1
|
Nobel H, Ofer J, Borenstein SF, Limon D, Gal O, Laviv Y, Kanner AA, Siegal T, Yust-Katz S, Benouaich-Amiel A. Long-term impact of bevacizumab for the treatment of brain radiation necrosis. J Neurooncol 2025; 173:289-296. [PMID: 40072807 DOI: 10.1007/s11060-025-04979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/13/2025] [Indexed: 03/14/2025]
Abstract
PURPOSE To evaluate short and long-term efficacy of bevacizumab (Bev), for the treatment of radiation necrosis (RN) in patients with brain metastasis after stereotactic radiosurgery (SRS). METHODS The database of a tertiary medical center was reviewed for all adult patients treated by Bev (from January 2018 to January 2023) for RN after having received SRS for BM. Clinical and MRI data were systematically collected at baseline, immediately after the completion of Bev treatment, and at 6, 12, and, when available, 24 months post-treatment. RESULTS The cohort included 23 patients with a total of 31 RN lesions (defined as target lesion) which have been previously treated by SRS, either as single-session SRS (27/31) or as fractionated stereotactic radiotherapy (4/31). Median follow-up time was 15 months (range: 8-28.5). Immediately after completion of Bev, 15 patients (65.2%) exhibited a complete/partial response, 6 (26.1%) had stable disease, and 2 had progressive disease (8.7%). thirteen patients (56%) improved clinically. Greater than 50% reduction in volume was observed in 84% of target lesions. At 12 months, among the 13 patients still evaluable (9 other being deceased, 1 loss to follow up), three continued to improve, and four remained stable. Median volume of target lesion was then 1.4 cm3 (range 0.7-2.9) demonstrating a reduction of 67.4% compared to the initial target volume, which was 4.35 cm3 (range 2.14-10.37). During the entire follow-up period, 11 patients experienced regrowth of the target lesion; median time to progression was 7 months. Five underwent Bev re-challenge, but only 2 responded. CONCLUSION Bev for the treatment of SRS-induced RN was associated with a high initial response rate, significant lesion reduction, and prolonged clinical improvement. However, the high rate of lesion regrowth (50%) and poor response to Bev re-challenge highlight the complexity of diagnosis and treatment of RN.
Collapse
Affiliation(s)
- Hila Nobel
- Institute of Oncology, Davidoff Cancer Center, Rabin Medical Center- Beilinson Hospital, 39 Jabotinsky Street, Petach Tikva, 4941492, Israel.
| | - Jonathan Ofer
- Institute of Oncology, Davidoff Cancer Center, Rabin Medical Center- Beilinson Hospital, 39 Jabotinsky Street, Petach Tikva, 4941492, Israel
| | - Sara Faye Borenstein
- Department of Radiology, Rabin Medical Center- Beilinson Hospital, Petach Tikva, Israel
| | - Dror Limon
- Radiation Oncology Unit, Davidoff Cancer Center, Rabin Medical Center- Beilinson Hospital, Petach Tikva, Israel
| | - Omer Gal
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Radiation Oncology Unit, Davidoff Cancer Center, Rabin Medical Center- Beilinson Hospital, Petach Tikva, Israel
| | - Yosef Laviv
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Neurosurgery, Rabin Medical Center- Beilinson Hospital, Petach Tikva, Israel
| | - Andrew A Kanner
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Neurosurgery, Rabin Medical Center- Beilinson Hospital, Petach Tikva, Israel
| | - Tali Siegal
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Neuro-Oncology Unit, Davidoff Cancer Center, Rabin Medical Center- Beilinson Hospital, Petach Tikva, Israel
- Hebrew University, Jerusalem, Israel
| | - Shlomit Yust-Katz
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Neuro-Oncology Unit, Davidoff Cancer Center, Rabin Medical Center- Beilinson Hospital, Petach Tikva, Israel
| | - Alexandra Benouaich-Amiel
- Neuro-Oncology Unit, Davidoff Cancer Center, Rabin Medical Center- Beilinson Hospital, Petach Tikva, Israel
| |
Collapse
|
2
|
Li X, Wu Y, Xie B, Xu M, Xie T, Yue W, Lin M, Lin Y, Chen Y. SPP1 Promotes NSCLC Brain Metastasis Via Sequestration of Ubiquitin Ligase RNF114 to Facilitate P85α Ubiquitination. Mol Carcinog 2025; 64:829-841. [PMID: 39918025 DOI: 10.1002/mc.23866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/04/2024] [Accepted: 12/02/2024] [Indexed: 04/12/2025]
Abstract
Brain metastasis (BM) is a significant factor contributing to the poor prognosis of patients with non-small cell lung cancer (NSCLC). Secreted phosphoprotein 1 (SPP1) is implicated in the progression and metastasis of several cancers. The role of SPP1 in NSCLC remains unclear, especially in NSCLC BM. This study aimed to identify genes associated with NSCLC BM and to investigate the involvement of SPP1 in NSCLC BM. Integrated genomic analysis was utilized to identify candidate genes in NSCLC. The expression levels of SPP1 were evaluated in NSCLC tissues and cell lines. In vitro and in vivo experiments were conducted to assess the effect of SPP1 on NSCLC cell behavior and BM. The potential mechanisms of SPP1 were demonstrated by CO-IP and liquid chromatography-mass spectrometry (LC-MS). The underlying mechanism involving the PI3K/AKT/mTOR pathway was explored. The results showed that SPP1 expression was upregulated in NSCLC tissues and cell lines. Depletion of SPP1 using shRNA inhibited cell proliferation, migration, and invasion in vitro and suppressed BM in vivo. Mechanistically, SPP1 facilitates the ubiquitination of P85α by interacting with the ubiquitin ligase RNF114, thus playing a role in regulating NSCLC BM through the PI3K/AKT/mTOR signaling pathway. Moreover, immunohistochemistry staining confirmed higher expression of SPP1 in NSCLC tissues with BM compared to those without BM. In summary, elevated SPP1 expression was associated with poor clinical outcomes in NSCLC patients. This study highlights the role of SPP1 as a regulator of cell metastasis and suggests its potential as a novel therapeutic target for BM in NSCLC.
Collapse
Affiliation(s)
- Xiaoqin Li
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Fujian Provincial Researching Laboratory of Respiratory Diseases, Fuzhou, China
| | - Yun Wu
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Baosong Xie
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Fujian Provincial Researching Laboratory of Respiratory Diseases, Fuzhou, China
| | - Mingxiao Xu
- Department of Infection Diseases, First Affiliated Hospital of Navy Military Medical University, Shanghai, China
| | - Tianjian Xie
- Xiapu County Hospital of Fujian Province, Ningde, China
| | - Wenxiang Yue
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Ming Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Ying Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, China
| | - Yusheng Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Fujian Provincial Researching Laboratory of Respiratory Diseases, Fuzhou, China
| |
Collapse
|
3
|
Waizman E, Dudnik E, Lavie I, Rotem O, Amiel A, Siegal T, Haim SE, Gal O, Limon D, Tschernichovsky R, Kanner AA, Laviv Y, Katz SY. The impact of brain MRI screening on stage IV NSCLC patients: A real world look at guidelines based care. J Neurol Sci 2025; 470:123398. [PMID: 39922142 DOI: 10.1016/j.jns.2025.123398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/15/2024] [Accepted: 01/18/2025] [Indexed: 02/10/2025]
Abstract
PURPOSE Brain metastases frequently occur in patients with non-small cell lung cancer (NSCLC) and are associated with poor prognosis and shortened overall survival, despite the advances in both imaging and therapeutic fields. Data are scarce regarding the utility of brain magnetic resonance imaging (MRI) screening in NSCLC patients. We aimed to characterize the impact of brain MRI screening on stage IV NSCLC patients and their survival. METHODS A retrospective analysis was performed in 609 newly-diagnosed patients with stage IV NSCLC treated at our center during 2019-2020. Patients with neurological symptoms at presentation were excluded (n = 230). The remaining 379 patients comprised the study group and were divided into two groups - those who underwent brain MRI screening within 12 weeks of diagnosis (n = 170), and those who did not (n = 209). The clinical data retrieved from patients' medical files included demographics, performance status (PS), brain metastases during follow-up, tumor molecular profiling, and oncology treatment. RESULTS Median survival among patients who underwent brain MRI screening was 24 months from diagnosis, versus 18 months for those who did not (p = 0.003). Among patients with good PS (ECOG 0-2), median OS was longer among patients who underwent screening MRI (25 months), versus those who did not (21 months) (p = 0.025). Among patients with low PS (ECOG 3-4), the between-group difference for OS did not reach statistical significance. CONCLUSIONS Our study supports the use of brain MRI screening among good PS patients diagnosed with stage IV NSCLC lung cancer. Brain MRI screening correlated with better survival among patients with good functional status in this patient population.
Collapse
Affiliation(s)
- Efraim Waizman
- Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | | | - Inbar Lavie
- Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel; Brain Tumor Center, Davidoff Cancer Center, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| | - Ofer Rotem
- Brain Tumor Center, Davidoff Cancer Center, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| | - Alexandra Amiel
- Brain Tumor Center, Davidoff Cancer Center, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| | - Tali Siegal
- Brain Tumor Center, Davidoff Cancer Center, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| | - Shaked Even Haim
- Brain Tumor Center, Davidoff Cancer Center, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| | - Omer Gal
- Brain Tumor Center, Davidoff Cancer Center, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| | - Dror Limon
- Brain Tumor Center, Davidoff Cancer Center, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| | - Roi Tschernichovsky
- Brain Tumor Center, Davidoff Cancer Center, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| | - Andrew A Kanner
- Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel; Brain Tumor Center, Davidoff Cancer Center, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| | - Yosef Laviv
- Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel; Brain Tumor Center, Davidoff Cancer Center, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| | - Shlomit Yust Katz
- Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel; Brain Tumor Center, Davidoff Cancer Center, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| |
Collapse
|
4
|
Chen H, Liu L, Xing G, Zhang D, A. N, Huang J, Li Y, Zhao G, Liu M. Exosome tropism and various pathways in lung cancer metastasis. Front Immunol 2025; 16:1517495. [PMID: 40028322 PMCID: PMC11868168 DOI: 10.3389/fimmu.2025.1517495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Lung cancer, characterized by its high morbidity and mortality rates, has the capability to metastasize to various organs, thereby amplifying its detrimental impact and fatality. The metastasis of lung cancer is a complex biological phenomenon involving numerous physiological transformations. Exosomes, small membranous vesicles enriched with biologically active components, are pivotal in mediating intercellular communication and regulating physiological functions due to their specificity and stability. Extensive research has elucidated the production and functions of exosomes in cancer contexts. Multitude of evidence demonstrates a strong association between lung cancer metastasis and exosomes. Additionally, the concept of the pre-metastatic niche is crucial in the metastatic process facilitated by exosomes. This review emphasizes the role of exosomes in mediating lung cancer metastasis and their impact on the disease's development and the progression to other tissues. Furthermore, it explores the potential of exosomes as biomarkers for lung cancer metastasis, offering significant insights for future clinical advancements.
Collapse
Affiliation(s)
- Hui Chen
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Lin Liu
- Department of Drug Dispensing, The Third Hospital of Mianyang, Sichuan Mental Health Center, MianYang, China
| | - Gang Xing
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Niumuqie A.
