1
|
van Kampen F, Clark A, Soul J, Kanhere A, Glenn MA, Pettitt AR, Kalakonda N, Slupsky JR. Deletion of 17p in cancers: Guilt by (p53) association. Oncogene 2025; 44:637-651. [PMID: 39966556 PMCID: PMC11876076 DOI: 10.1038/s41388-025-03300-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 01/17/2025] [Accepted: 02/04/2025] [Indexed: 02/20/2025]
Abstract
Monoallelic deletion of the short arm of chromosome 17 (del17p) is a recurrent abnormality in cancers with poor outcomes. Best studied in relation to haematological malignancies, associated functional outcomes are attributed mainly to loss and/or dysfunction of TP53, which is located at 17p13.1, but the wider impact of deletion of other genes located on 17p is poorly understood. 17p is one of the most gene-dense regions of the genome and includes tumour suppressor genes additional to TP53, genes essential for cell survival and proliferation, as well as small and long non-coding RNAs. In this review we utilise a data-driven approach to demarcate the extent of 17p deletion in multiple cancers and identify a common loss-of-function gene signature. We discuss how the resultant loss of heterozygosity (LOH) and haploinsufficiency may influence cell behaviour but also identify vulnerabilities that can potentially be exploited therapeutically. Finally, we highlight how emerging animal and isogenic cell line models of del17p can provide critical biological insights for cancer cell behaviour.
Collapse
Affiliation(s)
- Francisca van Kampen
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Abigail Clark
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Jamie Soul
- Computational Biology Facility, University of Liverpool, Liverpool, UK
| | - Aditi Kanhere
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Mark A Glenn
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Andrew R Pettitt
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Nagesh Kalakonda
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Joseph R Slupsky
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
2
|
Panda D, Das N, Thakral D, Gupta R. Genomic landscape of mature B-cell non-Hodgkin lymphomas - an appraisal from lymphomagenesis to drug resistance. J Egypt Natl Canc Inst 2022; 34:52. [PMID: 36504392 DOI: 10.1186/s43046-022-00154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 09/27/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mature B-cell non-Hodgkin lymphomas are one of the most common hematological malignancies with a divergent clinical presentation, phenotype, and course of disease regulated by underlying genetic mechanism. MAIN BODY Genetic and molecular alterations are not only critical for lymphomagenesis but also largely responsible for differing therapeutic response in these neoplasms. In recent years, advanced molecular tools have provided a deeper understanding regarding these oncogenic drives for predicting progression as well as refractory behavior in these diseases. The prognostic models based on gene expression profiling have also been proved effective in various clinical scenarios. However, considerable overlap does exist between the genotypes of individual lymphomas and at the same time where additional molecular lesions may be associated with each entity apart from the key genetic event. Therefore, genomics is one of the cornerstones in the multimodality approach essential for classification and risk stratification of B-cell non-Hodgkin lymphomas. CONCLUSION We hereby in this review discuss the wide range of genetic aberrancies associated with tumorigenesis, immune escape, and chemoresistance in major B-cell non-Hodgkin lymphomas.
Collapse
Affiliation(s)
- Devasis Panda
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, 110029, India
| | - Nupur Das
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, 110029, India
| | - Deepshi Thakral
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, 110029, India
| | - Ritu Gupta
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, 110029, India.
| |
Collapse
|
3
|
Herbst SA, Vesterlund M, Helmboldt AJ, Jafari R, Siavelis I, Stahl M, Schitter EC, Liebers N, Brinkmann BJ, Czernilofsky F, Roider T, Bruch PM, Iskar M, Kittai A, Huang Y, Lu J, Richter S, Mermelekas G, Umer HM, Knoll M, Kolb C, Lenze A, Cao X, Österholm C, Wahnschaffe L, Herling C, Scheinost S, Ganzinger M, Mansouri L, Kriegsmann K, Kriegsmann M, Anders S, Zapatka M, Del Poeta G, Zucchetto A, Bomben R, Gattei V, Dreger P, Woyach J, Herling M, Müller-Tidow C, Rosenquist R, Stilgenbauer S, Zenz T, Huber W, Tausch E, Lehtiö J, Dietrich S. Proteogenomics refines the molecular classification of chronic lymphocytic leukemia. Nat Commun 2022; 13:6226. [PMID: 36266272 PMCID: PMC9584885 DOI: 10.1038/s41467-022-33385-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer heterogeneity at the proteome level may explain differences in therapy response and prognosis beyond the currently established genomic and transcriptomic-based diagnostics. The relevance of proteomics for disease classifications remains to be established in clinically heterogeneous cancer entities such as chronic lymphocytic leukemia (CLL). Here, we characterize the proteome and transcriptome alongside genetic and ex-vivo drug response profiling in a clinically annotated CLL discovery cohort (n = 68). Unsupervised clustering of the proteome data reveals six subgroups. Five of these proteomic groups are associated with genetic features, while one group is only detectable at the proteome level. This new group is characterized by accelerated disease progression, high spliceosomal protein abundances associated with aberrant splicing, and low B cell receptor signaling protein abundances (ASB-CLL). Classifiers developed to identify ASB-CLL based on its characteristic proteome or splicing signature in two independent cohorts (n = 165, n = 169) confirm that ASB-CLL comprises about 20% of CLL patients. The inferior overall survival in ASB-CLL is also independent of both TP53- and IGHV mutation status. Our multi-omics analysis refines the classification of CLL and highlights the potential of proteomics to improve cancer patient stratification beyond genetic and transcriptomic profiling.
Collapse
Affiliation(s)
- Sophie A. Herbst
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany ,grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Heidelberg, Germany ,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany ,grid.461742.20000 0000 8855 0365Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Mattias Vesterlund
- grid.452834.c0000 0004 5911 2402Department of Oncology-Pathology, Karolinska Institute and Science for Life Laboratory, Stockholm, Sweden
| | - Alexander J. Helmboldt
- grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Rozbeh Jafari
- grid.452834.c0000 0004 5911 2402Department of Oncology-Pathology, Karolinska Institute and Science for Life Laboratory, Stockholm, Sweden
| | - Ioannis Siavelis
- grid.452834.c0000 0004 5911 2402Department of Oncology-Pathology, Karolinska Institute and Science for Life Laboratory, Stockholm, Sweden
| | - Matthias Stahl
- grid.452834.c0000 0004 5911 2402Department of Oncology-Pathology, Karolinska Institute and Science for Life Laboratory, Stockholm, Sweden
| | - Eva C. Schitter
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Nora Liebers
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany ,grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Heidelberg, Germany ,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany ,grid.461742.20000 0000 8855 0365Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Berit J. Brinkmann
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany ,grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Heidelberg, Germany ,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Czernilofsky
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Tobias Roider
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany ,grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Heidelberg, Germany ,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Peter-Martin Bruch
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany ,grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Heidelberg, Germany ,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Murat Iskar
- grid.7497.d0000 0004 0492 0584Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adam Kittai
- grid.261331.40000 0001 2285 7943Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH USA
| | - Ying Huang
- grid.261331.40000 0001 2285 7943Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH USA
| | - Junyan Lu
- grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Heidelberg, Germany ,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Sarah Richter
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Georgios Mermelekas
- grid.452834.c0000 0004 5911 2402Department of Oncology-Pathology, Karolinska Institute and Science for Life Laboratory, Stockholm, Sweden
| | - Husen Muhammad Umer
- grid.452834.c0000 0004 5911 2402Department of Oncology-Pathology, Karolinska Institute and Science for Life Laboratory, Stockholm, Sweden
| | - Mareike Knoll
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Carolin Kolb
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Angela Lenze
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Xiaofang Cao
- grid.452834.c0000 0004 5911 2402Department of Oncology-Pathology, Karolinska Institute and Science for Life Laboratory, Stockholm, Sweden
| | - Cecilia Österholm
- grid.4714.60000 0004 1937 0626Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Linus Wahnschaffe
- grid.6190.e0000 0000 8580 3777Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf (CIO ABCD), Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Carmen Herling
- grid.6190.e0000 0000 8580 3777Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf (CIO ABCD), Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Sebastian Scheinost
- grid.461742.20000 0000 8855 0365Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Ganzinger
- grid.7700.00000 0001 2190 4373Institute of Medical Biometry and Informatics, Heidelberg University, Heidelberg, Germany
| | - Larry Mansouri
- grid.4714.60000 0004 1937 0626Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Katharina Kriegsmann
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Mark Kriegsmann
- grid.7700.00000 0001 2190 4373Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Simon Anders
- grid.7700.00000 0001 2190 4373Center for Molecular Biology of the University of Heidelberg (ZMBH), Heidelberg, Germany
| | - Marc Zapatka
- grid.7497.d0000 0004 0492 0584Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Giovanni Del Poeta
- grid.6530.00000 0001 2300 0941Division of Hematology, University of Tor Vergata, Rome, Italy
| | - Antonella Zucchetto
- grid.418321.d0000 0004 1757 9741Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Riccardo Bomben
- grid.418321.d0000 0004 1757 9741Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Valter Gattei
- grid.418321.d0000 0004 1757 9741Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Peter Dreger
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Jennifer Woyach
- grid.261331.40000 0001 2285 7943Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH USA
| | - Marco Herling
- grid.6190.e0000 0000 8580 3777Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf (CIO ABCD), Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Carsten Müller-Tidow
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany ,grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Heidelberg, Germany ,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Richard Rosenquist
- grid.4714.60000 0004 1937 0626Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Stephan Stilgenbauer
- grid.6582.90000 0004 1936 9748Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Thorsten Zenz
- grid.461742.20000 0000 8855 0365Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.412004.30000 0004 0478 9977Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
| | - Wolfgang Huber
- grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Heidelberg, Germany ,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Eugen Tausch
- grid.6582.90000 0004 1936 9748Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Janne Lehtiö
- grid.452834.c0000 0004 5911 2402Department of Oncology-Pathology, Karolinska Institute and Science for Life Laboratory, Stockholm, Sweden
| | - Sascha Dietrich
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany ,grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Heidelberg, Germany ,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany ,grid.461742.20000 0000 8855 0365Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.14778.3d0000 0000 8922 7789Department of Hematolgy, Oncology and Immunolgy, University Hospital of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
4
|
Vucicevic K, Jakovljevic V, Colovic N, Tosic N, Kostic T, Glumac I, Pavlovic S, Karan-Djurasevic T, Colovic M. Association of Bax Expression and Bcl2/Bax Ratio with Clinical and Molecular Prognostic Markers in Chronic Lymphocytic Leukemia. J Med Biochem 2016; 35:150-157. [PMID: 28356875 PMCID: PMC5346792 DOI: 10.1515/jomb-2015-0017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/17/2015] [Indexed: 01/01/2023] Open
Abstract
Background In chronic lymphocytic leukemia (CLL), in vivo apoptotic resistance of malignant B lymphocytes results, in part, from the intrinsic defects of their apoptotic machinery. These include genetic alterations and aberrant expression of many apoptosis regulators, among which the Bcl2 family members play a central role. Aim The aim of this study was to investigate the association of pro-apoptotic Bax gene expression and Bcl2/Bax ratio with the clinical features of CLL patients as well as with molecular prognostic markers, namely the mutational status of rearranged immunoglobulin heavy variable (IGHV) genes and lipoprotein lipase (LPL) gene expression. Methods We analyzed the expression of Bax mRNA and Bcl2/Bax mRNA ratio in the peripheral blood mononuclear cells of 58 unselected CLL patients and 10 healthy controls by the quantitative reverse-transcriptase polymerase chain reaction. Results We detected significant Bax gene overexpression in CLL samples compared to non-leukemic samples (p=0.003), as well as an elevated Bcl2/Bax ratio (p=<0.001). Regarding the association with prognostic markers, the Bcl2/Bax ratio showed a negative correlation to lymphocyte doubling time (r=-0.307; p=0.0451), while high-level Bax expression was associated with LPL-positive status (p=0.035). Both the expression of Bax and Bcl2/Bax ratio were higher in patients with unmutated vs. mutated IGHV rearrangements, but this difference did not reach statistical significance. Conclusions Our results suggest that dysregulated expression of Bcl2 and Bax, which leads to a high Bcl2/Bax ratio in leukemic cells, contributes to the pathogenesis and clinical course of CLL.
