the National Institutes of Health Biomarkers Consortium, and sponsored by Wellcome Trust, entitled "Reverse Engineering of Digital Measures," was held in Zurich, Switzerland, with a broad range of stakeholders sharing their experience across four case studies to examine how patient centricity is essential in shaping development and validation of digital evidence generation tools. Key Messages In this paper, we discuss progress and the remaining barriers to widespread use of digital measures for evidence generation in clinical development and care delivery. We also present key discussion points and takeaways in order to continue discourse and provide a basis for dissemination and outreach to the wider community and other stakeholders. The work presented here shows us a blueprint for how and why the patient voice can be thoughtfully integrated into digital measure development and that continued multistakeholder engagement is critical for further progress.
Collapse
Affiliation(s)
| | | | | | | | - Alison Keogh
- Insight Centre for Data Analytics, UC Dublin, Dublin, Ireland
- Mobilise-D, Newcastle University, Newcastle upon Tyne, UK
| | - Katarzyna Wac
- Quality of Life Lab, University of Geneva, Geneva, Switzerland
| | - Tova Gur-Arie
- Mobilise-D, Newcastle University, Newcastle upon Tyne, UK
| | | | - Christopher Bull
- Newcastle University, Newcastle, UK
- IDEA-FAST, Newcastle University, Newcastle upon Tyne, UK
| | - Andrea Cereatti
- Mobilise-D, Newcastle University, Newcastle upon Tyne, UK
- Polytechnic University of Torino, Torino, Italy
| | - Francesca Cormack
- IDEA-FAST, Newcastle University, Newcastle upon Tyne, UK
- Cambridge Cognition Ltd, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | - Arne Mueller
- Mobilise-D, Newcastle University, Newcastle upon Tyne, UK
- Novartis, Basel, Switzerland
| | - Julian Nam
- F. Hoffmann-La Roche, Basel, Switzerland
| | - Wan-Fai Ng
- Newcastle University, Newcastle, UK
- IDEA-FAST, Newcastle University, Newcastle upon Tyne, UK
| | - David Nobbs
- IDEA-FAST, Newcastle University, Newcastle upon Tyne, UK
- F. Hoffmann-La Roche, Basel, Switzerland
| | | | | | - Wojciech Piwko
- Takeda Pharmaceuticals International, Zurich, Switzerland
| | - Anja Ries
- F. Hoffmann-La Roche, Basel, Switzerland
| | - Alf Scotland
- Biogen Digital Health International GmbH, Baar, Switzerland
| | - Nick Taptiklis
- IDEA-FAST, Newcastle University, Newcastle upon Tyne, UK
- Cambridge Cognition Ltd, Cambridge, UK
| | | | - Beatrix Vereijken
- Mobilise-D, Newcastle University, Newcastle upon Tyne, UK
- Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | - Jörg Goldhahn
- Swiss Federal Institute of Technology, Zurich, Switzerland
| | | |
Collapse
|
5
|
Langholm C, Kowatsch T, Bucci S, Cipriani A, Torous J. Exploring the Potential of Apple SensorKit and Digital Phenotyping Data as New Digital Biomarkers for Mental Health Research. Digit Biomark 2023; 7:104-114. [PMID: 37901364 PMCID: PMC10601905 DOI: 10.1159/000530698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/27/2023] [Indexed: 10/31/2023] Open
Abstract
The use of digital phenotyping continues to expand across all fields of health. By collecting quantitative data in real-time using devices such as smartphones or smartwatches, researchers and clinicians can develop a profile of a wide range of conditions. Smartphones contain sensors that collect data, such as GPS or accelerometer data, which can inform secondary metrics such as time spent at home, location entropy, or even sleep duration. These metrics, when used as digital biomarkers, are not only used to investigate the relationship between behavior and health symptoms but can also be used to support personalized and preventative care. Successful phenotyping requires consistent long-term collection of relevant and high-quality data. In this paper, we present the potential of newly available, for approved research, opt-in SensorKit sensors on iOS devices in improving the accuracy of digital phenotyping. We collected opt-in sensor data over 1 week from a single person with depression using the open-source mindLAMP app developed by the Division of Digital Psychiatry at Beth Israel Deaconess Medical Center. Five sensors from SensorKit were included. The names of the sensors, as listed in official documentation, include the following: phone usage, messages usage, visits, device usage, and ambient light. We compared data from these five new sensors from SensorKit to our current digital phenotyping data collection sensors to assess similarity and differences in both raw and processed data. We present sample data from all five of these new sensors. We also present sample data from current digital phenotyping sources and compare these data to SensorKit sensors when applicable. SensorKit offers great potential for health research. Many SensorKit sensors improve upon previously accessible features and produce data that appears clinically relevant. SensorKit sensors will likely play a substantial role in digital phenotyping. However, using these data requires advanced health app infrastructure and the ability to securely store high-frequency data.
Collapse
Affiliation(s)
- Carsten Langholm
- Division of Digital Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tobias Kowatsch
- Institute for Implementation Science in Health Care, University of Zurich, Zurich, Switzerland
- School of Medicine, University of St. Gallen, St. Gallen, Switzerland
- Center for Digital Health Interventions, Department of Management, Technology, and Economics at ETH Zurich, Zurich, Switzerland
| | - Sandra Bucci
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Andrea Cipriani
- Department of Psychiatry, University of Manchester, Manchester, UK
- Oxford Precision Psychiatry Lab, NIHR Oxford Health Biomedical Research Centre, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - John Torous
- Division of Digital Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|