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jianlin Huang
- Department of Pharmacy, Luzhou Naxi District People’s Hospital, Luzhou, China
| | - Yaling Li
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ge Zhao
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Minghua Liu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Premachandran S, Shreshtha I, Venkatakrishnan K, Das S, Tan B. Detection of brain metastases from blood using Brain nanoMET sensor: Extracellular vesicles as a dynamic marker for metastatic brain tumors. Biosens Bioelectron 2025; 269:116968. [PMID: 39586755 DOI: 10.1016/j.bios.2024.116968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
Brain metastases account for a significant number of cancer-related deaths with poor prognosis and limited treatment options. Current diagnostic methods have limitations in resolution, sensitivity, inability to differentiate between primary and metastatic brain tumors, and invasiveness. Liquid biopsy is a promising non-invasive alternative; however, current approaches have shown limited efficacy for diagnosing brain metastases due to biomarker instability and low levels of detectable tumor-specific biomarkers. This study introduces an innovative liquid biopsy technique using extracellular vesicles (EVs) as a biomarker for brain metastases, employing the Brain nanoMET sensor. The sensor was fabricated through an ultrashort femtosecond laser ablation process and provides excellent surface-enhanced Raman Scattering functionality. We developed an in vitro model of metastatic tumors to understand the tumor microenvironment and secretomes influencing brain metastases from breast and lung cancers. Molecular profiling of EVs derived from brain-seeking metastatic tumors revealed unique, brain-specific signatures, which were also validated in the peripheral circulation of brain metastasis patients. Compared to primary brain tumor EVs, we also observed an upregulation of PD-L1 marker in the metastatic EVs. A machine learning model trained on these EV molecular profiles achieved 97% sensitivity in differentiating metastatic brain cancer from primary brain cancer, with 94% accuracy in predicting the primary tissue of origin for breast metastasis and 100% accuracy for lung metastasis. The results from this pilot validation suggest that this technique holds significant potential for improving metastasis diagnosis and targeted treatment strategies for brain metastases, addressing a critical unmet need in neuro-oncology.
Collapse
Affiliation(s)
- Srilakshmi Premachandran
- Institute for Biomedical Engineering, Science and Technology (iBEST), Partnership Between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Ishita Shreshtha
- Institute for Biomedical Engineering, Science and Technology (iBEST), Partnership Between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Krishnan Venkatakrishnan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), Partnership Between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Sunit Das
- St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada; Institute of Medical Sciences, Neurosurgery, University of Toronto, Toronto, Ontario, M5T 1P5, Canada
| | - Bo Tan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), Partnership Between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada; Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada.
| |
Collapse
|
6
|
Sambataro D, Gebbia V, Bonasera A, Quattrocchi AMO, Caputo G, Vinci E, Di Mattia P, Lavalle S, Pecorino B, Scandurra G, Scibilia G, Centonze D, Valerio MR. Brain Metastasis in Endometrial Cancer: A Systematic Review. Cancers (Basel) 2025; 17:402. [PMID: 39941769 PMCID: PMC11816136 DOI: 10.3390/cancers17030402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/06/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Brain metastases (BMs) from endometrial cancer (EC) are rare and challenging to treat, with limited standardized guidelines. This systematic review aims to evaluate the incidence, therapeutic strategies, and outcomes associated with brain metastases in EC patients, offering insights for clinical practice and future research. METHODS A comprehensive literature search was conducted using PRISMA guidelines, including PUBMED up to October 2024. Reports reporting individual or aggregate data on EC brain metastases were included. Descriptive and quantitative analyses were performed on incidence, treatment modalities, and survival outcomes. Three reports that used data from the Surveillance, Epidemiology, and End Results and National Cancer Database were used only to assess the incidence of brain metastases from endometrial carcinoma. RESULTS From 911 reports identified, we included 99 reports, identifying 594 cases; these and the case of a patient with brain metastasis from endometrial carcinoma followed at our center were used for analysis of disease characteristics; incidence; and treatment modalities, such as surgery, radiotherapy, chemotherapy, and combinations. Survival outcomes were influenced by treatment type and disease characteristics, with multimodal approaches showing improved outcomes. DISCUSSION This review underscores the rarity of EC brain metastases and highlights the need for tailored, multimodal treatment strategies. Future research should focus on prospective trials and molecular profiling to optimize management.
Collapse
Affiliation(s)
- Daniela Sambataro
- Medical Oncology Unit, Umberto I Hospital, 94100 Enna, Italy; (A.B.); (A.M.O.Q.); (G.C.); (E.V.)
- Department of Medicine and Surgery, Kore University, 94100 Enna, Italy; (V.G.); (P.D.M.); (S.L.); (B.P.); (G.S.); (G.S.)
| | - Vittorio Gebbia
- Department of Medicine and Surgery, Kore University, 94100 Enna, Italy; (V.G.); (P.D.M.); (S.L.); (B.P.); (G.S.); (G.S.)
| | - Annalisa Bonasera
- Medical Oncology Unit, Umberto I Hospital, 94100 Enna, Italy; (A.B.); (A.M.O.Q.); (G.C.); (E.V.)
| | | | - Giuseppe Caputo
- Medical Oncology Unit, Umberto I Hospital, 94100 Enna, Italy; (A.B.); (A.M.O.Q.); (G.C.); (E.V.)
| | - Ernesto Vinci
- Medical Oncology Unit, Umberto I Hospital, 94100 Enna, Italy; (A.B.); (A.M.O.Q.); (G.C.); (E.V.)
| | - Paolo Di Mattia
- Department of Medicine and Surgery, Kore University, 94100 Enna, Italy; (V.G.); (P.D.M.); (S.L.); (B.P.); (G.S.); (G.S.)
- Surgery Unit, Umberto I Hospital, 94100 Enna, Italy;
| | - Salvatore Lavalle
- Department of Medicine and Surgery, Kore University, 94100 Enna, Italy; (V.G.); (P.D.M.); (S.L.); (B.P.); (G.S.); (G.S.)
- Diagnostic Imaging Department, Umberto I Hospital, 94100 Enna, Italy
| | - Basilio Pecorino
- Department of Medicine and Surgery, Kore University, 94100 Enna, Italy; (V.G.); (P.D.M.); (S.L.); (B.P.); (G.S.); (G.S.)
- Gynecology and Obstetrics Unit, Umberto I Hospital, 94100 Enna, Italy
| | - Giuseppa Scandurra
- Department of Medicine and Surgery, Kore University, 94100 Enna, Italy; (V.G.); (P.D.M.); (S.L.); (B.P.); (G.S.); (G.S.)
- Medical Oncology Unit, Cannizzaro Hospital, 95126 Catania, Italy
| | - Giuseppe Scibilia
- Department of Medicine and Surgery, Kore University, 94100 Enna, Italy; (V.G.); (P.D.M.); (S.L.); (B.P.); (G.S.); (G.S.)
- Gynecology Unit, Giovanni Paolo II Hospital, 97100 Ragusa, Italy
| | | | | |
Collapse
|
7
|
He M, Wu X, Li L, Yi G, Wang Y, He H, Ye Y, Zhou R, Xu Z, Yang Z. Effects of EGFR-TKIs combined with intracranial radiotherapy in EGFR-mutant non-small cell lung cancer patients with brain metastases: a retrospective multi-institutional analysis. Radiat Oncol 2025; 20:6. [PMID: 39789554 PMCID: PMC11721249 DOI: 10.1186/s13014-024-02578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 12/29/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Patients with non-small cell lung cancer (NSCLC) are prone to developing brain metastases (BMs), particularly those with epidermal growth factor receptor (EGFR) mutations. In clinical practice, treatment-naïve EGFR-mutant NSCLC patients with asymptomatic BMs tend to choose EGFR-tyrosine kinase inhibitors (TKIs) as first-line therapy and defer intracranial radiotherapy (RT). However, the effectiveness of upfront intracranial RT remains unclear. METHODS This was a retrospective study including 217 patients from two institutions between January 2018 and December 2022. Clinical data of NSCLC patients with BMs who received EGFR-TKIs were collected. The patients were assigned to one of the three groups according to the therapeutic modality used: the upfront TKI + stereotactic radiosurgery (SRS) / fractionated stereotactic radiotherapy (fSRS) group (upfront TKI + SRS/fSRS ), the upfront TKI + whole-brain radiotherapy (WBRT) group (upfront TKI + WBRT) and the upfront TKI group. RESULTS As of March 8, 2023, the median follow-up duration was 37.3 months (95% CI, 32.5-42.1). The median overall survival (OS) for the upfront TKI + SRS/fSRS, upfront TKI + WBRT, and upfront TKI groups were 37.8, 20.7, and 24.1 months, respectively (p = 0.015). In subgroup analysis, the upfront TKI + SRS/fSRS group demonstrated longer OS compared to the upfront TKI + WBRT and upfront TKI groups in patients treated with first or second-generation EGFR-TKIs (p = 0.021) and patients with L858R mutation (p = 0.017), whereas no survival benefit was observed in three-generation EGFR-TKIs or 19del subgroup. In the multivariable analysis, metachronous BMs, EGFR L858R mutation and nonclassic EGFR mutation were identified as independent risk factors for OS, while a DS-GPA score of 2.0-4.0 was the only independent protective factor. CONCLUSIONS This study demonstrated that upfront addition of SRS/fSRS to EGFR-TKIs was associated with longer OS compared to upfront WBRT or upfront TKI alone in EGFR-mutant NSCLC patients with BMs. This improvement was more significant in patients with L858R mutation and those treated with first or second-generation EGFR-TKIs. Further research with a larger sample size is warranted.
Collapse
Affiliation(s)
- Mingfeng He
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Xue Wu
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Li Li
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guangming Yi
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, China
| | - Yitian Wang
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Hengqiu He
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Ying Ye
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruiqin Zhou
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zaicheng Xu
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Zhenzhou Yang
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
8
|
Masuda T, Tsubata Y, Hata K, Horie M, Kiura K, Kanaji N, Inoue T, Kodani M, Yanai M, Yamaguchi K, Matsumoto N, Yamasaki M, Ishikawa N, Masuda K, Takigawa N, Kuyama S, Kubota T, Nishii K, Hotta K, Hattori N. Efficacy of immune checkpoint inhibitors according to programmed cell death-ligand 1 expression in patients with non-small cell lung cancer and brain metastasis: A real-world prospective observational study. Thorac Cancer 2024; 15:2408-2417. [PMID: 39415454 PMCID: PMC11609048 DOI: 10.1111/1759-7714.15469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/08/2024] [Accepted: 09/29/2024] [Indexed: 10/18/2024] Open
Abstract
INTRODUCTION Studies have shown the antitumor efficacy of immune checkpoint inhibitors (ICI) in patients with non-small cell lung cancer (NSCLC) and brain metastases (BM). However, it is unclear whether the efficacy of ICI is similar between patients with and without BM. It is yet unclear whether the efficacy of ICI in patients with BM increases with higher levels of programmed cell death-ligand 1 (PD-L1) expression, as observed in patients without BM. METHODS We compared the outcomes of ICI treatment between patients with and without BM using a cohort containing 1741 prospectively enrolled patients with lung cancer. We investigated whether there were differences in the outcomes of ICI based on PD-L1 expression levels between these patients. RESULTS We enrolled 240 patients with NSCLC with or without BM who were treated with ICI or both chemotherapy and ICI. There were no significant differences in overall survival (OS) between all patients with or without BM (p = 0.489). However, OS was significantly shorter in patients with BM than in those without in the PD-L1 ≥ 50% group (16.5 M vs. 30.6 M, p = 0.003) but not in the PD-L1 ≥ 1% or negative group. BM was an independent poor prognostic factor for OS (hazard ratio: [95% confidence interval], 2.045; [1.058-3.953], p = 0.033) in the PD-L1 ≥ 50% group. CONCLUSION Our study indicated that the outcomes of patients with or without BM treated with ICI were not significantly different. The efficacy of ICI in patients with PD-L1 expression ≥50% would be lower in patients with BM than in those without.