Collapse
Affiliation(s)
- Ksenija Vucicevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Natasa Colovic
- Hematology Clinic, Clinical Center of Serbia, Belgrade, Serbia; Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Natasa Tosic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Tatjana Kostic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Irena Glumac
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Teodora Karan-Djurasevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milica Colovic
- Medical Faculty, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Mongini PKA, Gupta R, Boyle E, Nieto J, Lee H, Stein J, Bandovic J, Stankovic T, Barrientos J, Kolitz JE, Allen SL, Rai K, Chu CC, Chiorazzi N. TLR-9 and IL-15 Synergy Promotes the In Vitro Clonal Expansion of Chronic Lymphocytic Leukemia B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:901-23. [PMID: 26136429 PMCID: PMC4505957 DOI: 10.4049/jimmunol.1403189] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/30/2015] [Indexed: 12/20/2022]
Abstract
Clinical progression of B cell chronic lymphocytic leukemia (B-CLL) reflects the clone's Ag receptor (BCR) and involves stroma-dependent B-CLL growth within lymphoid tissue. Uniformly elevated expression of TLR-9, occasional MYD88 mutations, and BCR specificity for DNA or Ags physically linked to DNA together suggest that TLR-9 signaling is important in driving B-CLL growth in patients. Nevertheless, reports of apoptosis after B-CLL exposure to CpG oligodeoxynucleotide (ODN) raised questions about a central role for TLR-9. Because normal memory B cells proliferate vigorously to ODN+IL-15, a cytokine found in stromal cells of bone marrow, lymph nodes, and spleen, we examined whether this was true for B-CLL cells. Through a CFSE-based assay for quantitatively monitoring in vitro clonal proliferation/survival, we show that IL-15 precludes TLR-9-induced apoptosis and permits significant B-CLL clonal expansion regardless of the clone's BCR mutation status. A robust response to ODN+IL-15 was positively linked to presence of chromosomal anomalies (trisomy-12 or ataxia telangiectasia mutated anomaly + del13q14) and negatively linked to a very high proportion of CD38(+) cells within the blood-derived B-CLL population. Furthermore, a clone's intrinsic potential for in vitro growth correlated directly with doubling time in blood, in the case of B-CLL with Ig H chain V region-unmutated BCR and <30% CD38(+) cells in blood. Finally, in vitro high-proliferator status was statistically linked to diminished patient survival. These findings, together with immunohistochemical evidence of apoptotic cells and IL-15-producing cells proximal to B-CLL pseudofollicles in patient spleens, suggest that collaborative ODN and IL-15 signaling may promote in vivo B-CLL growth.
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/metabolism
- Aged
- Aged, 80 and over
- Apoptosis/immunology
- Ataxia Telangiectasia Mutated Proteins/genetics
- B-Lymphocytes/immunology
- Cell Proliferation/genetics
- Cells, Cultured
- Chromosome Aberrations
- Female
- Humans
- Immunoglobulin Heavy Chains/genetics
- Interleukin-15/immunology
- Interleukin-15/pharmacology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Male
- Membrane Glycoproteins/metabolism
- Middle Aged
- Myeloid Differentiation Factor 88/genetics
- Oligodeoxyribonucleotides/pharmacology
- Receptors, Antigen, B-Cell/immunology
- Signal Transduction/immunology
- Toll-Like Receptor 9/immunology
Collapse
Affiliation(s)
- Patricia K A Mongini
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549;
| | - Rashmi Gupta
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Erin Boyle
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Jennifer Nieto
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Hyunjoo Lee
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Joanna Stein
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Jela Bandovic
- Department of Pathology, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY 11030
| | - Tatjana Stankovic
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jacqueline Barrientos
- Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and
| | - Jonathan E Kolitz
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| | - Steven L Allen
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| | - Kanti Rai
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| | - Charles C Chu
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| |
Collapse
|
6
|
Telomere shortening associated with increased genomic complexity in chronic lymphocytic leukemia. Tumour Biol 2015; 36:8317-24. [DOI: 10.1007/s13277-015-3556-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/11/2015] [Indexed: 01/08/2023] Open
|
7
|
Hu T, Yang P, Zhu H, Chen X, Xie X, Yang M, Liu S, Wang H. Accumulation of invariant NKT cells with increased IFN-γ production in persistent high-risk HPV-infected high-grade cervical intraepithelial neoplasia. Diagn Pathol 2015; 10:20. [PMID: 25885042 PMCID: PMC4416328 DOI: 10.1186/s13000-015-0254-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/19/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Persistent high-risk human papillomavirus (HR-HPV) infection has been implicated in the development of high-grade cervical intraepithelial neoplasia (CIN) and cervical cancer. Invariant natural killer T (iNKT) cells produce large amounts of cytokines to regulate immune responses. However, the role of iNKT cells in human persistent HPV-infected cervical tissues is unknown. METHODS In our study, 201 patients with diagnoses ranging from normal ectocervical tissue to CINIII from June 2010 to May 2012 were enrolled. HPV DNA and HPV types were detected using the hybrid capture-2 HPV DNA test. Flow cytometry was used to investigate iNKT and CD3+ T cell infiltration into cervical tissues. Real-time quantitative reverse transcription-polymerase chain reaction was used to study IFN-γ expression and immunohistochemistry was used to determine CD3+ T cell distribution. RESULTS A significant increase in iNKT cells was observed in HPV-positive cervical tissues (p < 0.05), especially in CINII-III (p < 0.01). IFN-γ expression was also increased in HPV-positive cervical tissues (p < 0.05). CD3+ T cells were detected among both epithelium and stromal layers in cervical tissues, and the percentage of CD3+ T cells in HPV-positive cervical tissues was similar to that in HPV-negative cervical tissues (p > 0.05). CONCLUSIONS The iNKT cell aggregation in cervical tissues during the progression from HPV infection to CIN indicates that iNKT cells might play an important role in suppressing immunity. IFN-γ expression could also be related to the HPV infection status. Preventing the accumulation or functioning of iNKT cells in cervical tissues may be a viable method to prevent the development of CIN. VIRTUAL SLIDES The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2521874671514142.
Collapse
Affiliation(s)
- Ting Hu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renming Nan Road, Chengdu, 610041, China. .,Laboratory of Cell and Gene Therapy, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renming Nan Road, Chengdu, 610041, China. .,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, No. 20, Section 3, Renming Nan Road, Chengdu, 610041, China.
| | - Pei Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renming Nan Road, Chengdu, 610041, China. .,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, No. 20, Section 3, Renming Nan Road, Chengdu, 610041, China.
| | - Hongmei Zhu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renming Nan Road, Chengdu, 610041, China. .,Laboratory of Cell and Gene Therapy, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renming Nan Road, Chengdu, 610041, China. .,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, No. 20, Section 3, Renming Nan Road, Chengdu, 610041, China.
| | - Xinlian Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renming Nan Road, Chengdu, 610041, China. .,Laboratory of Genetics, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renming Nan Road, Chengdu, 610041, China. .,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, No. 20, Section 3, Renming Nan Road, Chengdu, 610041, China.
| | - Xiaoyan Xie
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renming Nan Road, Chengdu, 610041, China. .,Laboratory of Cell and Gene Therapy, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renming Nan Road, Chengdu, 610041, China. .,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, No. 20, Section 3, Renming Nan Road, Chengdu, 610041, China.
| | - Mei Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renming Nan Road, Chengdu, 610041, China. .,Laboratory of Genetics, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renming Nan Road, Chengdu, 610041, China. .,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, No. 20, Section 3, Renming Nan Road, Chengdu, 610041, China.
| | - Shanling Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renming Nan Road, Chengdu, 610041, China. .,Laboratory of Cell and Gene Therapy, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renming Nan Road, Chengdu, 610041, China. .,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, No. 20, Section 3, Renming Nan Road, Chengdu, 610041, China.
| | - He Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renming Nan Road, Chengdu, 610041, China. .,Laboratory of Genetics, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renming Nan Road, Chengdu, 610041, China. .,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, No. 20, Section 3, Renming Nan Road, Chengdu, 610041, China.
| |
Collapse
|
8
|
Genetic abnormalities in chronic lymphocytic leukemia: where we are and where we go. BIOMED RESEARCH INTERNATIONAL 2014; 2014:435983. [PMID: 24967369 PMCID: PMC4054680 DOI: 10.1155/2014/435983] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/22/2014] [Indexed: 12/17/2022]
Abstract
Chromosomal abnormalities in chronic lymphocytic leukemia (CLL) are detected in up to 80% of patients. Among them, deletions of 11q, 13q, 17p, and trisomy 12 have a known prognostic value and play an important role in CLL pathogenesis and evolution, determining patients outcome and therapeutic strategies. Standard methods used to identify these genomic aberrations include both conventional G-banding cytogenetics (CGC) and fluorescence in situ hybridization (FISH). Although FISH analyses have been implemented as the gold standard, CGC allows the identification of chromosomal translocations and complex karyotypes, the latest associated with poor outcome. Genomic arrays have a higher resolution that allows the detection of cryptic abnormalities, although these have not been fully implemented in routine laboratories. In the last years, next generation sequencing (NGS) methods have identified a wide range of gene mutations (e.g., TP53, NOTCH1, SF3B1, and BIRC3) which have improved our knowledge about CLL development, allowing us to refine both the prognostic subgroups and better therapeutic strategies. Clonal evolution has also recently arisen as a key point in CLL, integrating cytogenetic alterations and mutations in a dynamic model that improve our understanding about its clinical course and relapse.
Collapse
|
9
|
Jimenez-Zepeda VH, Chng WJ, Schop RF, Braggio E, Leis JF, Kay N, Fonseca R. Recurrent Chromosome Abnormalities Define Nonoverlapping Unique Subgroups of Tumors in Patients With Chronic Lymphocytic Leukemia and Known Karyotypic Abnormalities. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2013; 13:467-76. [DOI: 10.1016/j.clml.2013.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 05/02/2013] [Accepted: 05/02/2013] [Indexed: 11/16/2022]
|
10
|
Navrkalova V, Sebejova L, Zemanova J, Kminkova J, Kubesova B, Malcikova J, Mraz M, Smardova J, Pavlova S, Doubek M, Brychtova Y, Potesil D, Nemethova V, Mayer J, Pospisilova S, Trbusek M. ATM mutations uniformly lead to ATM dysfunction in chronic lymphocytic leukemia: application of functional test using doxorubicin. Haematologica 2013; 98:1124-31. [PMID: 23585524 DOI: 10.3324/haematol.2012.081620] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
ATM abnormalities are frequent in chronic lymphocytic leukemia and represent an important prognostic factor. Sole 11q deletion does not result in ATM inactivation by contrast to biallelic defects involving mutations. Therefore, the analysis of ATM mutations and their functional impact is crucial. In this study, we analyzed ATM mutations in predominantly high-risk patients using: i) resequencing microarray and direct sequencing; ii) Western blot for total ATM level; iii) functional test based on p21 gene induction after parallel treatment of leukemic cells with fludarabine and doxorubicin. ATM dysfunction leads to impaired p21 induction after doxorubicin exposure. We detected ATM mutation in 16% (22 of 140) of patients, and all mutated samples manifested demonstrable ATM defect (impaired p21 upregulation after doxorubicin and/or null protein level). Loss of ATM function in mutated samples was also evidenced through defective p53 pathway activation after ionizing radiation exposure. ATM mutation frequency was 34% in patients with 11q deletion, 4% in the TP53-defected group, and 8% in wild-type patients. Our functional test, convenient for routine use, showed high sensitivity (80%) and specificity (97%) for ATM mutations prediction. Only cells with ATM mutation, but not those with sole 11q deletion, were resistant to doxorubicin. As far as fludarabine is concerned, this difference was not observed. Interestingly, patients from both these groups experienced nearly identical time to first treatment. In conclusion, ATM mutations either alone or in combination with 11q deletion uniformly led to demonstrable ATM dysfunction in patients with chronic lymphocytic leukemia and mutation presence can be predicted by the functional test using doxorubicin.
Collapse
Affiliation(s)
- Veronika Navrkalova
- Department of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lin K, Lane B, Carter A, Johnson GG, Onwuazor O, Oates M, Zenz T, Stilgenbauer S, Atherton M, Douglas A, Ebrahimi B, Sherrington PD, Pettitt AR. The gene expression signature associated withTP53mutation/deletion in chronic lymphocytic leukaemia is dominated by the under-expression ofTP53and other genes on chromosome 17p. Br J Haematol 2012; 160:53-62. [DOI: 10.1111/bjh.12092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/05/2012] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Anthony Carter
- Department of Haematology; Royal Liverpool and Broadgreen University Hospitals NHS Trust; Liverpool; UK
| | | | - Obiageli Onwuazor
- Department of Molecular and Clinical Cancer Medicine; University of Liverpool; Liverpool; UK
| | - Melanie Oates
- Department of Molecular and Clinical Cancer Medicine; University of Liverpool; Liverpool; UK
| | | | | | - Mark Atherton
- Cheshire and Merseyside Genetics Laboratories; Liverpool Women's Hospital NHS Trust; Liverpool; UK
| | - Angela Douglas
- Cheshire and Merseyside Genetics Laboratories; Liverpool Women's Hospital NHS Trust; Liverpool; UK
| | - Bahram Ebrahimi
- Centre for Genome Research; University of Liverpool; Liverpool; UK
| | | | | |
Collapse
|
12
|
Marasca R, Maffei R, Martinelli S, Fiorcari S, Bulgarelli J, Debbia G, Rossi D, Rossi FM, Rigolin GM, Martinelli S, Gattei V, Del Poeta G, Laurenti L, Forconi F, Montillo M, Gaidano G, Luppi M. Clinical heterogeneity ofde novo11q deletion chronic lymphocytic leukaemia: prognostic relevance of extent of 11q deleted nuclei inside leukemic clone. Hematol Oncol 2012; 31:88-95. [DOI: 10.1002/hon.2028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/05/2012] [Accepted: 09/07/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Roberto Marasca
- Division of Hematology, Dipartimento di Scienze Mediche e Chirurgiche Materno-infantili e dell'Adulto; University of Modena and Reggio Emilia; Modena; Italy
| | - Rossana Maffei
- Division of Hematology, Dipartimento di Scienze Mediche e Chirurgiche Materno-infantili e dell'Adulto; University of Modena and Reggio Emilia; Modena; Italy
| | - Silvia Martinelli
- Division of Hematology, Dipartimento di Scienze Mediche e Chirurgiche Materno-infantili e dell'Adulto; University of Modena and Reggio Emilia; Modena; Italy
| | - Stefania Fiorcari
- Division of Hematology, Dipartimento di Scienze Mediche e Chirurgiche Materno-infantili e dell'Adulto; University of Modena and Reggio Emilia; Modena; Italy
| | - Jenny Bulgarelli
- Division of Hematology, Dipartimento di Scienze Mediche e Chirurgiche Materno-infantili e dell'Adulto; University of Modena and Reggio Emilia; Modena; Italy
| | - Giulia Debbia
- Division of Hematology, Dipartimento di Scienze Mediche e Chirurgiche Materno-infantili e dell'Adulto; University of Modena and Reggio Emilia; Modena; Italy
| | - Davide Rossi
- Division of Hematology, Department of Clinical and Experimental Medicine; Amedeo Avogadro University of Eastern Piedmont; Novara; Italy
| | - Francesca Maria Rossi
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico; I.R.C.C.S.; Aviano; PN; Italy
| | - Gian Matteo Rigolin
- Hematology Section, Department of Biomedical Sciences; Azienda Ospedaliero-Universitaria Arcispedale S. Anna, University of Ferrara; Ferrara; Italy
| | - Sara Martinelli
- Hematology Section, Department of Biomedical Sciences; Azienda Ospedaliero-Universitaria Arcispedale S. Anna, University of Ferrara; Ferrara; Italy
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico; I.R.C.C.S.; Aviano; PN; Italy
| | - Giovanni Del Poeta
- Division of Hematology; S. Eugenio Hospital and University of Tor Vergata; Rome; Italy
| | - Luca Laurenti
- Institute of Hematology; Catholic University of the Sacred Heart; Rome; Italy
| | | | | | - Gianluca Gaidano
- Division of Hematology, Department of Clinical and Experimental Medicine; Amedeo Avogadro University of Eastern Piedmont; Novara; Italy
| | - Mario Luppi
- Division of Hematology, Dipartimento di Scienze Mediche e Chirurgiche Materno-infantili e dell'Adulto; University of Modena and Reggio Emilia; Modena; Italy
| |
Collapse
|
13
|
Teimori H, Akbari MT, Hamid M, Forouzandeh M, Bibordi E. Analysis of CD38 and ZAP70 mRNA expression among cytogenetic subgroups of Iranian chronic-lymphocytic-leukemia patients. GENETICS AND MOLECULAR RESEARCH 2011; 10:2415-23. [PMID: 22002134 DOI: 10.4238/2011.october.7.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Chromosomal abnormalities and ZAP70 expression profile are two major independent prognostic markers in B-cell chronic lymphocytic leukemia. We investigated a possible correlation between these two markers. ZAP70 expression using real-time RT-PCR was examined in 20 B-cell chronic lymphocytic leukemia patients with del13q14, 13 patients with del11q22, 15 patients with trisomy 12, and 16 patients with no detected chromosomal abnormalities. Molecular analysis revealed that ZAP70 expression in the del13q subgroup was the same as in the control group, while it increased 2.78-fold in the del11q subgroup and 2.95-fold in the trisomy 12 subgroup, compared to the 15 cases in the control group. Comparison of the mean and standard deviation of the ZAP70 expression profile within the subgroups showed it to be highly variable among the individuals of the del11q and trisomy 12 subgroups, versus tight clustering for the del13q subgroup. Therefore, there is a correlation between del13q aberration, which has good prognosis with normal levels of ZAP70 expression. Due to a high degree of variation, no conformity is seen for del11q and trisomy 12 subgroups, making this grouping poor for prognostic discrimination. As a result, neither of these markers can serve as sole discriminators to determine the course of the disease; the use of both markers improves prognostic assessment.
Collapse
Affiliation(s)
- H Teimori
- Cellular and Molecular Research Center, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | | | | | | |
Collapse
|
14
|
Alterations in TP53, cyclin D2, c-Myc, p21WAF1/CIP1 and p27KIP1 expression associated with progression in B-CLL. Folia Histochem Cytobiol 2011; 48:534-41. [PMID: 21478095 DOI: 10.2478/v10042-010-0048-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
B-cell chronic lymphocytic leukaemia (B-CLL) originates from B lymphocytes that may differ in the activation level, maturation state or cellular subgroups in peripheral blood. Tumour progression in CLL B cells seems to result in gradual accumulation of the clone of resting B lymphocytes in the early phases (G0/G1) of the cell cycle. The G1 phase is impaired in B-CLL. We investigated the gene expression of five key cell cycle regulators: TP 53, c-Myc, cyclin D2, p21WAF1/CIP1 and p27KIP1, which primarily regulate the G1 phase of the cell cycle, or S-phase entry and ultimately control the proliferation and cell growth as well as their role in B-CLL progression. The study was conducted in peripheral blood CLL lymphocytes of 40 previously untreated patients. Statistical analysis of correlations of TP53, cyclin D2, c-Myc, p21WAF1/CIP1 and p27KIP1 expressions in B-CLL patients with different Rai stages demonstrated that the progression of disease was accompanied by increases in p53, cyclin D2 and c-Myc mRNA expression. The expression of p27KIP1 was nearly statistically significant whereas that of p21 WAF1/CIP1 showed no such correlation. Moreover, high expression levels of TP53 and c-Myc genes were found to be closely associated with more aggressive forms of the disease requiring earlier therapy.