Collapse
Affiliation(s)
- Takeshi Masuda
- Department of Respiratory MedicineHiroshima University HospitalHiroshimaJapan
| | - Yukari Tsubata
- Department of Internal Medicine, Division of Medical Oncology and Respiratory Medicine, Faculty of MedicineShimane UniversityIzumoJapan
| | - Kojirou Hata
- Department of Internal Medicine, Division of Medical Oncology and Respiratory Medicine, Faculty of MedicineShimane UniversityIzumoJapan
| | - Mika Horie
- Department of Internal Medicine, Division of Medical Oncology and Respiratory Medicine, Faculty of MedicineShimane UniversityIzumoJapan
| | - Katsuyuki Kiura
- Department of Allergy and Respiratory MedicineOkayama University HospitalOkayamaJapan
| | - Nobuhiro Kanaji
- Department of Internal Medicine, Division of Hematology, Rheumatology and Respiratory Medicine, Faculty of MedicineKagawa UniversityKita‐gunJapan
| | - Takuya Inoue
- Department of Internal Medicine, Division of Hematology, Rheumatology and Respiratory Medicine, Faculty of MedicineKagawa UniversityKita‐gunJapan
| | - Masahiro Kodani
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of MedicineTottori UniversityYonagoJapan
| | - Masaaki Yanai
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of MedicineTottori UniversityYonagoJapan
| | - Kakuhiro Yamaguchi
- Department of Respiratory MedicineHiroshima University HospitalHiroshimaJapan
| | - Naoko Matsumoto
- Department of Respiratory MedicineHiroshima Red Cross Hospital and Atomic‐Bomb Survivors HospitalHiroshimaJapan
| | - Masahiro Yamasaki
- Department of Respiratory MedicineHiroshima Red Cross Hospital and Atomic‐Bomb Survivors HospitalHiroshimaJapan
| | - Nobuhisa Ishikawa
- Department of Respiratory MedicineHiroshima Prefectural HospitalHiroshimaJapan
| | - Ken Masuda
- Department of Respiratory MedicineHiroshima Prefectural HospitalHiroshimaJapan
| | - Nagio Takigawa
- General Internal Medicine 4Kawasaki Medical SchoolOkayamaJapan
| | - Shoichi Kuyama
- Department of Respiratory MedicineNational Hospital Organization Iwakuni Clinical CenterYamaguchiJapan
| | - Tetsuya Kubota
- Department of Respiratory Medicine and AllergologyKochi University HospitalNankokuJapan
| | - Kazuya Nishii
- Department of Respiratory MedicineNational Hospital Organization Iwakuni Clinical CenterYamaguchiJapan
| | - Katsuyuki Hotta
- Center for Innovative Clinical MedicineOkayama University HospitalOkayamaJapan
| | - Noboru Hattori
- Department of Respiratory MedicineHiroshima University HospitalHiroshimaJapan
| |
Collapse
|
9
|
Hoelzl F, Koelbl O, Gruber I. Is Whole-Brain Radiotherapy for Brain Metastases an Overestimated Therapy? A Retrospective Study of Real-World Data Using Landmark Analyses. Cancer Med 2024; 13:e70522. [PMID: 39704385 DOI: 10.1002/cam4.70522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND The role of whole-brain radiotherapy for patients with brain metastases is changing as immunotherapy and molecularly targeted therapies advance. However, whole-brain radiotherapy continues to be part of the multimodal concept. METHODS This retrospective study included 285 patients who received whole-brain radiotherapy for brain metastases, using a median dose of 30 Gy. The study analyzed prognostic factors for survival using Cox regression analyses, while two landmark analyses, reflecting a minimum survival of 60 and 90 days, accounted for early deaths. Neurological symptoms were compared before and after treatment using the McNemar test. RESULTS The median patient age was 62 years. Non-small cell lung cancer (n = 95), breast cancer (n = 53), and small cell lung cancer (n = 48) were the most frequent cancer types. Median survival was 4.3 months (interquartile range 1.8-11.1). In the multivariable Cox regression model, patients who received additional immunotherapy/molecularly targeted therapy had a higher chance of survival than others. Overall survival was influenced by control of primary cancer, extracranial metastases, age, Karnofsky performance status, and number of brain metastases. The 90-day landmark analysis included 181 patients who survived at least 90 days, reflecting that 104 patients (36.5%) died within the first 90 days. The 90-day landmark analysis confirmed all predictive variables for survival. Patients who died before the 90-day landmark endpoint had more brain metastases, lower Karnofsky performance status, higher age, and were less frequently treated with immunotherapy/molecularly targeted therapy than those surviving at least 90 days. The treatment significantly improved neurological symptoms. CONCLUSION These results indicate an insufficient patient selection, as one-third of patients treated with whole-brain radiotherapy died within 90 days. However, neurological symptoms improved, and the addition of immunotherapy and/or molecularly targeted therapy to whole-brain radiotherapy was associated with better survival. Patients receiving whole-brain irradiation should be more carefully selected. TRIAL REGISTRATION ClinicalTrials: 24-3626-104.
Collapse
Affiliation(s)
| | - Oliver Koelbl
- Department of Radiation Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Isabella Gruber
- Department of Radiation Oncology, University Hospital of Regensburg, Regensburg, Germany
| |
Collapse
|
10
|
Rijmers J, Sparidans RW, Acda M, Loos NHC, Epeslidou E, Bui V, Lebre MC, Tibben M, Beijnen JH, Schinkel AH. Brain Exposure to the Macrocyclic ALK Inhibitor Zotizalkib is Restricted by ABCB1, and Its Plasma Disposition is Affected by Mouse Carboxylesterase 1c. Mol Pharm 2024; 21:5159-5170. [PMID: 39312722 DOI: 10.1021/acs.molpharmaceut.4c00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Zotizalkib (TPX-0131), a fourth-generation macrocyclic anaplastic lymphoma kinase (ALK) inhibitor, is designed to overcome resistance due to secondary ALK mutations in non-small cell lung cancer (NSCLC). We here evaluated the pharmacokinetic roles of the ABCB1 (P-gp/MDR1) and ABCG2 (BCRP) efflux transporters, OATP1 influx transporters and the metabolizing enzymes CES1 and CYP3A in plasma and tissue disposition of zotizalkib after oral administration in relevant mouse models. Zotizalkib was efficiently transported by hABCB1 in vitro. In vivo, a significant ∼9-fold higher brain-to-plasma ratio was observed in Abcb1a/b-/- and Abcb1a/b;Abcg2-/- compared to wild-type mice. No change in brain disposition was observed in Abcg2-/- mice, suggesting that mAbcb1a/b markedly restricts the brain accumulation of zotizalkib. ABCB1-mediated efflux of zotizalkib was completely inhibited by elacridar, a dual ABCB1/ABCG2 inhibitor, increasing brain exposure without any signs of acute CNS-related toxicities. In Oatp1a/b-/- mice, no marked changes in plasma exposure or tissue-to-plasma ratios were observed, indicating that zotizalkib is not a substantial in vivo substrate for mOatp1a/b. Zotizalkib may further be metabolized by CYP3A4 but only noticeably at low plasma concentrations. In Ces1-/- mice, a 2.5-fold lower plasma exposure was seen compared to wild-type, without alterations in tissue distribution. This suggests increased plasma retention of zotizalkib by binding to the abundant mouse plasma Ces1c. Notably, the hepatic expression of human CES1 did not affect zotizalkib plasma exposure or tissue distribution. The obtained pharmacokinetic insights may be useful for the further development and optimization of therapeutic efficacy and safety of zotizalkib and related compact macrocyclic ALK inhibitors.
Collapse
MESH Headings
- Animals
- Mice
- Brain/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors
- Anaplastic Lymphoma Kinase/antagonists & inhibitors
- Anaplastic Lymphoma Kinase/metabolism
- Anaplastic Lymphoma Kinase/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B/genetics
- Mice, Knockout
- Male
- Cytochrome P-450 CYP3A/metabolism
- Cytochrome P-450 CYP3A/genetics
- Humans
- Tissue Distribution
- Carboxylic Ester Hydrolases/metabolism
- Carboxylic Ester Hydrolases/genetics
- Carboxylic Ester Hydrolases/antagonists & inhibitors
- Carboxylesterase/metabolism
- Carboxylesterase/antagonists & inhibitors
- Carboxylesterase/genetics
- Administration, Oral
- Organic Anion Transport Protein 1/metabolism
- Organic Anion Transport Protein 1/genetics
- Organic Anion Transport Protein 1/antagonists & inhibitors
- Protein Kinase Inhibitors/pharmacokinetics
- Protein Kinase Inhibitors/pharmacology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/metabolism
Collapse
Affiliation(s)
- Jamie Rijmers
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Rolf W Sparidans
- Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht University, Utrecht 3584 CS, The Netherlands
| | - Manon Acda
- Division of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Nancy H C Loos
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Emmanouela Epeslidou
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Viët Bui
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Maria C Lebre
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Matthijs Tibben
- Division of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Jos H Beijnen
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
- Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht University, Utrecht 3584 CS, The Netherlands
- Division of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Alfred H Schinkel
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
11
|
Tang X, Li Y, Qian WL, Han PL, Yan WF, Yang ZG. Enhancing intracranial efficacy prediction of osimertinib in non-small cell lung cancer: a novel approach through brain MRI radiomics. Front Neurol 2024; 15:1399983. [PMID: 39281414 PMCID: PMC11395019 DOI: 10.3389/fneur.2024.1399983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction Osimertinib, a third-generation EGFR-TKI, is known for its high efficacy against brain metastases (BM) in non-small cell lung cancer (NSCLC) due to its ability to penetrate the blood-brain barrier. This study aims to evaluate the use of brain MRI radiomics in predicting the intracranial efficacy to osimertinib in NSCLC patients with BM. Materials and methods This study analyzed 115 brain metastases from NSCLC patients with the EGFR-T790M mutation treated with second-line osimertinib. The primary endpoint was intracranial response, and the secondary endpoint was intracranial progression-free survival (iPFS). We performed tumor delineation, image preprocessing, and radiomics feature extraction. Using a 5-fold cross-validation strategy, we built radiomic models with eight feature selectors and eight machine learning classifiers. The models' performance was evaluated by the area under the receiver operating characteristic curve (AUC), calibration curves, and decision curve analysis. Results The dataset of 115 brain metastases was divided into training and validation sets in a 7:3 ratio. The radiomic model utilizing the mRMR feature selector and stepwise logistic regression classifier showed the highest predictive accuracy, with AUCs of 0.879 for the training cohort and 0.786 for the validation cohort. This model outperformed a clinical-MRI morphological model, which included age, ring enhancement, and peritumoral edema (AUC: 0.794 for the training cohort and 0.697 for the validation cohort). The radiomic model also showed strong performance in calibration and decision curve analyses. Using a radiomic-score threshold of 199, patients were classified into two groups with significantly different median iPFS (3.0 months vs. 15.4 months, p < 0.001). Conclusion This study demonstrates that MRI radiomics can effectively predict the intracranial efficacy of osimertinib in NSCLC patients with brain metastases. This approach holds promise for assisting clinicians in personalizing treatment strategies.