Collapse
|
15
|
Rinaldi A, Mian M, Kwee I, Rossi D, Deambrogi C, Mensah AA, Forconi F, Spina V, Cencini E, Drandi D, Ladetto M, Santachiara R, Marasca R, Gattei V, Cavalli F, Zucca E, Gaidano G, Bertoni F. Genome-wide DNA profiling better defines the prognosis of chronic lymphocytic leukaemia. Br J Haematol 2011; 154:590-9. [DOI: 10.1111/j.1365-2141.2011.08789.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Fangazio M, De Paoli L, Rossi D, Gaidano G. Predictive markers and driving factors behind Richter syndrome development. Expert Rev Anticancer Ther 2011; 11:433-42. [PMID: 21417856 DOI: 10.1586/era.10.237] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transformation of chronic lymphocytic leukemia (CLL) to diffuse large B-cell lymphoma (DLBCL) is known as Richter syndrome (RS). In the entire CLL population, the cumulative prevalence of RS development steadily increases at a rate of 1% per year. Considering conventional predictors of CLL, patient subgroups at high risk of developing RS are characterized by the expression of CD38, absence of del13q14, and a lymph node size >3 cm. Novel risk factors for predicting RS development at CLL diagnosis have been recently identified and include: the host genotype of the CD38 locus and of other genes; telomere length of CLL cells; stereotyped B-cell receptor; and usage of specific immunoglobulin variable genes (IGHV4-39). Importantly, although some risk factors predict both CLL progression and transformation to RS, others (CD38 genotype, absence of del13q14, IGHV4-39 usage, stereotyped B-cell receptor) appear to specifically predict RS. The definition of RS encompasses at least two different conditions: DLBCLs that are clonally related to the pre-existing CLL (accounting for most cases), or DLBCL unrelated to the CLL clone. The transition from CLL to clonally related RS is accompanied by the acquisition of novel genetic alterations that may account for the chemorefractoriness of RS. Genome-wide studies that are currently ongoing are important for identifying novel molecular lesions implicated in RS that might represent a suitable target for future therapeutic strategies.
Collapse
Affiliation(s)
- Marco Fangazio
- Division of Hematology, Department of Clinical and Experimental Medicine, Amedeo Avogadro University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy
| | | | | | | |
Collapse
|
17
|
Papazoglou E, Huang ZY, Sunkari C, Uitto J. The role of Syk kinase in ultraviolet-mediated skin damage. Br J Dermatol 2011; 165:69-77. [PMID: 21410673 DOI: 10.1111/j.1365-2133.2011.10309.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Ultraviolet (UV) irradiation is the main cause of skin photodamage; the resulting modulation of matrix metalloproteinases (MMPs) leads to collagen degradation. There is no easily accessible molecular indicator of early skin UV damage. OBJECTIVES In this study, we investigated the effects of Syk kinase on MMP expression and evaluated the sensitivity and usefulness of Syk as an early indicator of skin UV damage. METHODS Human dermal fibroblasts (HDFs) were transfected with Syk cDNA to overexpress Syk. MMP-1 expression and Syk activity were determined by Western blot after UV exposure. The effect of Syk on MMP-1 expression in HDFs was further explored by either Syk siRNA or a selective Syk inhibitor. Possible downstream molecules of Syk were also evaluated in HDFs upon UV exposure. The relationship between Syk and collagenase was further explored in vivo (MMP-13, hairless mice). RESULTS Our studies in HDFs demonstrated that both a Syk inhibitor and Syk siRNA were able to inhibit MMP-1 expression in HDFs exposed to UV and that overexpression of Syk increased MMP-1 expression and the activity of JNK kinase, but not p38 or Erk1/2 MAP kinase. UV exposure enhanced both expression and activity of Syk in HDFs. Experiments with hairless mice suggested that Syk expression is an earlier indicator of UV exposure than MMP-13 expression. CONCLUSIONS Our results demonstrate that Syk expression correlates well with increase of MMPs (MMP-1 in humans and MMP-13 in mice) in response to UV exposure. The findings suggest that Syk may be a novel target for the prevention and treatment of skin photodamage by modulating MMPs.
Collapse
Affiliation(s)
- E Papazoglou
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
18
|
Cavazzini F, Ciccone M, Negrini M, Rigolin GM, Cuneo A. Clinicobiologic importance of cytogenetic lesions in chronic lymphocytic leukemia. Expert Rev Hematol 2011; 2:305-14. [PMID: 21082972 DOI: 10.1586/ehm.09.22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Molecular cytogenetic lesions play a major role in the pathogenesis of chronic lymphocytic leukemia (CLL) and represent important prognostic markers. Besides FISH, conventional banding analysis using effective mitogens is important for an accurate assessment of the cytogenetic profile of CLL. The most frequent aberrations are represented by 13q-, 11q-, +12, 6q- and 14q32/IGH translocations and 17p-. Chromosome translocations and complex karyotype may occur in up to 30 and 16% of the cases, respectively. The frequency of 17p- and 11q- is higher in patients requiring treatment and in relapsed/refractory patients, reflecting the association of these rearrangements with unfavorable prognosis. Mutations of the TP53 gene may also confer an inferior outcome, as is the case with 14q32 translocations and unbalanced translocations. Evidence was provided that distinct treatment approaches may be effective in specific cytogenetic entities of CLL, making molecular cytogenetic investigations a necessary tool for a modern diagnostic work-up in CLL.
Collapse
Affiliation(s)
- Francesco Cavazzini
- Section of Hematology, Department of Biomedical Sciences and Advanced Therapies, University of Ferrara, Via Savonarola 9, Ferrara, Italy
| | | | | | | | | |
Collapse
|
19
|
Reactivation of Syk gene by AZA suppresses metastasis but not proliferation of breast cancer cells. Med Oncol 2011; 29:448-53. [PMID: 21347717 DOI: 10.1007/s12032-011-9865-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 02/11/2011] [Indexed: 12/11/2022]
Abstract
Spleen tyrosine kinase (Syk) is reported to be involved in the suppression of proliferation and invasion of breast cancer. Methylation-mediated Syk gene silencing is found in a subset of breast cancer. In this study, we used a DNA methyltransferase inhibitor, 5-aza-2-deoxycytidine (AZA), to restore Syk expression of breast cancer cells. Surprisingly, we found that AZA treatment could reestablish the expression of Syk, but not affect the proliferation of breast cancer cells. Moreover, tumor formation in situ by MDA-MB-435s treated with (+) or without (-) AZA in a nude mice MFP (Mammary fat pad) model did not show significant difference, too. Interestingly, pulmonary metastasis was still significantly suppressed in MDA-MB-435s(+) group (1/9 vs. 7/9). Our findings suggested Syk may be more correlated to metastasis rather than proliferation. This study implied a potential use of Syk methylation as a valuable biomarker to detect high metastatic potential cancerous lesions and the prospect of AZA to join the arsenal of drug candidates to be developed as a new reagent for management of advanced breast cancer.
Collapse
|
20
|
Gene dosage effects in chronic lymphocytic leukemia. ACTA ACUST UNITED AC 2011; 203:149-60. [PMID: 21156227 DOI: 10.1016/j.cancergencyto.2010.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 08/25/2010] [Accepted: 09/01/2010] [Indexed: 11/21/2022]
Abstract
To understand the influence of chromosomal alterations on gene expression in a genome-wide view, chromosomal imbalances detected by single nucleotide polymorphism (SNP) chips were compared with global gene expression in 16 cases of chronic lymphocytic leukemia (CLL). A strong concordance between chromosomal gain or loss and increased or reduced expression of genes in the affected regions was found, respectively. Regions of uniparental disomy (UPD) were rare and had usually no consistent influence on gene expression, but in one instance, a large UPD was associated with a downregulation of most genes in the affected chromosome. The frequently deleted miRNAs, MIRN15A and MIRN16-1, did not show a reduced expression in cases with monoallelic deletions. The BCL2 protein, considered to be downregulated by these miRNAs, was upregulated not only in CLL with biallelic deletion of MIRN15A and MIRN16-1, but also in cases with monoallelic deletion. This suggests a complex regulation of BCL2 levels in CLL cells. Taken together, in CLL, a global gene dosage effect exists for chromosomal gains and deletions and in some instances for UPDs. We did not confirm a consistent correlation between MIRN15A and MIRN16-1 expression levels and BCL2 protein levels, indicating a complex regulation of BCL2 expression.
Collapse
|
21
|
Murakami H, Kuroiwa T, Suzuki K, Miura Y, Sentsui H. Analysis of Syk expression in bovine lymphoma and persistent lymphocytosis induced by bovine leukemia virus. J Vet Med Sci 2010; 73:41-5. [PMID: 20736517 DOI: 10.1292/jvms.10-0225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spleen tyrosine kinase (Syk) is closely related to various cell reactions. In B-cells, Syk is involved in early B-cell receptor signaling, which affects cellular survival, proliferation and differentiation. Although the kinetics of Syk mRNA and its activity are variable in different types of tumor cells, Syk may have a relation to tumor progression in many human tumors, including B-cell lymphoma/leukemia. In this study we examined whether Syk mRNA expression was changed in bovine leukemia virus (BLV)-induced persistent lymphocytosis (PL) and lymphoma. As a result, we demonstrated that the Syk mRNA expression was significantly increased in PL samples, whereas it was decreased in tumor samples. Moreover one cow, which Syk mRNA expression has been lowest among PL cattle, developed lymphoma three months later and the expression significantly decreased. These data suggest that Syk mRNA expression dynamics is closely related to BLV-induced disease.
Collapse
Affiliation(s)
- Hironobu Murakami
- Laboratory of Veterinary Epizootiology, School of Veterinary Medicine, Nihon University, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
22
|
Winkler D, Schneider C, Zucknick M, Bögelein D, Schulze K, Zenz T, Mohr J, Philippen A, Huber H, Bühler A, Habermann A, Benner A, Döhner H, Stilgenbauer S, Mertens D. Protein expression analysis of chronic lymphocytic leukemia defines the effect of genetic aberrations and uncovers a correlation of CDK4, P27 and P53 with hierarchical risk. Haematologica 2010; 95:1880-8. [PMID: 20713460 DOI: 10.3324/haematol.2010.025734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Chronic lymphocytic leukemia has a variable clinical course. Genomic aberrations identify prognostic subgroups, pointing towards distinct underlying biological mechanisms that are poorly understood. In particular it remains unclear whether the prognostic subgroups of chronic lymphocytic leukemia are characterized by different levels of leukemogenic proteins. DESIGN AND METHODS Expression of 23 proteins involved in apoptosis, proliferation, DNA damage, and signaling or whose genes map to chromosomal regions known to be critical in chronic lymphocytic leukemia was quantified in 185 cytogenetically well characterized cases of chronic lymphocytic leukemia using immunoblotting. Cases were categorized hierarchically into deletion(17p), deletion(11q), trisomy 12, deletion(13q) as sole abnormality or normal karyotype. Statistical analysis was performed for expression differences between these subgroups. In addition, the expression levels of CDK4, P27 and P53 were quantified over the clinical course and compared to levels in immunopurified B cells from healthy individuals. RESULTS In subgroups with a good prognosis, differential expression was mainly seen for proteins that regulate apoptosis. In contrast, in cytogenetic subgroups with a worse prognosis, differential expression was mostly detected for proteins that control DNA damage and proliferation. Expression levels of CDK4, P27 and P53 were higher compared to those in B cells from healthy individuals and significantly correlated with increasing hierarchical risk. In addition, no significant longitudinal changes of expression levels of CDK4, P27 and P53 could be detected in chronic lymphocytic leukemia patients. CONCLUSIONS Differences in expression levels of apoptosis- and proliferation-controlling proteins define distinct prognostic subgroups of chronic lymphocytic leukemia and uncover a correlation of levels of CDK4, P27 and P53 proteins with higher hierarchical risk.
Collapse
Affiliation(s)
- Dirk Winkler
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zenz T, Mertens D, Küppers R, Döhner H, Stilgenbauer S. From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat Rev Cancer 2010; 10:37-50. [PMID: 19956173 DOI: 10.1038/nrc2764] [Citation(s) in RCA: 411] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic lymphocytic leukaemia (CLL) has several unique features that distinguish it from other cancers. Most CLL tumour cells are inert and arrested in G0/G1 of the cell cycle and there is only a small proliferative compartment; however, the progressive accumulation of malignant cells will ultimately lead to symptomatic disease. Pathogenic mechanisms have been elucidated that involve multiple external (for example, microenvironmental stimuli and antigenic drive) and internal (genetic and epigenetic) events that are crucial in the transformation, progression and evolution of CLL. Our growing understanding of CLL biology is allowing the translation of targets and biological classifiers into clinical practice.
Collapse
MESH Headings
- Animals
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/physiopathology
- Neoplastic Processes
Collapse
Affiliation(s)
- Thorsten Zenz
- Department of Internal Medicine III, University of Ulm, Germany
| | | | | | | | | |
Collapse
|
24
|
Kienle D, Benner A, Läufle C, Winkler D, Schneider C, Bühler A, Zenz T, Habermann A, Jäger U, Lichter P, Dalla-Favera R, Döhner H, Stilgenbauer S. Gene expression factors as predictors of genetic risk and survival in chronic lymphocytic leukemia. Haematologica 2009; 95:102-9. [PMID: 19951976 DOI: 10.3324/haematol.2009.010298] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND A variety of surrogate markers for genetic features and outcome have been described in chronic lymphocytic leukemia based on gene expression analyses. Previous studies mostly focused on individual markers and selected disease characteristics, which makes it difficult to estimate the relative value of the novel markers. Therefore, in the present study a comprehensive approach was chosen investigating 18 promising, partly novel expression markers in a well characterized cohort of patients with long clinical follow-up and full genetic information (IGHV status, genomic abnormalities). DESIGN AND METHODS Expression markers were evaluated using real-time quantitative reverse transcriptase polymerase chain reaction in CD19(+)-purified samples from 151 patients. Multivariate analyses were performed to test the markers' ability to identify patients at genetic risk and as prognostic markers in the context of established prognostic factors. RESULTS For individual markers, ZAP70 expression provided the highest rate (81%) of correct assignment of patients at genetic risk (IGHV unmutated, V3-21 usage, 11q- or 17p-), followed by LPL and TCF7 (76% both). The assignment rate was improved to 88% by information from a four-gene combination (ZAP70, TCF7, DMD, ATM). In multivariate analysis of treatment-free survival, IGHV mutation status and expression of ADAM29 were of independent prognostic value besides disease stage. With regards to overall survival, expression of ATM, ADAM29, TCL1, and SEPT10 provided prognostic information in addition to that derived from clinical and genetic factors. CONCLUSIONS Gene expression markers are suitable for screening but not as surrogates for the information from genetic risk factors. While many individual markers may be associated with outcome, only a few are of independent prognostic significance. With regard to prognosis estimation, the genetic prognostic factors cannot be replaced by the expression markers.
Collapse
Affiliation(s)
- Dirk Kienle
- Department of Internal Medicine III, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
High TCL1 levels are a marker of B-cell receptor pathway responsiveness and adverse outcome in chronic lymphocytic leukemia. Blood 2009; 114:4675-86. [PMID: 19770358 DOI: 10.1182/blood-2009-03-208256] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although activation of the B-cell receptor (BCR) signaling pathway is implicated in the pathogenesis of chronic lymphocytic leukemia (CLL), its clinical impact and the molecular correlates of such response are not clearly defined. T-cell leukemia 1 (TCL1), the AKT modulator and proto-oncogene, is differentially expressed in CLL and linked to its pathogenesis based on CD5(+) B-cell expansions arising in TCL1-transgenic mice. We studied here the association of TCL1 levels and its intracellular dynamics with the in vitro responses to BCR stimulation in 70 CLL cases. The growth kinetics after BCR engagement correlated strongly with the degree and timing of induced AKT phospho-activation. This signaling intensity was best predicted by TCL1 levels and the kinetics of TCL1-AKT corecruitment to BCR membrane activation complexes, which further included the kinases LYN, SYK, ZAP70, and PKC. High TCL1 levels were also strongly associated with aggressive disease features, such as advanced clinical stage, higher white blood cell counts, and shorter lymphocyte doubling time. Higher TCL1 levels independently predicted an inferior clinical outcome (ie, shorter progression-free survival, P < .001), regardless of therapy regimen, especially for ZAP70(+) tumors. We propose TCL1 as a marker of the BCR-responsive CLL subset identifying poor prognostic cases where targeting BCR-associated kinases may be therapeutically useful.
Collapse
|
26
|
Porpaczy E, Bilban M, Heinze G, Gruber M, Vanura K, Schwarzinger I, Stilgenbauer S, Streubel B, Fonatsch C, Jaeger U. Gene expression signature of chronic lymphocytic leukaemia with Trisomy 12. Eur J Clin Invest 2009; 39:568-75. [PMID: 19453646 DOI: 10.1111/j.1365-2362.2009.02146.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The prognosis of chronic lymphocytic leukaemia (CLL) patients is largely determined by the karyotype of the malignant clone. We have investigated the gene expression profile associated with trisomy 12 (+12). DESIGN Initially, unselected peripheral blood mononuclear cells of four patients with +12 were compared with 16 CLL controls using microarray analysis. RESULTS were validated by quantitative real-time PCR with RNA from 61 patients (29 with +12, 32 CLL controls). Results Seven genes showing the strongest correlation with +12 in microarray analysis were selected for real-time PCR: HIP1R, MYF6, SLC2A6, CD9 (overexpressed); CD200, P2RY14, RASGRP3 (underexpressed). Four genes were significantly associated with +12: HIP1R (P<0.0001), MYF6 (P=0.007), P2RY14 (P=0.014), CD200 (P=0.028). Receiver Operating Characteristic curve analysis revealed that HIP1R expression was a highly sensitive and specific marker for +12 in CLL patients. MYF6 was exclusively expressed in normal or malignant B cells in peripheral blood but was poorly predictive for +12. As expected, a number of overexpressed genes are located on chromosome 12 (HIP1R, MYF6). Interestingly, both significantly underexpressed genes (P2RY14, CD200) reside on the long arm of chromosome 3 pointing to trans-repression in this region. CONCLUSIONS Analysis of the molecular signature of trisomy 12 in CLL resulted in: (i) identification of a surrogate marker for PCR (HIP1R); (ii) observation of a gene dosage effect; and (iii) detection of specific underexpression of genes located on chromosome 3. These results should help to improve diagnosis and treatment decisions for patients with CLL and trisomy 12.
Collapse
Affiliation(s)
- E Porpaczy
- Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mahadevan D, Choi J, Cooke L, Simons B, Riley C, Klinkhammer T, Sud R, Maddipoti S, Hehn S, Garewal H, Spier C. Gene Expression and Serum Cytokine Profiling of Low Stage CLL Identify WNT/PCP, Flt-3L/Flt-3 and CXCL9/CXCR3 as Regulators of Cell Proliferation, Survival and Migration. HUMAN GENOMICS AND PROTEOMICS : HGP 2009; 2009:453634. [PMID: 20981323 PMCID: PMC2958625 DOI: 10.4061/2009/453634] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 11/17/2008] [Accepted: 04/26/2009] [Indexed: 01/30/2023]
Abstract
Gene expression profiling (GEP) of 8 stage 0/I untreated Chronic Lymphocytic Leukemia (CLL) patients showed over-expression of Frizzled 3 (FZD3)/ROR-1 receptor tyrosine kinase (RTK), FLT-3 RTK and CXCR3 G-protein coupled receptor (GPCR). RT-PCR of 24 genes in 21 patients of the WNT pathway corroborated the GEP. Transforming growth factorβ, fibromodulin, TGFβRIII and SMAD2 are also over-expressed by GEP. Serum cytokine profiling of 26 low stage patients showed elevation of IFNγ, CSF3, Flt-3L and insulin-like growth factor binding protein 4. In order to ascertain why CLL cells grow poorly in culture, a GEP of 4 CLL patients cells at 0 hr and 24 hr in culture demonstrated over expression of CXCL5, CCL2 and CXCL3, that may recruit immune cells for survival. Treatment with thalidomide, an immunomodulatory agent, showed elevation of CCL5 by GEP but was not cytotoxic to CLL cells. Our data suggest an interplay of several oncogenic pathways, cytokines and immune cells that promote a survival program in CLL.
Collapse
Affiliation(s)
- Daruka Mahadevan
- Department of Hematology/Oncology, Arizona Cancer Center, Tucson, AZ 85724, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Buchner M, Fuchs S, Prinz G, Pfeifer D, Bartholomé K, Burger M, Chevalier N, Vallat L, Timmer J, Gribben JG, Jumaa H, Veelken H, Dierks C, Zirlik K. Spleen tyrosine kinase is overexpressed and represents a potential therapeutic target in chronic lymphocytic leukemia. Cancer Res 2009; 69:5424-32. [PMID: 19549911 DOI: 10.1158/0008-5472.can-08-4252] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
B-cell receptor signaling contributes to apoptosis resistance in chronic lymphocytic leukemia (CLL), limiting the efficacy of current therapeutic approaches. In this study, we investigated the expression of spleen tyrosine kinase (SYK), a key component of the B-cell receptor signaling pathway, in CLL and its role in apoptosis. Gene expression profiling identified enhanced expression of SYK and downstream pathways in CLL compared with healthy B cells. Immunoblotting showed increased expression and phosphorylation of SYK, PLCgamma(2), signal transducers and activators of transcription 3, and extracellular signal regulated kinase 1/2 in CLL compared with healthy B cells, suggesting enhanced activation of these mediators in CLL. SYK inhibitors reduced phosphorylation of SYK downstream targets and induced apoptosis in primary CLL cells. With respect to prognostic factors, SYK inhibitors exerted stronger cytotoxic effects in unmutated and ZAP70(+) cases. Cytotoxic effects of SYK inhibitors also associated with SYK protein expression, potentially predicting response to therapy. Combination of fludarabine with SYK Inhibitor II or R406 increased cytotoxicity compared with fludarabine therapy alone. We observed no stroma-contact-mediated drug resistance for SYK inhibitors as described for fludarabine treatment. CD40 ligation further enhanced efficacy of SYK inhibition. Our data provide mechanistic insight into the recently observed therapeutic effects of the SYK inhibitor R406 in CLL. Combination of SYK inhibitors with fludarabine might be a novel treatment option particularly for CLL patients with poor prognosis and should be further evaluated in clinical trials.