Collapse
Affiliation(s)
- Xin Tang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wen-Lei Qian
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Pei-Lun Han
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei-Feng Yan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Goulenko V, Madhugiri VS, Bregy A, Recker M, Lipinski L, Fabiano A, Fenstermaker R, Plunkett R, Abad A, Belal A, Alberico R, Qiu J, Prasad D. Histopathological correlation of brain tumor recurrence vs. radiation effect post-radiosurgery as detected by MRI contrast clearance analysis: a validation study. J Neurooncol 2024; 168:547-553. [PMID: 38748050 DOI: 10.1007/s11060-024-04697-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 06/20/2024]
Abstract
PURPOSE The differentiation between adverse radiation effects (ARE) and tumor recurrence or progression (TRP) is a major decision-making point in the follow-up of patients with brain tumors. The advent of immunotherapy, targeted therapy and radiosurgery has made this distinction difficult to achieve in several clinical situations. Contrast clearance analysis (CCA) is a useful technique that can inform clinical decisions but has so far only been histologically validated in the context of high-grade gliomas. METHODS This is a series of 7 patients, treated between 2018 and 2023, for various brain pathologies including brain metastasis, atypical meningioma, and high-grade glioma. MRI with contrast clearance analysis was used to inform clinical decisions and patients underwent surgical resection as indicated. The histopathology findings were compared with the CCA findings in all cases. RESULTS All seven patients had been treated with gamma knife radiosurgery and were followed up with periodic MR imaging. All patients underwent CCA when the necessity to distinguish tumor recurrence from radiation necrosis arose, and subsequently underwent surgery as indicated. Concordance of CCA findings with histological findings was found in all cases (100%). CONCLUSIONS Based on prior studies on GBM and the surgical findings in our series, delayed contrast extravasation MRI findings correlate well with histopathology across a wide spectrum of brain tumor pathologies. CCA can provide a quick diagnosis and have a direct impact on patients' treatment and outcomes.
Collapse
Affiliation(s)
- Victor Goulenko
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | - Amade Bregy
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA
| | - Matthew Recker
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA
| | - Lindsay Lipinski
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Andrew Fabiano
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Robert Fenstermaker
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Robert Plunkett
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA
| | - Ajay Abad
- Department of Neuro-oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Ahmed Belal
- Department of Diagnostic Imaging, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Ronald Alberico
- Department of Diagnostic Imaging, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jingxin Qiu
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Dheerendra Prasad
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
- Department of Neurosurgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA.
- Department of Neuro-oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
- Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, 14203, Buffalo, NY, USA.
| |
Collapse
|
13
|
Wang M, Ma Y, Li L, Pan X, Wen Y, Qiu Y, Guo D, Zhu Y, Lian J, Tong D. Compressed Sensitivity Encoding Artificial Intelligence Accelerates Brain Metastasis Imaging by Optimizing Image Quality and Reducing Scan Time. AJNR Am J Neuroradiol 2024; 45:444-452. [PMID: 38485196 PMCID: PMC11288577 DOI: 10.3174/ajnr.a8161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/25/2023] [Indexed: 04/10/2024]
Abstract
BACKGROUND AND PURPOSE Accelerating the image acquisition speed of MR imaging without compromising the image quality is challenging. This study aimed to evaluate the feasibility of contrast-enhanced (CE) 3D T1WI and CE 3D-FLAIR sequences reconstructed with compressed sensitivity encoding artificial intelligence (CS-AI) for detecting brain metastases (BM) and explore the optimal acceleration factor (AF) for clinical BM imaging. MATERIALS AND METHODS Fifty-one patients with cancer with suspected BM were included. Fifty participants underwent different customized CE 3D-T1WI or CE 3D-FLAIR sequence scans. Compressed SENSE encoding acceleration 6 (CS6), a commercially available standard sequence, was used as the reference standard. Quantitative and qualitative methods were used to evaluate image quality. The SNR and contrast-to-noise ratio (CNR) were calculated, and qualitative evaluations were independently conducted by 2 neuroradiologists. After exploring the optimal AF, sample images were obtained from 1 patient by using both optimized sequences. RESULTS Quantitatively, the CNR of the CS-AI protocol for CE 3D-T1WI and CE 3D-FLAIR sequences was superior to that of the CS protocol under the same AF (P < .05). Compared with reference CS6, the CS-AI groups had higher CNR values (all P < .05), with the CS-AI10 scan having the highest value. The SNR of the CS-AI group was better than that of the reference for both CE 3D-T1WI and CE 3D-FLAIR sequences (all P < .05). Qualitatively, the CS-AI protocol produced higher image quality scores than did the CS protocol with the same AF (all P < .05). In contrast to the reference CS6, the CS-AI group showed good image quality scores until an AF of up to 10 (all P < .05). The CS-AI10 scan provided the optimal images, improving the delineation of normal gray-white matter boundaries and lesion areas (P < .05). Compared with the reference, CS-AI10 showed reductions in scan time of 39.25% and 39.93% for CE 3D-T1WI and CE 3D-FLAIR sequences, respectively. CONCLUSIONS CE 3D-T1WI and CE 3D-FLAIR sequences reconstructed with CS-AI for the detection of BM may provide a more effective alternative reconstruction approach than CS. CS-AI10 is suitable for clinical applications, providing optimal image quality and a shortened scan time.
Collapse
Affiliation(s)
- Mengmeng Wang
- From the Department of Radiology (M.W., Y.M., L.L., X.P., Y.W., Y.Q., D.G., D.T.), The First Hospital of Jilin University, Changchun, China
| | - Yue Ma
- From the Department of Radiology (M.W., Y.M., L.L., X.P., Y.W., Y.Q., D.G., D.T.), The First Hospital of Jilin University, Changchun, China
| | - Linna Li
- From the Department of Radiology (M.W., Y.M., L.L., X.P., Y.W., Y.Q., D.G., D.T.), The First Hospital of Jilin University, Changchun, China
| | - Xingchen Pan
- From the Department of Radiology (M.W., Y.M., L.L., X.P., Y.W., Y.Q., D.G., D.T.), The First Hospital of Jilin University, Changchun, China
| | - Yafei Wen
- From the Department of Radiology (M.W., Y.M., L.L., X.P., Y.W., Y.Q., D.G., D.T.), The First Hospital of Jilin University, Changchun, China
| | - Ying Qiu
- From the Department of Radiology (M.W., Y.M., L.L., X.P., Y.W., Y.Q., D.G., D.T.), The First Hospital of Jilin University, Changchun, China
| | - Dandan Guo
- From the Department of Radiology (M.W., Y.M., L.L., X.P., Y.W., Y.Q., D.G., D.T.), The First Hospital of Jilin University, Changchun, China
| | - Yi Zhu
- Philips Healthcare (Y.Z., J.L., D.T.), Beijing, China
| | - Jianxiu Lian
- Philips Healthcare (Y.Z., J.L., D.T.), Beijing, China
| | - Dan Tong
- From the Department of Radiology (M.W., Y.M., L.L., X.P., Y.W., Y.Q., D.G., D.T.), The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Laskowski M, Błaszczyk B, Setlak M, Kuca M, Lech A, Kłos K, Rudnik A. Assessment of Radiation Dosage to the Hippocampi during Treatment of Multiple Brain Metastases Using Gamma Knife Therapy. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:246. [PMID: 38399534 PMCID: PMC10889917 DOI: 10.3390/medicina60020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/15/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024]
Abstract
Background and Objectives: Brain metastases (BMs) pose significant clinical challenges in systemic cancer patients. They often cause symptoms related to brain compression and are typically managed with multimodal therapies, such as surgery, chemotherapy, whole brain radiotherapy (WBRT), and stereotactic radiosurgery (SRS). With modern oncology treatments prolonging survival, concerns about the neurocognitive side effects of BM treatments are growing. WBRT, though widely used for multiple BMs, has recognized neurocognitive toxicity. SRS, particularly Gamma Knife (GK) therapy, offers a minimally invasive alternative with fewer side effects, suitable for patients with a quantifiable number of metastases and better prognoses. Materials and Methods: A retrospective analysis was conducted on 94 patients with multiple BMs treated exclusively with GK at an academic medical center. Patients with prior WBRT were excluded. This study focused on the mean radiation dose received by the hippocampal area, estimated according to the 'Hippocampal Contouring: A Contouring Atlas for RTOG 0933' guidelines. Results: The precision of GK equipment results in mean doses of radiation that are lower than those suggested by RTOG 0933 and observed in other studies. This precision may help mitigate cognitive dysfunction and other side effects of hippocampal irradiation. Conclusions: GK therapy facilitates the administration of smaller, safer radiation doses to the hippocampi, which is advantageous even for lesions in the temporal lobe. It is feasible to treat multiple metastases, including cases with more than 10, but it is typically reserved for patients with fewer metastases, with an average of 3 in this study. This underlines GK's potential for reducing adverse effects while managing BMs effectively.
Collapse
Affiliation(s)
- Maciej Laskowski
- Student Scientific Society, Department of Neurosurgery, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Bartłomiej Błaszczyk
- Department of Neurosurgery, University Clinical Center, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
- Exira Gamma Knife, 40-952 Katowice, Poland
| | - Marcin Setlak
- Department of Neurosurgery, University Clinical Center, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Maciej Kuca
- Student Scientific Society, Department of Neurosurgery, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | | | - Kamil Kłos
- Student Scientific Society, Department of Neurosurgery, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Adam Rudnik
- Department of Neurosurgery, University Clinical Center, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
15
|
Floyd W, Carpenter D, Vaios E, Shenker R, Hendrickson P, Adamson JD, Giles WM, Wang C, Allen K, Mullikin T, Floyd SR, Kirkpatrick JP, Green M, Reitman ZJ. Effects of Ataxia-Telangiectasia Mutated Variants on Radionecrosis and Local Control After Stereotactic Radiation Surgery for Non-Small Cell Lung Cancer Brain Metastases. Adv Radiat Oncol 2024; 9:101320. [PMID: 38260227 PMCID: PMC10801648 DOI: 10.1016/j.adro.2023.101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 07/13/2023] [Indexed: 01/24/2024] Open
Abstract
Purpose Genetic variants affecting the radiation response protein ataxia-telangiectasia mutated (ATM) have been associated with increased adverse effects of radiation but also with improved local control after conventional radiation therapy. However, it is unknown whether ATM variants affect rates of radionecrosis (RN) and local intracranial progression (LIP) after stereotactic radiosurgery (SRS) for brain metastases. Methods and Materials Patients undergoing an initial course of SRS for non-small cell lung cancer (NSCLC) brain metastases at a single institution were retrospectively identified. Kaplan-Meier estimates were calculated and Cox proportional hazards testing was performed based on ATM variant status. Results A total of 541 patients completed SRS for brain metastasis secondary to NSCLC, of whom 260 completed molecular profiling. Variants of ATM were identified in 36 cases (13.8%). Among patients who completed molecular profiling, RN incidence was 4.9% (95% CI, 1.6%-8.2%) at 6 months and 9.9% (95% CI, 4.8%-15.0%) at 12 months. Incidence of RN was not significantly increased among patients with ATM variants, with an RN incidence of 5.3% (95% CI, 0.0%-15.3%) at both 6 and 12 months (P = .46). For all patients who completed genomic profiling, LIP was 5.4% (95% CI, 2.4%-8.4%) at 6 months and 9.8% (5.5%-14.1%) at 12 months. A significant improvement in LIP was not detected among patients with ATM variants, with an LIP incidence of 3.1% (0.0%-9.1%) at both 6 and 12 months (P = .26). Although differences according to ATM variant type (pathologic variant or variant of unknown significance) did not reach significance, no patients with ATM pathologic variants experienced LIP. Conclusions We did not detect significant associations between ATM variant status and RN or LIP after SRS for NSCLC brain metastases. The current data set allows estimation of patient cohort sizes needed to power future investigations to identify genetic variants that associate with significant differences in outcomes after SRS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Michelle Green
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Zachary J. Reitman
- Department of Radiation Oncology
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
16
|
Chyrmang D, Devi YS, Baidya K, Singh LJ, Nongrum DL, Devi ND. A comparative study of whole brain radiotherapy with concomitant thalidomide versus whole brain radiotherapy alone in brain metastases. J Cancer Res Ther 2024; 20:255-260. [PMID: 38554330 DOI: 10.4103/jcrt.jcrt_1724_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/21/2022] [Indexed: 04/01/2024]
Abstract
BACKGROUND Brain metastasis increases morbidity and mortality in cancer patients. This study was undertaken to compare tumor response and treatment-related toxicities in patients treated with orally administered thalidomide concomitantly with whole brain radiotherapy to whole brain radiotherapy alone in brain metastases. METHODS This randomized control trial was conducted in radiation oncology department, RIMS among 42 patients of brain metastases distributed in two study arms during the period August 2018 to July 2020. Twenty patients in Arm-A received whole brain radiotherapy to a dose of 3,750 cGy in 15 fractions with concomitant oral thalidomide 200 mg daily in first week and 400 mg/day from second week of radiation onward till the end of radiotherapy, whereas 20 patients of Arm-B received whole brain radiation of 3,750 cGy in 15 fractions alone. RESULTS Patient characteristics were comparable. Median central nervous system progression free survival was 2 months for Arm-A and 3 months for Arm-B, whereas median overall survival study was 4 months for Arm-A and 3 months for Arm-B. Overall response rate in Arm-A was 56% and in Arm-B was 44%. Treatment-related toxicities were more in arm-A but were manageable. CONCLUSION Addition of thalidomide to whole brain radiotherapy makes no significant difference. Though not statistically significant, but still, Arm-A had shown some percentage benefits. Further studies with larger sample sizes should be done.
Collapse
Affiliation(s)
- Deiwakor Chyrmang
- Department of Radiation Oncology, NEIGRIHMS, Shillong, Meghalaya, India
| | | | - Kishalay Baidya
- Department of Radiation Oncology, RIMS, Imphal, Manipur, India
| | | | | | | |
Collapse
|
17
|
Tsakonas G, Ekman S, Koulouris A, Adderley H, Ackermann CJ, Califano R. Safety and efficacy of immune checkpoint blockade in patients with advanced nonsmall cell lung cancer and brain metastasis. Int J Cancer 2023; 153:1556-1567. [PMID: 37334528 DOI: 10.1002/ijc.34628] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/12/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023]
Abstract
The presence of brain metastases (BM) is a negative prognostic factor for patients with advanced nonsmall cell lung cancer (NSCLC). Their incidence seems to be higher in patients with oncogene-driven tumours, especially those with EGFR-mutated or ALK-rearranged tumours. Although targeted treatments demonstrate significant efficacy regarding BM, they only apply to a minority of NSCLC patients. On the other hand, systemic therapies for nononcogenic-driven NSCLC with BM have shown limited clinical benefit. In recent years, immunotherapy alone or combined with chemotherapy has been adopted as a new standard of care in first-line therapy. This approach seems to be beneficial to patients with BM in terms of efficacy and toxicity. Combined immune checkpoint inhibition as well as the combination of immunotherapy and radiation therapy show promising results with significant, but overall acceptable toxicity. A pragmatic approach of allowing enrolment of patients with untreated or symptomatic BM in randomised trials evaluating immune checkpoint inhibitors strategies, possibly coupled with central nervous system-related endpoints may be needed to generate data to refine treatment for this patient population.
Collapse
Affiliation(s)
- Georgios Tsakonas
- Department of Oncology-Pathology, Karolinska Institutet/Thoracic Oncology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Simon Ekman
- Department of Oncology-Pathology, Karolinska Institutet/Thoracic Oncology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Andreas Koulouris
- Department of Oncology-Pathology, Karolinska Institutet/Thoracic Oncology Center, Karolinska University Hospital, Stockholm, Sweden
- Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Helen Adderley
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | | | - Raffaele Califano
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Department of Medical Oncology, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
18
|
Lin J, Kaiser Y, Wiestler B, Bernhardt D, Combs SE, Delbridge C, Meyer B, Gempt J, Aftahy AK. Cytoreduction of Residual Tumor Burden Is Decisive for Prolonged Survival in Patients with Recurrent Brain Metastases-Retrospective Analysis of 219 Patients. Cancers (Basel) 2023; 15:5067. [PMID: 37894435 PMCID: PMC10605169 DOI: 10.3390/cancers15205067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Despite advances in treatment for brain metastases (BMs), the prognosis for recurrent BMs remains poor and requires further research to advance clinical management and improve patient outcomes. In particular, data addressing the impact of tumor volume and surgical resection with regard to survival remain scarce. METHODS Adult patients with recurrent BMs between December 2007 and December 2022 were analyzed. A distinction was made between operated and non-operated patients, and the residual tumor burden (RTB) was determined by using (postoperative) MRI. Survival analysis was performed and RTB cutoff values were calculated using maximally selected log-rank statistics. In addition, further analyses on systemic tumor progression and (postoperative) tumor therapy were conducted. RESULTS In total, 219 patients were included in the analysis. Median age was 60 years (IQR 52-69). Median preoperative tumor burden was 2.4 cm3 (IQR 0.8-8.3), and postoperative tumor burden was 0.5 cm3 (IQR 0.0-2.9). A total of 95 patients (43.4%) underwent surgery, and complete cytoreduction was achieved in 55 (25.1%) patients. Median overall survival was 6 months (IQR 2-10). Cutoff RTB in all patients was 0.12 cm3, showing a significant difference (p = 0.00029) in overall survival (OS). Multivariate analysis showed preoperative KPSS (HR 0.983, 95% CI, 0.967-0.997, p = 0.015), postoperative tumor burden (HR 1.03, 95% CI 1.008-1.053, p = 0.007), and complete vs. incomplete resection (HR 0.629, 95% CI 0.420-0.941, p = 0.024) as significant. Longer survival was significantly associated with surgery for recurrent BMs (p = 0.00097), and additional analysis demonstrated the significant effect of complete resection on survival (p = 0.0027). In the subgroup of patients with systemic progression, a cutoff RTB of 0.97 cm3 (p = 0.00068) was found; patients who had received surgery also showed prolonged OS (p = 0.036). Single systemic therapy (p = 0.048) and the combination of radiotherapy and systemic therapy had a significant influence on survival (p = 0.036). CONCLUSIONS RTB is a strong prognostic factor for survival in patients with recurrent BMs. Operated patients with recurrent BMs showed longer survival independent of systemic progression. Maximal cytoreduction should be targeted to achieve better long-term outcomes.
Collapse
Affiliation(s)
- Jonas Lin
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | - Yannik Kaiser
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | - Benedikt Wiestler
- Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | - Denise Bernhardt
- Department of Radiation Oncology, School of Medicine, Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany
| | - Stephanie E. Combs
- Department of Radiation Oncology, School of Medicine, Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany
- Department of Radiation Sciences (DRS) Helmholtz Zentrum Munich, Institute of Innovative Radiotherapy (iRT), 81675 Munich, Germany
| | - Claire Delbridge
- Department of Neuropathology, Institute of Pathology, School of Medicine, Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | - Jens Gempt
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Amir Kaywan Aftahy
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
| |
Collapse
|
19
|
Kim J, Kim TG, Park B, Kim H, Song YG, Lee HW, Kim YZ, Ji JH, Kim SH, Kim SM, Lee JH, Kim H. Dosimetric comparison between RapidArc and HyperArc in hippocampal-sparing whole-brain radiotherapy with a simultaneous integrated boost. Med Dosim 2023; 49:69-76. [PMID: 37718172 DOI: 10.1016/j.meddos.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023]
Abstract
The HyperArc technique is known for generating high-quality radiosurgical treatment plans for intracranial lesions or hippocampal-sparing whole-brain radiotherapy (WBRT). However, there is no reported feasibility of using the HyperArc technique in hippocampal-sparing WBRT with a simultaneous integrated boost (SIB). This study aimed to compare dosimetric parameters of 2 commercially-available volumetric-modulated arc radiotherapy techniques, HyperArc and RapidArc, when using hippocampal-sparing WBRT with a SIB to treat brain metastases. Treatment plans using HyperArc and RapidArc techniques were generated retrospectively for 19 previously treated patients (1 to 3 brain metastases). The planning target volumes for the whole brain (excluding the hippocampal avoidance region; PTVWB) and metastases (PTVmet) were prescribed 25 and 45 Gy, respectively, in 10 fractions. Each plan included homogeneous and inhomogeneous delivery to the PTVmet. Dosimetric parameters for the target (conformity index [CI], homogeneity index [HI], target coverage [D95%]), and nontarget organs at risk were compared for the HyperArc and RapidArc plans. For homogeneous delivery, dosimetric parameters, including mean CI, HI, and target coverage in PTVWB and PTVmet, were superior for HyperArc than RapidArc plans (all p < 0.01). The PTVWB and PTVmet target coverage for HyperArc plans was significantly greater than for RapidArc plans (96.17% vs 93.38%, p < 0.01; 94.02% vs 92.21%, p < 0.01, respectively). HyperArc plans had significantly lower mean hippocampal Dmax and Dmin values than RapidArc plans (Dmax: 15.53 Gy vs, 16.71 Gy, p < 0.01; Dmin: 8.33 Gy vs 8.93 Gy, p < 0.01, respectively). Similarly, inhomogeneous delivery of hyperArc produced a superior target and lower hippocampal dosimetric parameters than RapidArc, except for the HI of PTVmet (all p < 0.01). HyperArc generated superior conformity and target coverage with lower hippocampal doses than RapidArc. HyperArc could be an attractive technique for hippocampal-sparing WBRT with an SIB.