Collapse
Affiliation(s)
- Maike Buchner
- University Medical Center Freiburg, Department of Hematology and Oncology, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Rossi D, Gaidano G. Richter syndrome: molecular insights and clinical perspectives. Hematol Oncol 2009; 27:1-10. [PMID: 19206112 DOI: 10.1002/hon.880] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Richter syndrome (RS) represents the clinico-pathologic transformation of chronic lymphocytic leukaemia (CLL) to an aggressive lymphoma, most commonly diffuse large B-cell lymphoma (DLBCL). The clinical definition of RS is heterogeneous, and encompasses at least two biologically different conditions: (i) CLL transformation to a clonally related DLBCL, that accounts for the majority of cases; (ii) development of a DLBCL unrelated to the CLL clone. In clonally related RS, the pathogenetic link between the CLL and the DLBCL phases is substantiated by the acquisition of novel molecular lesions at the time of clinico-pathologic transformation. RS is not a rare event in the natural history of CLL, since the cumulative incidence of RS at 10 years exceeds 10%. Prompt recognition of RS is known to be clinically useful, and may be favoured by close monitoring of CLL patients harbouring clinical and/or biological risk factors of RS development. Conventional risk factors that are independent predictors of RS development at the time of CLL diagnosis include: (i) expression of CD38; (ii) absence of del13q14 and (iii) lymph node size > or =3 cm. Other risk factors of RS development include CD38 genotype and usage of specific immunoglobulin variable genes. The molecular pathogenesis of RS has been elucidated to a certain extent. Acquisition of TP53 mutations and/or 17p13 deletion is a frequent molecular event in RS, as it is in other types of transformation from indolent to aggressive B-cell malignancies. Additional molecular alterations are being revealed by genome wide studies. Once that transformation has occurred, RS prognosis may be predicted by the RS score, based on performance status, LDH, platelet count, tumour size and number of prior therapies. Depending on patient's age and RS score, the therapeutic options for RS may range from conventional immunochemotherapy to allogeneic bone marrow transplantation.
Collapse
Affiliation(s)
- Davide Rossi
- Division of Hematology, Department of Clinical and Experimental Medicine and BRMA, Amedeo Avogadro University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy.
| | | |
Collapse
|
31
|
Forconi F, Rinaldi A, Kwee I, Sozzi E, Raspadori D, Rancoita PMV, Scandurra M, Rossi D, Deambrogi C, Capello D, Zucca E, Marconi D, Bomben R, Gattei V, Lauria F, Gaidano G, Bertoni F. Genome-wide DNA analysis identifies recurrent imbalances predicting outcome in chronic lymphocytic leukaemia with 17p deletion. Br J Haematol 2008; 143:532-6. [PMID: 18752589 DOI: 10.1111/j.1365-2141.2008.07373.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Deletion of 17p (TP53) identifies a rare subset of chronic lymphocytic leukaemia (17p- CLL) with aggressive behaviour. Genome-wide DNA-profiling was performed to investigate 18 patients with 17p- CLL. All cases had multiple copy-number (CN) changes. Among the several recurrent CN changes identified, 8q24.13-q24.1-gain (MYC), 8p-loss (TNFRSF10A/B, also known as TRAIL1/2) and 2p16.1-p14-gain (REL/BCL11A) appeared frequently represented. 8p-loss and 2p16.1-p14-gain also appeared clinically relevant and predicted significant shorter time from diagnosis to treatment (8p-loss) and overall survival (8p-loss and 2p16.1-p14-gain, P < 0.05). These observations document a highly unstable genome in 17p- CLL and suggest that additional genes outside the TP53 locus may be important for tumour behaviour.
Collapse
Affiliation(s)
- Francesco Forconi
- Sezione Ematologia e Trapianti, Dipartimento di Medicina Clinica e Scienze Immunologiche, Università di Siena, Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Rossi D, Cerri M, Capello D, Deambrogi C, Rossi FM, Zucchetto A, De Paoli L, Cresta S, Rasi S, Spina V, Franceschetti S, Lunghi M, Vendramin C, Bomben R, Ramponi A, Monga G, Conconi A, Magnani C, Gattei V, Gaidano G. Biological and clinical risk factors of chronic lymphocytic leukaemia transformation to Richter syndrome. Br J Haematol 2008; 142:202-15. [DOI: 10.1111/j.1365-2141.2008.07166.x] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Coll-Mulet L, Santidrián AF, Cosialls AM, Iglesias-Serret D, de Frias M, Grau J, Menoyo A, González-Barca E, Pons G, Domingo A, Gil J. Multiplex ligation-dependent probe amplification for detection of genomic alterations in chronic lymphocytic leukaemia. Br J Haematol 2008; 142:793-801. [PMID: 18564355 DOI: 10.1111/j.1365-2141.2008.07268.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chronic lymphocytic leukaemia (CLL) is the commonest form of leukaemia in adults in Western countries. We performed multiplex ligation-dependent probe amplification (MLPA) analysis in 50 CLL patients to identify multiple genomic CLL-specific targets, including genes located at 13q14, 17p13 (TP53), 11q23 (ATM) and chromosome 12, and compared the results with those obtained with fluorescence in situ hybridization (FISH). There was a good correlation between MLPA and FISH results, as most alterations (89%) were detected by both techniques. Only three cases with a low percentage (<25%) of cells carrying the alterations were not detected by MLPA. On the other hand, as MLPA uses multiple probes it identified intragenic or small alterations undetected by FISH in three cases. MLPA also detected alterations in 8q24 (MYC) and 6q25-26. In summary, unlike interphase FISH, MLPA enabled the simultaneous analysis of many samples with automated data processing at a low cost. Therefore, the combination of robust multiplexing and high throughput makes MLPA a useful technique for the analysis of genomic alterations in CLL.
Collapse
Affiliation(s)
- Llorenç Coll-Mulet
- Departament de Ciències Fisiològiques II, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Response: Or both? Blood 2008; 111:5756-5757. [DOI: 10.1182/blood-2008-04-149401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
35
|
Abstract
Chronic lymphocytic leukaemia is the commonest form of leukaemia in Europe and North America, and mainly, though not exclusively, affects older individuals. It has a very variable course, with survival ranging from months to decades. Major progress has been made in identification of molecular and cellular markers that could predict disease progression in patients with chronic lymphocytic leukaemia. In particular, the mutational profile of immunoglobulin genes and some cytogenetic abnormalities are important predictors of prognosis. However, these advances have raised new questions about the biology, prognosis, and management of chronic lymphocytic leukaemia, some of which are addressed here. In particular, we discuss how better understanding of the function of the B-cell receptor, the nature of genetic lesions, and the balance between proliferation and apoptosis have affected our ability to assess prognosis and to manage chronic lymphocytic leukaemia. Available treatments generally induce remission, although nearly all patients relapse, and chronic lymphocytic leukaemia remains an incurable disease. Advances in molecular biology have enhanced our understanding of the pathophysiology of the disease and, together with development of new therapeutic agents, have made management of chronic lymphocytic leukaemia more rational and more effective than previously. Unfortunately, we know of no way that chronic lymphocytic leukaemia can be prevented. Early detection is practised widely, but seemingly makes no difference to the patient's eventual outcome.
Collapse
MESH Headings
- Antibodies, Monoclonal/therapeutic use
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/genetics
- Female
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/physiopathology
- Male
- Prognosis
- Randomized Controlled Trials as Topic
Collapse
Affiliation(s)
- G Dighiero
- Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | |
Collapse
|
36
|
Ouillette P, Erba H, Kujawski L, Kaminski M, Shedden K, Malek SN. Integrated genomic profiling of chronic lymphocytic leukemia identifies subtypes of deletion 13q14. Cancer Res 2008; 68:1012-21. [PMID: 18281475 DOI: 10.1158/0008-5472.can-07-3105] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a biologically heterogeneous illness with a variable clinical course. Loss of chromosomal material on chromosome 13 at cytoband 13q14 is the most frequent genetic abnormality in CLL, but the molecular aberrations underlying del13q14 in CLL remain incompletely characterized. We analyzed 171 CLL cases for loss of heterozygosity and subchromosomal copy loss on chromosome 13 in DNA from fluorescence-activated cell sorting-sorted CD19(+) cells and paired buccal cells using the Affymetrix XbaI 50k SNP array platform. The resulting high-resolution genomic maps, together with array-based measurements of expression levels of RNA in CLL cases with and without del13q14 and quantitative PCR-based expression analysis of selected genes, support the following conclusions: (a) del13q14 is heterogeneous and composed of multiple subtypes, with deletion of Rb or the miR15a/miR16 loci serving as anatomic landmarks, respectively; (b) del13q14 type Ia deletions are relatively uniform in length and extend from breakpoints close to the miR15a/miR16 cluster to a newly identified telomeric breakpoint cluster at the approximately 50.2 to 50.5 Mb physical position; (c) LATS2 RNA levels are approximately 2.6-fold to 2.8-fold lower in cases with del13q14 type I that do not delete Rb, as opposed to del13q14 type II or all other CLL cases; (d) PHLPP RNA is absent in approximately 50% of CLL cases with del13q14; and (e) approximately 15% of CLL cases display marked reductions in miR15a/miR16 expression that are often but not invariably associated with bi-allelic miR15a/miR16 loss. These data should aid future investigations into biological differences imparted on CLL by different del13q14 subtypes.
Collapse
Affiliation(s)
- Peter Ouillette
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan 48109-0936, USA
| | | | | | | | | | | |
Collapse
|
37
|
Short telomeres are associated with genetic complexity, high-risk genomic aberrations, and short survival in chronic lymphocytic leukemia. Blood 2008; 111:2246-52. [DOI: 10.1182/blood-2007-05-092759] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Telomere length is associated with mutation status of the immunoglobulin heavy chain variable (IGHV) gene and clinical course in B-cell chronic lymphocytic leukemia (B-CLL). In a B-CLL cohort of 152 patients, we analyzed telomere length, genomic aberrations, IGHV mutation status, CD38 and ZAP-70 expression to study the prognostic impact and associations among these factors. An inverse correlation existed between telomere length and IGHV homology (P < .001), CD38 (P < .001), and ZAP-70 expression (P = .01). Patients with telomere lengths below median (ie, “short telomeres”) and above median (ie, “long telomeres”) had similar incidences of genomic aberrations (74% vs 68%), 13q− (57% vs 49%), and +12q (5% vs 12%). In contrast, 13q− as a single aberration was more frequent in patients with long telomeres (51% vs 21%; P = .006), whereas 11q− (27% vs 9%; P = .014), 17p− (17% vs 0%; P < .001), and 2 or more genomic aberrations (39% vs 8%; P < .001) were more frequent in patients with short telomeres. Compared with patients with long telomeres, treatment-free survival (TFS) and overall survival (OS) was significantly shorter (P < .001 and P = .015, respectively) in the group with short telomeres, and telomere length was an independent prognostic indicator for TFS. These observations have biological and prognostic implications in B-CLL.