Collapse
Affiliation(s)
- Jeongho Kim
- Departments of Radiation Oncology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Tae Gyu Kim
- Departments of Radiation Oncology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea.
| | - Byungdo Park
- Departments of Radiation Oncology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Hyunjung Kim
- Departments of Radiation Oncology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Yun Gyu Song
- Departments of Radiology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Hyoun Wook Lee
- Departments of Pathology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Young Zoon Kim
- Departments of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Jun Ho Ji
- Departments of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Seok-Hyun Kim
- Departments of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Sung Min Kim
- Departments of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Jun Ho Lee
- Departments of Surgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Haeyoung Kim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
20
|
Pan H, Zhou X, Shen L, Li Y, Dong W, Wang S, Zhang Y, Pan W, Xie C, Cai X. Efficacy of apatinib+radiotherapy vs radiotherapy alone in patients with advanced multiline therapy failure for non small cell lung cancer with brain metastasis. Br J Radiol 2023; 96:20220550. [PMID: 37162165 PMCID: PMC10461264 DOI: 10.1259/bjr.20220550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/11/2023] Open
Abstract
OBJECTIVE Lung cancer is the leading cause of cancer-associated mortality worldwide. Central nervous system (CNS) metastasis is a prevalent and serious complication. The most common treatment for brain metastasis (BM) is still radiation therapy (RT). An increasing number of drugs have been shown to have intracranial activity or to sensitize tumours to radiotherapy. METHODS Consecutive advanced multiline therapy failure in patients with non-small-cell lung cancer (NSCLC) with BM at the authors' hospital were retrospectively reviewed. Eligible patients were divided into two groups: Apatinib+RT group and RT group. Intracranial progression-free survival (PFS) and overall survival (OS) were analysed using the Kaplan-Meier method. RESULTS The median intracranial PFS for the RT group and Apatinib+RT group was 5.83 months and 11.81 months (p = 0.034). The median OS for the RT group and Apatinib+RT group was 9.02 months and 13.62 months (p = 0.311). The Apatinib+RT group had a better intracranial PFS, but there were no significant differences between the two arms in OS. The Apatinib+RT group had significantly reduced symptoms caused by BM. CONCLUSION RT combined with apatinib could help to control intracranial metastases. The Apatinib+RT group had significantly reduced symptoms caused by BM and improved quality of life for patients, the safety of the two treatments was similar. ADVANCES IN KNOWLEDGE Here, we propose that RT combined with apatinib can significantly relieve brain symptoms and tolerate side-effects without affecting OS in patients with BM following failure of multiline therapy for NSCLC. Of course, this paper is a retrospective origin study, and more powerful evidence is needed to demonstrate.
Collapse
Affiliation(s)
- Huanle Pan
- Department of Radiation and Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaobo Zhou
- Department of Radiation and Medical Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lanxiao Shen
- Department of Radiation and Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yida Li
- Department of Radiation and Medical Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenjun Dong
- Department of Radiation and Medical Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Saijun Wang
- Department of Radiation and Medical Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuyue Zhang
- Department of Radiation and Medical Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenkai Pan
- Department of Radiation and Medical Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Congying Xie
- Department of Radiation and Medical Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaona Cai
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
21
|
Chen VE, Kim M, Nelson N, Kim IK, Shi W. Cost-effectiveness analysis of 3 radiation treatment strategies for patients with multiple brain metastases. Neurooncol Pract 2023; 10:344-351. [PMID: 37457226 PMCID: PMC10346394 DOI: 10.1093/nop/npac093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Abstract
Background Patients diagnosed with multiple brain metastases often survive for less than 2 years, and clinicians must carefully evaluate the impact of interventions on quality of life. Three types of radiation treatment are widely accepted for patients with multiple brain metastases: Whole brain radiation therapy (WBRT), hippocampal avoidance whole-brain radiation therapy (HA-WBRT), and stereotactic radiosurgery (SRS). WBRT, the standard option, is less costly than its newer alternatives but causes more severe adverse effects such as memory loss. To determine whether the cost-effectiveness ratio of HA-WBRT and SRS are superior to WBRT, we used published data to simulate cases of multiple brain metastases. Methods We designed a Markov model using data from previously published studies to simulate the disease course of patients with 5 to 15 brain metastases and determine the cost-effectiveness of HA-WBRT and SRS relative to WBRT. Incremental cost-effectiveness ratios (ICERs) were calculated and compared against a willingness-to-pay threshold of $100 000 per quality-adjusted life year. Results SRS met the threshold for cost-effectiveness, with ICERs ranging $41 198-$54 852 for patients with 5 to 15 brain metastases; however, HA-WBRT was not cost-effective, with an ICER of $163 915 for all simulated patients. Model results were robust to sensitivity analyses. Conclusions We propose that SRS, but not HA-WBRT, should be offered to patients with multiple brain metastases as a treatment alternative to standard WBRT. Incorporating these findings into clinical practice will help promote patient-centered care and decrease national healthcare expenditures, thereby addressing issues around health equity and access to care.
Collapse
Affiliation(s)
- Victor Eric Chen
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Minchul Kim
- Center for Outcomes Research, University of Illinois College of Medicine at Peoria, Peoria, Illinois, USA
| | - Nicolas Nelson
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Inkyu Kevin Kim
- College of Population Health, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Wenyin Shi
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Tsakonas G, Tadigotla V, Chakrabortty SK, Stragliotto G, Chan D, Lewensohn R, Yu W, Skog JK, Hydbring P, Ekman S. Cerebrospinal fluid as a liquid biopsy for molecular characterization of brain metastasis in patients with non-small cell lung cancer. Lung Cancer 2023; 182:107292. [PMID: 37423059 DOI: 10.1016/j.lungcan.2023.107292] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/11/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVES Non-small cell lung cancer (NSCLC) with brain metastases (BM) is a challenging clinical issue with poor prognosis. No data exist regarding extensive genetic analysis of cerebrospinal fluid (CSF) and its correlation to associated tumor compartments. MATERIALS AND METHODS We designed a study across multiple NSCLC patients with matched material from four compartments; primary tumor, BM, plasma and CSF. We performed enrichment-based targeted next-generation sequencing analysis of ctDNA and exosomal RNA in CSF and plasma and compared the outcome with the solid tumor compartments. RESULTS An average of 105 million reads per sample was generated with fractions of mapped reads exceeding 99% in all samples and with a mean coverage above 10,000x. We observed a high degree of overlap in variants between primary lung tumor and BM. Variants specific for the BM/CSF compartment included in-frame deletions in AR, FGF10 and TSC1 and missense mutations in HNF1a, CD79B, BCL2, MYC, TSC2, TET2, NRG1, MSH3, NOTCH3, VHL and EGFR. CONCLUSION Our approach of combining ctDNA and exosomal RNA analyses in CSF presents a potential surrogate for BM biopsy. The specific variants that were only observed in the CNS compartments could serve as targets for individually tailored therapies in NSCLC patients with BM.
Collapse
Affiliation(s)
- Georgios Tsakonas
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Thoracic Oncology Center, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | - Dalin Chan
- Exosome Diagnostics, Inc., a Bio-Techne Brand, Waltham, MA, USA
| | - Rolf Lewensohn
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Thoracic Oncology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Wei Yu
- Exosome Diagnostics, Inc., a Bio-Techne Brand, Waltham, MA, USA
| | - Johan K Skog
- Exosome Diagnostics, Inc., a Bio-Techne Brand, Waltham, MA, USA
| | - Per Hydbring
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Simon Ekman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Thoracic Oncology Center, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
23
|
Bowden SG, Lopez Ramos CG, Cheaney B, Richie E, Yaghi NK, Munger DN, Mazur-Hart DJ, Tan H, Wood MD, Cetas JS, Dogan A, Raslan AM, Han SJ. Response to Preoperative Dexamethasone Predicts Postoperative Neurological Improvement of Focal Neurological Deficits in Patients With Brain Metastases. Neurosurgery 2023; 92:1227-1233. [PMID: 36728251 DOI: 10.1227/neu.0000000000002353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/08/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Steroids are used ubiquitously in the preoperative management of patients with brain tumor. The rate of improvement in focal deficits with steroids and the prognostic value of such a response are not known. OBJECTIVE To determine the rate at which focal neurological deficits respond to preoperative corticosteroids in patients with brain metastases and whether such an improvement could predict long-term recovery of neurological function after surgery. METHODS Patients with brain metastases and related deficits in language, visual field, or motor domains who received corticosteroids before surgery were identified. Characteristics between steroid responders and nonresponders were compared. RESULTS Ninety six patients demonstrated a visual field (13 patients), language (19), or motor (64) deficit and received dexamethasone in the week before surgery (average cumulative dose 43 mg; average duration 2.7 days). 38.5% of patients' deficits improved with steroids before surgery, while 82.3% of patients improved by follow-up. Motor deficits were more likely to improve both preoperatively ( P = .014) and postoperatively ( P = .010). All 37 responders remained improved at follow-up whereas 42 of 59 (71%) of nonresponders ultimately improved ( P < .001). All other clinical characteristics, including dose and duration, were similar between groups. CONCLUSION A response to steroids before surgery is highly predictive of long-term improvement postoperatively in brain metastasis patients with focal neurological deficits. Lack of a response portends a somewhat less favorable prognosis. Duration and intensity of therapy do not seem to affect the likelihood of response.
Collapse
Affiliation(s)
- Stephen G Bowden
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Christian G Lopez Ramos
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Barry Cheaney
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Emma Richie
- Department of Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Nasser K Yaghi
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Daniel N Munger
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - David J Mazur-Hart
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Hao Tan
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
- School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Matthew D Wood
- Department of Pathology, Oregon Health & Science University, Portland, Oregon, USA
| | - Justin S Cetas
- Department of Neurological Surgery, University of Arizona, Tuscon, Arizona, USA
| | - Aclan Dogan
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Ahmed M Raslan
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Seunggu J Han
- Department of Neurological Surgery, Stanford Medicine, Palo Alto, California, USA
| |
Collapse
|
24
|
Peña-Pino I, Chen CC. Stereotactic Radiosurgery as Treatment for Brain Metastases: An Update. Asian J Neurosurg 2023; 18:246-257. [PMID: 37397044 PMCID: PMC10310446 DOI: 10.1055/s-0043-1769754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Stereotactic radiosurgery (SRS) is a mainstay treatment option for brain metastasis (BM). While guidelines for SRS use have been outlined by professional societies, consideration of these guidelines should be weighed in the context of emerging literature, novel technology platforms, and contemporary treatment paradigms. Here, we review recent advances in prognostic scale development for SRS-treated BM patients and survival outcomes as a function of the number of BM and cumulative intracranial tumor volume. Focus is placed on the role of stereotactic laser thermal ablation in the management of BM that recur after SRS and the management of radiation necrosis. Neoadjuvant SRS prior to surgical resection as a means of minimizing leptomeningeal spread is also discussed.