Collapse
|
38
|
Cotter FE, Auer RL. Genetic alteration associated with chronic lymphocytic leukemia. Cytogenet Genome Res 2007; 118:310-9. [PMID: 18000385 DOI: 10.1159/000108315] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Accepted: 03/14/2007] [Indexed: 12/19/2022] Open
Abstract
The genetics of B-cell chronic lymphocytic leukemia (B-CLL) differ considerably from most other forms of hematologic malignancy which are usually characterized by chromosome translocations. B-CLL typically contains chromosomal deletions and chromosomes 13q14 and 11q22-->q23 are the most common. These two regions appear to share a common ancestral origin (Auer et al., 2007b). Overall, chromosomal abnormalities can be found in the majority of patients with B-CLL when using sensitive techniques (Dohneret al., 2000) and possibly reflects an underlying predisposition, with a small but significant number of familial cases. Although single and consistent abnormalities are most common, multiple rearrangements can occur, often with disease progression (Feganetal., 1995; Dohner et al., 2000). Regions of recurrent deletion suggest the presence of tumor suppressor genes if following Knudson's theoretical 2-hit model. However, despite extensive sequencing analysis over the last decade and lack of pathogenic mutations identified, there has been a move away from this suggested hypothesis and alternative mechanisms of gene inactivation involving epigenetic silencing or haploinsufficiency may be considered as more likely in this disease. This review focuses on the common genetic abnormalities in B-CLL and relates them to some of the more recent hypotheses on inactivation of genes within these regions of deletion.
Collapse
Affiliation(s)
- F E Cotter
- Centre for Haematology, Institute of Cell and Molecular Sciences, Barts and the London Queen Mary School of Medicine, London, UK.
| | | |
Collapse
|
39
|
Low MCL-1 mRNA expression correlates with prolonged survival in B-cell chronic lymphocytic leukemia. Leukemia 2007; 22:1291-3. [DOI: 10.1038/sj.leu.2405052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Stamatopoulos B, Meuleman N, Haibe-Kains B, Duvillier H, Massy M, Martiat P, Bron D, Lagneaux L. Quantification of ZAP70 mRNA in B Cells by Real-Time PCR Is a Powerful Prognostic Factor in Chronic Lymphocytic Leukemia. Clin Chem 2007; 53:1757-66. [PMID: 17702857 DOI: 10.1373/clinchem.2007.089326] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: Chronic lymphocytic leukemia (CLL) is heterogeneous with respect to prognosis and clinical outcome. The mutational status of the immunoglobulin variable heavy chain region (IGHV) has been used to classify patients into 2 groups in terms of overall survival (OS) and clinical characteristics, but the labor-intensive nature and the cost of this time-consuming analysis has prompted investigations of surrogate markers.
Methods: We developed a standardized quantitative real-time reverse transcription-PCR (qPCR) method to measure zeta-chain (TCR)-associated protein kinase (ZAP70) mRNA in purified CD19+ cells. We evaluated this and other methods (flow cytometry analyses of ZAP70 and CD38 proteins and qPCR analysis of lipoprotein lipase mRNA) in a cohort of 108 patients (median follow-up, 82 months) to evaluate any associations with IGHV mutational status, OS, and treatment-free survival (TFS).
Results: The association between qPCR-measured ZAP70 and IGHV mutational status was statistically significant [χ2 (1) = 50.95; P <0.0001], and the value of Cramer’s V statistic (0.72) indicated a very strong relation. This method also demonstrated sensitivity, specificity, and positive and negative predictive values of 87.8%, 85.7%, 87.5%, and 86%, respectively. ZAP70 expression was significantly associated with OS (P = 0.0021) and TFS (P <0.0001). ZAP70+ patients had significantly shorter median TFS (24 months) than ZAP70− patients (157 months) (P <0.0001). Moreover, qPCR-measured ZAP70 expression has greater prognostic power than IGHV mutational status and the other prognostic markers tested.
Conclusions: ZAP70 mRNA quantification via qPCR is a strong surrogate marker of IGHV mutational status and a powerful prognostic factor.
Collapse
Affiliation(s)
- Basile Stamatopoulos
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Kienle D, Katzenberger T, Ott G, Saupe D, Benner A, Kohlhammer H, Barth TFE, Höller S, Kalla J, Rosenwald A, Müller-Hermelink HK, Möller P, Lichter P, Döhner H, Stilgenbauer S. Quantitative Gene Expression Deregulation in Mantle-Cell Lymphoma: Correlation With Clinical and Biologic Factors. J Clin Oncol 2007; 25:2770-7. [PMID: 17563396 DOI: 10.1200/jco.2006.08.7999] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
PurposeThere is evidence for a direct role of quantitative gene expression deregulation in mantle-cell lymphoma (MCL) pathogenesis. Our aim was to investigate gene expression associations with other pathogenic factors and the significance of gene expression in a multivariate survival analysis.Patients and MethodsQuantitative expression of 20 genes of potential relevance for MCL prognosis and pathogenesis were analyzed using real-time reverse transcriptase polymerase chain reaction and correlated with clinical and genetic factors, tumor morphology, and Ki-67 index in 65 MCL samples.ResultsGenomic losses at the loci of TP53, RB1, and P16 were associated with reduced transcript levels of the respective genes, indicating a gene-dosage effect as the pathomechanism. Analysis of gene expression correlations between the candidate genes revealed a separation into two clusters, one dominated by proliferation activators, another by proliferation inhibitors and regulators of apoptosis. Whereas only weak associations were identified between gene expression and clinical parameters or blastoid morphology, several genes were correlated closely with the Ki-67 index, including the short CCND1 variant (positive correlation) and RB1, ATM, P27, and BMI (negative correlation). In multivariate survival analysis, expression levels of MYC, MDM2, EZH2, and CCND1 were the strongest prognostic factors independently of tumor proliferation and clinical factors.ConclusionThese results indicate a pathogenic contribution of several gene transcript levels to the biology and clinical course of MCL. Genes can be differentiated into factors contributing to proliferation deregulation, either by enhancement or loss of inhibition, and proliferation-independent factors potentially contributing to MCL pathogenesis by apoptosis impairment.
Collapse
Affiliation(s)
- Dirk Kienle
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Pajor L. [Chronic lymphocytic leukaemia: an autoimmune disorder? Prognostic factors and the current view of pathogenesis]. Orv Hetil 2007; 148:867-78. [PMID: 17478402 DOI: 10.1556/oh.2007.27927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The heterogeneity of clinical course in chronic lymphocytic leukaemia has been known for a long time. The easily applicable staging systems described by Rai and Binet decades ago have represented one of the decisive obstacles against the proper development of clinical decision making as they correlated well with survival data in more advanced diseases, but could not differentiate progressive versus stable diseases of low stages. This might have been responsible for the development of the "watch and wait" clinical strategy potentially resulting in the lack of therapeutical intervention in early due time. Application of recent research data on gene expression, molecular biological, cytogenetic and phenotypic analysis of the malignancy can provide the opportunity of stratifying the disease - although with different predictive value - at the onset or early stages. All these represent a new challenge for the diagnostics and expose important aspects in the management of this work. The author reviews the theory and practice of these diagnostic approaches with special emphasis on the immunoglobulin heavy chain mutational status, expression of CD-38 and ZAP-70 markers as well as the significance of karyotyping and interphase cytogenetics. In the light of current data a putative pathogenetic scheme is outlined implying the fundamental recognition that all individual forms of this heterogeneous disease arise from similar and unique polyreactive - autoreactive B-cell clones which underlies the key role of autoimmunization in the pathogenesis of the disease.
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/metabolism
- Autoimmune Diseases/immunology
- Autoimmunity
- B-Lymphocytes/immunology
- Biomarkers, Tumor/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoglobulin Heavy Chains/genetics
- In Situ Hybridization, Fluorescence
- Karyotyping
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mutation
- Neoplasm Staging
- Predictive Value of Tests
- Prognosis
- Risk Factors
- ZAP-70 Protein-Tyrosine Kinase/metabolism
Collapse
Affiliation(s)
- László Pajor
- Pécsi Tudományegyetem, Altalános Orvostudományi Kar, Patológiai Intézet, Pécs.
| |
Collapse
|
43
|
Matthews C, Catherwood MA, Morris TCM', Alexander HD. VH3–48 and VH3–53, as well as VH3–21, gene rearrangements define unique subgroups in CLL and are associated with biased lambda light chain restriction, homologous LCDR3 sequences and poor prognosis. Leuk Res 2007; 31:231-4. [PMID: 16714060 DOI: 10.1016/j.leukres.2006.03.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 03/29/2006] [Accepted: 03/31/2006] [Indexed: 10/24/2022]
Abstract
This study determined IgV(H) gene usage in 228 chronic lymphocytic leukaemia patients to investigate associations between gene usage and other biological or clinical characteristics. V(H)3-48 [N=8] and V(H)3-53 [N=4] gene rearrangements showed biased lambda light chain restriction and were predominantly found in female patients with short lymphocyte doubling time but without adverse prognosis cytogenetics. Overuse of V(L)3-21(Vlambda2-14) gene and highly homologous LCDR3 sequences were found in V(H)3-48 patients. V(H)3-21 gene usage [N=18, 7.9%] was associated with poor prognosis, overuse of V(L)3-21(Vlambda2-14) gene and highly homologous heavy- and light-chain CDR3 sequences, but was not associated with poor prognosis chromosomal aberrations.
Collapse
Affiliation(s)
- Christine Matthews
- Department of Haematology, Level C, Belfast City Hospital, Belfast, Northern Ireland, UK
| | | | | | | |
Collapse
|
44
|
Vallat LD, Park Y, Li C, Gribben JG. Temporal genetic program following B-cell receptor cross-linking: altered balance between proliferation and death in healthy and malignant B cells. Blood 2007; 109:3989-97. [PMID: 17234734 PMCID: PMC1874586 DOI: 10.1182/blood-2006-09-045377] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Gene expression in cells is a dynamic process but is usually examined at a single time point. We used gene expression profiling over time to build temporal models of gene transcription after B-cell receptor (BCR) signaling in healthy and malignant B cells and chose this as a model since BCR cross-linking induces both cell proliferation and apoptosis, with increased apoptosis in chronic lymphocytic leukemia (CLL) compared to healthy B cells. To determine the basis for this, we examined the global temporal gene expression profile for BCR stimulation and developed a linear combination method to summarize the effect of BCR simulation over all the time points for all patients. Functional learning identified common early events in healthy B cells and CLL cells. Although healthy and malignant B cells share a common genetic pattern early after BCR signaling, a specific genetic program is engaged by the malignant cells at later time points after BCR stimulation. These findings identify the molecular basis for the different functional consequences of BCR cross-linking in healthy and malignant B cells. Analysis of gene expression profiling over time may be used to identify genes that might be rational targets to perturb these pathways.
Collapse
MESH Headings
- Adult
- B-Lymphocytes/metabolism
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Male
- Models, Biological
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Oligonucleotide Array Sequence Analysis
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/genetics
- Time Factors
Collapse
Affiliation(s)
- Laurent D Vallat
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Although the philosophy of management of patients with chronic lymphocytic leukaemia (CLL) has been altered with the advent of fludarabine-based therapies, impact on long-term survival is unclear and a significant proportion of patients will develop resistance to fludarabine. Similar to other haematological malignancies, a potential for 'cure' is likely to be achieved only if 'high-quality' complete remissions (CRs) are achieved. Treatment options for patients who develop resistance to fludarabine continue to be limited, with only a proportion obtaining a response (usually not CRs) with salvage therapies. This review summarises novel therapies that are being evaluated in patients with CLL, specifically those targeting the antiapoptotic Bcl-2 family of proteins and receptors (e.g., CD40, CD80, HLA-DR) involved in mediating survival signals from the microenvironment.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- B7-1 Antigen/immunology
- Biphenyl Compounds/pharmacology
- Biphenyl Compounds/therapeutic use
- Clinical Trials as Topic
- Drug Evaluation, Preclinical
- HLA-DR Antigens/pharmacology
- HLA-DR Antigens/therapeutic use
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Nitrophenols
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- Oligonucleotides, Antisense/therapeutic use
- Piperazines
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Sialic Acid Binding Ig-like Lectin 2/immunology
- Signal Transduction/drug effects
- Sulfonamides
- Thionucleotides/genetics
- Thionucleotides/metabolism
- Thionucleotides/therapeutic use
Collapse
Affiliation(s)
- Karen W L Yee
- Department of Leukaemia, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
46
|
Skogsberg S, Tobin G, Kröber A, Kienle D, Thunberg U, Aleskog A, Karlsson K, Laurell A, Merup M, Vilpo J, Sundström C, Roos G, Jernberg-Wiklund H, Döhner H, Nilsson K, Stilgenbauer S, Rosenquist R. The G(-248)A polymorphism in the promoter region of the Bax gene does not correlate with prognostic markers or overall survival in chronic lymphocytic leukemia. Leukemia 2006; 20:77-81. [PMID: 16307023 DOI: 10.1038/sj.leu.2404030] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The G(-248)A polymorphism in the promoter region of the Bax gene was recently associated with low Bax expression, more advanced stage, treatment resistance and short overall survival in B-cell chronic lymphocytic leukemia (CLL), the latter particularly in treated patients. To investigate this further, we analyzed 463 CLL patients regarding the presence or absence of the G(-248)A polymorphism and correlated with overall survival, treatment status and known prognostic factors, for example, Binet stage, VH mutation status and genomic aberrations. In this material, similar allele and genotype frequencies of the Bax polymorphism were demonstrated in CLL patients and controls (n=207), where 19 and 21% carried this polymorphism, respectively, and no skewed distribution of the polymorphism was evident between different Binet stages and VH mutated and unmutated CLLs. Furthermore, no difference in overall survival was shown between patients displaying the G(-248)A polymorphism or not (median survival 85 and 102 months, respectively, P=0.21), and the polymorphism did not influence outcome specifically in treated CLL. Neither did the polymorphism affect outcome in prognostic subsets defined by VH mutation status or genomic aberrations. In conclusion, the pathogenic role and clinical impact of the Bax polymorphism is limited in CLL.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Cohort Studies
- Cytogenetic Analysis
- Female
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Male
- Middle Aged
- Polymorphism, Genetic/genetics
- Prognosis
- Promoter Regions, Genetic
- Retrospective Studies
- Survival Rate
- bcl-2-Associated X Protein/biosynthesis
- bcl-2-Associated X Protein/genetics
Collapse
Affiliation(s)
- S Skogsberg
- Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Matthews C, Catherwood MA, Morris TCM, Kettle PJ, Drake MB, Gilmore WS, Alexander HD. Serum TK levels in CLL identify Binet stage A patients within biologically defined prognostic subgroups most likely to undergo disease progression. Eur J Haematol 2006; 77:309-17. [PMID: 16856923 DOI: 10.1111/j.1600-0609.2006.00707.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Serum thymidine kinase (TK) levels have been shown to be correlated with survival in many malignancies, including chronic lymphocytic leukaemia (CLL). This study was designed to investigate associations between TK levels and other prognostic markers, in newly and previously diagnosed Binet stage A patients. Furthermore, the use of serum TK measurement to identify subcategories of disease within those defined by IgV(H) mutational status, gene usage and chromosomal aberrations was investigated. METHODS Ninety-one CLL patients were enrolled. Serum TK levels were measured using a radioenzyme assay. IgV(H) mutational status and V(H) gene usage were determined using BIOMED-2 primers and protocol. Recurring chromosomal abnormalities were detected by interphase fluorescent in situ hybridisation (FISH). Flow cytometry and reverse transcriptase polymerase chain reaction (RT-PCR) determined CD38 and Zap-70 expression, respectively. RESULTS Significantly higher serum TK levels were found in IgV(H) unmutated, compared with IgV(H) mutated, patients (P < 0.001). Elevated TK levels were also found in patients with CD38 and Zap-70 positivity (P = 0.004, P < 0.001, respectively), short lymphocyte doubling time (LDT) (P = 0.044) and poor or intermediate prognosis chromosomal aberrations (P < 0.001). CONCLUSION A TK level of >8.5 U/L best identified patients with progressive disease. Elevated TK levels could identify patients categorised, at diagnosis, into good prognosis subgroups by the various biological markers (mutated IgV(H), good prognosis chromosomal aberrations, Zap-70(-) and CD38(-)) who subsequently showed disease progression. Additionally, patients with V(H)3-21 gene usage showed high TK levels, irrespective of mutational status, and serum TK measurement retained predictive power as disease progressed in all subcategories studied.
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/genetics
- Adult
- Aged
- Aged, 80 and over
- Chromosome Aberrations
- Disease Progression
- Female
- Flow Cytometry
- Humans
- Immunoglobulin Variable Region/genetics
- In Situ Hybridization, Fluorescence
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Middle Aged
- Mutation
- Prognosis
- Reverse Transcriptase Polymerase Chain Reaction
- Thymidine Kinase/blood
Collapse
|
48
|
Bilban M, Heintel D, Scharl T, Woelfel T, Auer MM, Porpaczy E, Kainz B, Kröber A, Carey VJ, Shehata M, Zielinski C, Pickl W, Stilgenbauer S, Gaiger A, Wagner O, Jäger U. Deregulated expression of fat and muscle genes in B-cell chronic lymphocytic leukemia with high lipoprotein lipase expression. Leukemia 2006; 20:1080-8. [PMID: 16617321 DOI: 10.1038/sj.leu.2404220] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lipoprotein lipase (LPL) is a prognostic marker in B-cell chronic lymphocytic leukemia (B-CLL) related to immunoglobulin V(H) gene (IgV(H))mutational status. We determined gene expression profiles using Affymetrix U133A GeneChips in two groups of B-CLLs selected for either high ('LPL+', n=10) or low ('LPL-', n=10) LPL mRNA expression. Selected genes were verified by real-time PCR in an extended patient cohort (n=42). A total of 111 genes discriminated LPL+ from LPL- B-CLLs. Of these, the top three genes associated with time to first treatment were Septin10, DMD and Gravin (P</=0.01). The relationship of LPL+ and LPL- B-CLL gene expression signatures to 52 tissues was statistically analyzed. The LPL+ B-CLL expression signature, represented by 64 genes was significantly related to fat, muscle and PB dendritic cells (P<0.001). Exploration of microarray data to define functional alterations related to the biology of LPL+ CLL identified two functional modules, fatty acid degradation and MTA3 signaling, as being altered with higher statistical significance. Our data show that LPL+ B-CLL cells have not only acquired gene expression changes in fat and muscle-associated genes but also in functional pathways related to fatty acid degradation and signaling which may ultimately influence CLL biology and clinical outcome.
Collapse
MESH Headings
- Cohort Studies
- Cytoskeletal Proteins/genetics
- Dystrophin/genetics
- Fatty Acids/genetics
- Fatty Acids/metabolism
- GTP Phosphohydrolases/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Leukemic
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Variable Region/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Lipoprotein Lipase/biosynthesis
- Lipoprotein Lipase/genetics
- Mutation
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Septins
Collapse
Affiliation(s)
- M Bilban
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Buhl AM, Jurlander J, Jørgensen FS, Ottesen AM, Cowland JB, Gjerdrum LM, Hansen BV, Leffers H. Identification of a gene on chromosome 12q22 uniquely overexpressed in chronic lymphocytic leukemia. Blood 2006; 107:2904-11. [PMID: 16339396 DOI: 10.1182/blood-2005-07-2615] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The pathogenesis of chronic lymphocytic leukemia (CLL) is unknown but may involve aberrant activation of signaling pathways. Somatic hypermutations in rearranged immunoglobulin heavy-chain (IgVH) genes allow a division of CLL patients into 2 categories: mutated IgVH genes are associated with an indolent disease, whereas unmutated IgVH genes define an aggressive form. Using differential display to compare gene expression in CLL cells with and without IgVH hypermutations, we identified a novel gene, CLL up-regulated gene 1 (CLLU1), that was highly up-regulated in CLL cells without IgVH hypermutations. CLLU1 mapped to chromosome 12q22, within a cluster of genes that are active in germinal center B cells. However, appreciable levels of CLLU1 were detectable only in CLL cells and not in a panel of normal tissue extracts or in any other tested hematologic malignancy. High expression of CLLU1 in CLL samples occurred irrespective of trisomy 12 or large chromosomal rearrangements. CLLU1 encodes 6 mRNAs with no sequence homology to any known gene, and most transcripts appear to be noncoding. Two transcripts, however, potentially encode a peptide with remarkable structural similarity to human interleukin 4. These data, in particular the unique and restricted expression pattern, suggest that CLLU1 is the first disease-specific gene identified in CLL.
Collapse
MESH Headings
- Chromosome Mapping
- Chromosomes, Human, Pair 12
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Variable Region/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Mutation
- Neoplasm Proteins/genetics
- RNA, Long Noncoding
Collapse
Affiliation(s)
- Anne Mette Buhl
- Department of Hematology, 4041, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, DK.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Coopman PJ, Mueller SC. The Syk tyrosine kinase: a new negative regulator in tumor growth and progression. Cancer Lett 2006; 241:159-73. [PMID: 16442709 DOI: 10.1016/j.canlet.2005.11.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 11/03/2005] [Accepted: 11/04/2005] [Indexed: 11/28/2022]
Abstract
The spleen tyrosine kinase Syk was long thought to be a hematopoietic cell-specific signaling molecule. Recent evidence demonstrated that it is also expressed by many non-hematopoietic cell types and that it plays a negative role in cancer. A significant drop in its expression was first observed during breast cancer progression, but an anomalous Syk expression has now also been evidenced in many other tumor types. Mechanistic studies using Syk re-expression demonstrated its suppressive function in tumorigenesis and metastasis formation, which is surprising for a tyrosine kinase. Loss of Syk expression is regulated, albeit not exclusively, by its promoter hypermethylation. The molecular mechanism of its tumor-suppressive function remains largely unknown; the identification of its activators and effectors in non-hematopoietic cells will be a challenge for the years to come. An increasing number of clinical studies reveal a correlation between reduced Syk expression and an increased risk for metastasis formation, and assign Syk as a potential new prognostic marker in different tumor types.
Collapse
Affiliation(s)
- Peter J Coopman
- CNRS UMR 5539, Université Montpellier 2, 34095 Montpellier, France.
| | | |
Collapse
|