Collapse
Affiliation(s)
- Isabela Peña-Pino
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States
| | - Clark C. Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
25
|
Vaios EJ, Winter SF, Shih HA, Dietrich J, Peters KB, Floyd SR, Kirkpatrick JP, Reitman ZJ. Novel Mechanisms and Future Opportunities for the Management of Radiation Necrosis in Patients Treated for Brain Metastases in the Era of Immunotherapy. Cancers (Basel) 2023; 15:2432. [PMID: 37173897 PMCID: PMC10177360 DOI: 10.3390/cancers15092432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Radiation necrosis, also known as treatment-induced necrosis, has emerged as an important adverse effect following stereotactic radiotherapy (SRS) for brain metastases. The improved survival of patients with brain metastases and increased use of combined systemic therapy and SRS have contributed to a growing incidence of necrosis. The cyclic GMP-AMP (cGAMP) synthase (cGAS) and stimulator of interferon genes (STING) pathway (cGAS-STING) represents a key biological mechanism linking radiation-induced DNA damage to pro-inflammatory effects and innate immunity. By recognizing cytosolic double-stranded DNA, cGAS induces a signaling cascade that results in the upregulation of type 1 interferons and dendritic cell activation. This pathway could play a key role in the pathogenesis of necrosis and provides attractive targets for therapeutic development. Immunotherapy and other novel systemic agents may potentiate activation of cGAS-STING signaling following radiotherapy and increase necrosis risk. Advancements in dosimetric strategies, novel imaging modalities, artificial intelligence, and circulating biomarkers could improve the management of necrosis. This review provides new insights into the pathophysiology of necrosis and synthesizes our current understanding regarding the diagnosis, risk factors, and management options of necrosis while highlighting novel avenues for discovery.
Collapse
Affiliation(s)
- Eugene J. Vaios
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sebastian F. Winter
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Helen A. Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jorg Dietrich
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Katherine B. Peters
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Scott R. Floyd
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - John P. Kirkpatrick
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Zachary J. Reitman
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
26
|
Liang N, Sun S, Li Z, Wu T, Zhang C, Xin T. CCKAR is a biomarker for prognosis and asynchronous brain metastasis of non-small cell lung cancer. Front Oncol 2023; 12:1098728. [PMID: 36733361 PMCID: PMC9886659 DOI: 10.3389/fonc.2022.1098728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is the most common histological type of lung cancer, and brain metastasis (BM) is the most lethal complication of NSCLC. The predictive biomarkers and risk factors of asynchronous BM are still unknown. Materials and methods A total of 203 patients with NSCLC were enrolled into our cohort and followed up. The clinicopathological factors such as tumor size, T stage, lymphatic invasion, metastasis and asynchronous BM were investigated. CCKAR expression in NSCLC and resected BM was assessed by IHC, and CCKAR mRNAs in NSCLC and para-tumor tissues were estimated by qRT-PCR. The correlations between CCKAR expression, BM and other clinicopathological factors were assessed by chi-square test, and prognostic significance of CCKAR was estimated by univariate and multivariate analyses. Results CCKAR was highly expressed in NSCLC tissues compared with para-tumor tissues. CCKAR expression in NSCLC was significantly associated with asynchronous BM. The BM percentages for NSCLC patients with low and high CCKAR were surprisingly 5.2% and 66.6%, respectively. CCKAR expression and BM were unfavorable factors predicting unfavorable outcome of NSCLC. Moreover, CCKAR expression in NSCLC was an independent risk factor of asynchronous BM. Conclusions CCKAR is a prognostic biomarker of NSCLC. CCKAR expression in NSCLC is positively associated with asynchronous BM, and is a risk factor of asynchronous BM from NSCLC.
Collapse
Affiliation(s)
- Nan Liang
- Department of Neurosurgery, the Second Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Suohui Sun
- Department of Neurosurgery, the Second Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Zheng Li
- Department of Neurosurgery, the Second Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Tao Wu
- Department of Neurosurgery, the Second Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Chunpu Zhang
- Department of Neurosurgery, the Second Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Tao Xin
- Department of Neurosurgery, the First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China,*Correspondence: Tao Xin, ,
| |
Collapse
|
27
|
Muacevic A, Adler JR, Moscardini-Martelli J, Barrios-Merino C, Padilla-Leal KE, Suárez-Venegas A, Flores-Vázquez F. A Survey on Prophylactic Corticosteroids Use in Stereotactic Radiosurgery Treatments From Ibero and Latin America Centers. Cureus 2023; 15:e34060. [PMID: 36824549 PMCID: PMC9943024 DOI: 10.7759/cureus.34060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2023] [Indexed: 01/23/2023] Open
Abstract
Introduction Radiosurgery is a treatment in which a high dose of ionizing radiation is administered to a small field with high-precision techniques, and is a common treatment for tumors and other diagnoses. A typical complication is the development of radiation-induced edema that can progress to radiation necrosis in some cases. The administration of corticosteroids has been used empirically as a prophylaxis in patients who will be treated by stereotactic radiosurgery with intracranial tumors and other pathologies with the intention to prevent radiation-induced edema and or necrosis. Objective The aim of our study is to describe the actual use of corticosteroids in hospitals that perform stereotactic radiosurgery treatments in Latin America and Spain through a survey applied to neurosurgeons and radiation oncologists and expose the implications of the results, as well as to analyze the available literature on it. Methods We designed a questionnaire of 15 items related to the use of corticosteroids as prophylaxis in patients who will be treated with radiosurgery. The questionnaire was answered by 121 Ibero-Latin Americans through Google Drive considering a database from the Iberolatinoamerican Radiosurgery Association. Results We found that the preference for the use of corticosteroids as prophylaxis for radiosurgery is associated with informal training in radiosurgery, and it was more used by radiation oncologists compared to neurosurgeons (p=0.023). Side effects can exceed the benefit of its use. Conclusions There is practically no literature on the use of corticosteroids as prophylaxis for radiation necrosis in stereotactic radiosurgery. This is a controversial inter- and intra-specialty issue, and its empirical use has a relatively high prevalence, making us reconsider the value of experience in a medical environment that should be fundamentally guided by evidence-based medicine.
Collapse
|
28
|
Jain V, de Godoy LL, Mohan S, Chawla S, Learned K, Jain G, Wehrli FW, Alonso-Basanta M. Cerebral hemodynamic and metabolic dysregulation in the postradiation brain. J Neuroimaging 2022; 32:1027-1043. [PMID: 36156829 DOI: 10.1111/jon.13053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022] Open
Abstract
Technological advances in the delivery of radiation and other novel cancer therapies have significantly improved the 5-year survival rates over the last few decades. Although recent developments have helped to better manage the acute effects of radiation, the late effects such as impairment in cognition continue to remain of concern. Accruing data in the literature have implicated derangements in hemodynamic parameters and metabolic activity of the irradiated normal brain as predictive of cognitive impairment. Multiparametric imaging modalities have allowed us to precisely quantify functional and metabolic information, enhancing the anatomic and morphologic data provided by conventional MRI sequences, thereby contributing as noninvasive imaging-based biomarkers of radiation-induced brain injury. In this review, we have elaborated on the mechanisms of radiation-induced brain injury and discussed several novel imaging modalities, including MR spectroscopy, MR perfusion imaging, functional MR, SPECT, and PET that provide pathophysiological and functional insights into the postradiation brain, and its correlation with radiation dose as well as clinical neurocognitive outcomes. Additionally, we explored some innovative imaging modalities, such as quantitative blood oxygenation level-dependent imaging, susceptibility-based oxygenation measurement, and T2-based oxygenation measurement, that hold promise in delineating the potential mechanisms underlying deleterious neurocognitive changes seen in the postradiation setting. We aim that this comprehensive review of a range of imaging modalities will help elucidate the hemodynamic and metabolic injury mechanisms underlying cognitive impairment in the irradiated normal brain in order to optimize treatment regimens and improve the quality of life for these patients.
Collapse
Affiliation(s)
- Varsha Jain
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Radiation Oncology, Jefferson University Hospital, 111 South 11th Street, Philadelphia, PA, 19107, USA
| | - Laiz Laura de Godoy
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kim Learned
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gaurav Jain
- Department of Neurological Surgery, Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Felix W Wehrli
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michelle Alonso-Basanta
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
29
|
Nian R, Jiang H, Zhao J, Hou W, Zhang H, Ma J, Lv P, Jiang L, Wang Y, Xu Y, Wu S, Lou J, Li W. Differences in actionable genomic alterations between brain metastases and non‑brain metastases in patients with non‑small cell lung cancer. Int J Oncol 2022; 61:100. [PMID: 35796015 PMCID: PMC9291252 DOI: 10.3892/ijo.2022.5390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/15/2022] [Indexed: 11/06/2022] Open
Abstract
Brain metastases (BM) have been closely associated with increased morbidity and poor survival outcomes in patients with non‑small cell lung cancer (NSCLC). Excluding risk factors in histological subtypes, genomic alterations, including epidermal growth factor receptor mutations and anaplastic lymphoma kinase (ALK) rearrangements have been also regarded as greater risk factors for BM in the aspect of molecular subtypes. In the present study, 69 tumor tissues and 51 peripheral blood samples from patients with NSCLC were analyzed using a hybridization capture‑based next‑generation sequencing (NGS) panel, including 95 known cancer genes. Among the 90 patients with stage IV NSCLC, 26 cases suffered from BM and 64 cases did not. In total, 174 somatic mutations in 35 mutated genes were identified, and 12 of these genes were concurrently present in the BM group and the non‑BM group. Importantly, five mutated genes including ALK, cytidine deaminase (CDA), SMAD family member 4 (SMAD4), superoxide dismutase 2 (SOD2) and Von Hippel‑Lindau tumor suppressor (VHL) genes were uniquely detected in the BM group, and they were enriched in the Hippo signaling pathway, pyrimidine metabolism and pantothenate and co‑enzyme A (CoA) biosynthesis, as demonstrated using Kyoto Encyclopedia of Genes and Genomes enrichment analysis. RNA polymerase II transcription regulator complex and promyelocytic leukemia nuclear body were the top functional categories according to the Gene Ontology enrichment analysis in the BM group and non‑BM group, respectively. Furthermore, 43.33% (13/30) of mutated genes were detected by both tumor tissue deoxyribonucleic acid (DNA) and plasma‑derived circulating tumor DNA (ctDNA) in the non‑BM group, while this percentage was only limited to 29.41% (5/17) in the BM group. To summarize, significant differences in somatic mutations, somatic interactions, key signaling pathways, functional biological information, and clinical actionability for the therapy of targeted agents were founded between the BM group and the non‑BM group, and ctDNA analysis may by applied as a more credible alternative for genomic profiling in patients with advanced NSCLC without BM, due to its higher consistency for genomic profiling between ctDNA analysis and tissue DNA analysis.
Collapse
Affiliation(s)
- Rui Nian
- Department of Pathology, Affiliated 3201 Hospital of Xi'an Jiaotong University, Shaanxi, Hanzhong 723000, P.R. China
| | - Huihui Jiang
- Zhangjiang Center for Translational Medicine, Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai 200135, P.R. China
| | - Jiangman Zhao
- Zhangjiang Center for Translational Medicine, Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai 200135, P.R. China
| | - Wanle Hou
- Department of Laboratory Medicine, First Hospital of Laohekou City, Hubei, Xiangyang 441800, P.R. China
| | - Hua Zhang
- Department of Pathology, Hanzhong People's Hospital, Shaanxi, Hanzhong 723000, P.R. China
| | - Jiangtao Ma
- Medical Laboratory Science, Hanzhong Railway Central Hospital, Shaanxi, Hanzhong 723000, P.R. China
| | - Pengbiao Lv
- Department of Surgical Oncology, Hanzhong People's Hospital, Shaanxi, Hanzhong 723000, P.R. China
| | - Lisha Jiang
- Zhangjiang Center for Translational Medicine, Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai 200135, P.R. China
| | - Yongpan Wang
- Zhangjiang Center for Translational Medicine, Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai 200135, P.R. China
| | - Yue Xu
- Zhangjiang Center for Translational Medicine, Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai 200135, P.R. China
| | - Shouxin Wu
- Zhangjiang Center for Translational Medicine, Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai 200135, P.R. China
| | - Jingwei Lou
- Zhangjiang Center for Translational Medicine, Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai 200135, P.R. China
- Dr Jingwei Lou, Zhangjiang Center for Translational Medicine, Shanghai Biotecan Pharmaceuticals Co., Ltd., 180 Zhangheng Road, Shanghai 200135, P.R. China, E-mail:
| | - Wanjun Li
- Department of Pathology, Affiliated 3201 Hospital of Xi'an Jiaotong University, Shaanxi, Hanzhong 723000, P.R. China
- Correspondence to: Professor Wanjun Li, Department of Pathology, Affiliated 3201 Hospital of Xi'an Jiaotong University, 783 Tianhan Avenue, Shaanxi, Hanzhong 723000, P.R. China, E-mail:
| |
Collapse
|
30
|
DEGRO practical guideline for central nervous system radiation necrosis part 2: treatment. Strahlenther Onkol 2022; 198:971-980. [PMID: 36038670 PMCID: PMC9581806 DOI: 10.1007/s00066-022-01973-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 11/08/2022]
Abstract
Purpose The Working Group for Neurooncology of the German Society for Radiation Oncology (DEGRO; AG NRO) in cooperation with members of the Neurooncological Working Group of the German Cancer Society (DKG-NOA) aimed to define a practical guideline for the diagnosis and treatment of radiation-induced necrosis (RN) of the central nervous system (CNS). Methods Panel members of the DEGRO working group invited experts, participated in a series of conferences, supplemented their clinical experience, performed a literature review, and formulated recommendations for medical treatment of RN, including bevacizumab, in clinical routine. Conclusion Diagnosis and treatment of RN requires multidisciplinary structures of care and defined processes. Diagnosis has to be made on an interdisciplinary level with the joint knowledge of a neuroradiologist, radiation oncologist, neurosurgeon, neuropathologist, and neurooncologist. If the diagnosis of blood–brain barrier disruptions (BBD) or RN is likely, treatment should be initiated depending on the symptoms, location, and dynamic of the lesion. Multiple treatment options are available (such as observation, surgery, steroids, and bevacizumab) and the optimal approach should be discussed in an interdisciplinary setting. In this practice guideline, we offer detailed treatment strategies for various scenarios.
Collapse
|
31
|
Chow LQM, Barlesi F, Bertino EM, van den Bent MJ, Wakelee HA, Wen PY, Chiu CH, Orlov S, Chiari R, Majem M, McKeage M, Yu CJ, Garrido P, Hurtado FK, Arratia PC, Song Y, Branle F, Shi M, Kim DW. ASCEND-7: Efficacy and Safety of Ceritinib Treatment in Patients with ALK-Positive Non-Small Cell Lung Cancer Metastatic to the Brain and/or Leptomeninges. Clin Cancer Res 2022; 28:2506-2516. [PMID: 35091443 DOI: 10.1158/1078-0432.ccr-21-1838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/25/2021] [Accepted: 01/25/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Central nervous system metastases are a prominent cause of morbidity and mortality in patients with ALK-positive (ALK+) non-small cell lung cancer (NSCLC). The phase II ASCEND-7 (NCT02336451) study was specifically designed to assess the efficacy and safety of the ALK inhibitor (ALKi) ceritinib in patients with ALK+ NSCLC metastatic to the brain and/or leptomeninges. PATIENTS AND METHODS Patients with active brain metastases were allocated to study arms 1 to 4 based on prior exposure to an ALKi and/or prior brain radiation (arm 1: prior radiotherapy/ALKi-pretreated; arm 2: no radiotherapy/ALKi-pretreated; arm 3: prior radiotherapy/ALKi-naïve; arm 4: no radiotherapy/ALKi-naïve). Arm 5 included patients with leptomeningeal carcinomatosis. Patients received ceritinib 750 mg once daily (fasted condition). Primary endpoint was investigator-assessed whole-body overall response rate (ORR) per RECIST v1.1. Secondary endpoints included disease control rate (DCR) and intracranial/extracranial responses. RESULTS Per investigator assessment, in arms 1 (n = 42), 2 (n = 40), 3 (n = 12), and 4 (n = 44), respectively: whole-body ORRs [95% confidence interval (CI)] were 35.7% (21.6-52.0), 30.0% (16.6-46.5), 50.0% (21.1-78.9), and 59.1% (43.2-73.7); whole-body DCR (95% CI): 66.7% (50.5-80.4), 82.5% (67.2-92.7), 66.7% (34.9-90.1), and 70.5% (54.8-83.2); intracranial ORRs (95% CI): 39.3% (21.5-59.4), 27.6% (12.7-47.2), 28.6% (3.7-71.0), and 51.5% (33.5-69.2). In arm 5 (n = 18), whole-body ORR was 16.7% (95% CI, 3.6-41.4) and DCR was 66.7% (95% CI, 41.0-86.7). Paired cerebrospinal fluid and plasma sampling revealed that ceritinib penetrated the human blood-brain barrier. CONCLUSIONS Ceritinib showed antitumor activity in patients with ALK+ NSCLC with active brain metastases and/or leptomeningeal disease, and could be considered in the management of intracranial disease. See related commentary by Murciano-Goroff et al., p. 2477.
Collapse
Affiliation(s)
- Laura Q M Chow
- University of Washington, Seattle, Washington and University of Texas at Austin, Dell Medical School, Department of Oncology, Austin, Texas
| | - Fabrice Barlesi
- Aix-Marseille University, CNRS, INSERM, CRCM, APHM, Marseille, France
| | - Erin M Bertino
- The Ohio State University Comprehensive Cancer Centre, Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio
| | - Martin J van den Bent
- Department of Neurology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | - Patrick Y Wen
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Chao-Hua Chiu
- Department of Chest Medicine, Taipei Veterans General Hospital, National Yang-Ming University, Taipei, Taiwan
| | - Sergey Orlov
- State Pavlov Medical University, St. Petersburg, Russia
| | - Rita Chiari
- Department of Oncology, AULSS6 Euganea, Padova, Italy
| | | | | | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Pilar Garrido
- Department of Medical Oncology, Hospital Universitario Ramon Y Cajal, Madrid, Spain
| | | | | | - Yuanbo Song
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | | | - Michael Shi
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Dong-Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
32
|
Hayashi H, Yonesaka K, Nakamura A, Fujimoto D, Azuma K, Sakata S, Tachihara M, Ikeda S, Yokoyama T, Hataji O, Yano Y, Hirano K, Daga H, Okada H, Chiba Y, Sakai K, Nishio K, Yamamoto N, Nakagawa K. Alternating Therapy with Osimertinib and Afatinib for Treatment-Naive Patients with EGFR-Mutated Advanced Non–Small Cell Lung Cancer: A Single-Group, Open-Label Phase 2 Trial (WJOG10818L). Lung Cancer 2022; 168:38-45. [DOI: 10.1016/j.lungcan.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/01/2022] [Accepted: 04/09/2022] [Indexed: 12/16/2022]
|
33
|
Kotecha R, Ahluwalia MS, Siomin V, McDermott MW. Surgery, Stereotactic Radiosurgery, and Systemic Therapy in the Management of Operable Brain Metastasis. Neurol Clin 2022; 40:421-436. [DOI: 10.1016/j.ncl.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Wang H, Chen YZ, Li WH, Han Y, Li Q, Ye Z. Pretreatment Thoracic CT Radiomic Features to Predict Brain Metastases in Patients With ALK-Rearranged Non-Small Cell Lung Cancer. Front Genet 2022; 13:772090. [PMID: 35281837 PMCID: PMC8914538 DOI: 10.3389/fgene.2022.772090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/17/2022] [Indexed: 11/15/2022] Open
Abstract
Objective: To identify CT imaging biomarkers based on radiomic features for predicting brain metastases (BM) in patients with ALK-rearranged non-small cell lung cancer (NSCLC). Methods: NSCLC patients with pathologically confirmed ALK rearrangement from January 2014 to December 2020 in our hospital were enrolled retrospectively in this study. Finally, 77 patients were included according to the inclusion and exclusion criteria. Patients were divided into two groups: BM+ were those patients who were diagnosed with BM at baseline examination (n = 16) or within 1 year’s follow-up (n = 14), and BM− were those without BM followed up for at least 1 year (n = 47). Radiomic features were extracted from the pretreatment thoracic CT images. Sequential univariate logistic regression, LASSO regression, and backward stepwise logistic regression were used to select radiomic features and develop a BM-predicting model. Results: Five robust radiomic features were found to be independent predictors of BM. AUC for radiomics model was 0.828 (95% CI: 0.736–0.921), and when combined with clinical features, the AUC was increased (p = 0.017) to 0.909 (95% CI: 0.845–0.972). The individualized BM-predicting model incorporated with clinical features was visualized by the nomogram. Conclusion: Radiomic features extracted from pretreatment thoracic CT images have the potential to predict BM within 1 year after detection of the primary tumor in patients with ALK-rearranged NSCLC. The radiomics model incorporated with clinical features shows improved risk stratification for such patients.
Collapse
Affiliation(s)
- Hua Wang
- Department of Radiology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Tianjin, China
| | - Yong-Zi Chen
- Laboratory of Tumor Cell Biology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Wan-Hu Li
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ying Han
- Department of Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Tianjin, China
| | - Qi Li
- Department of Pathology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Tianjin, China
| | - Zhaoxiang Ye
- Department of Radiology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Tianjin, China
- *Correspondence: Zhaoxiang Ye,
| |
Collapse
|
35
|
Sarmey N, Kaisman-Elbaz T, Mohammadi AM. Management Strategies for Large Brain Metastases. Front Oncol 2022; 12:827304. [PMID: 35251995 PMCID: PMC8894177 DOI: 10.3389/fonc.2022.827304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Brain metastases represent the most common intracranial neoplasm and pose a significant disease burden on the individual and the healthcare system. Although whole brain radiation therapy was historically a first line approach, subsequent research and technological advancements have resulted in a larger armamentarium of strategies for treatment of these patients. While chemotherapeutic options remain limited, surgical resection and stereotactic radiosurgery, as well as their combination therapies, have shifted the paradigms for managing intracranial metastatic disease. Ultimately, no single treatment is shown to be consistently effective across patient groups in terms of overall survival, local and distant control, neurocognitive function, and performance status. However, close consideration of patient and tumor characteristics may help delineate more favorable treatment strategies for individual patients. Here the authors present a review of the recent literature surrounding surgery, whole brain radiation therapy, stereotactic radiosurgery, and combination approaches.
Collapse
|
36
|
Hao P, Chen L, Ge Y, You Y, Yan G, Jin ZW. Time taken for a primary tumor to metastasize to the brain and the overall survival of patients with brain metastasis: An analysis of outcomes and factors affecting survival. Technol Health Care 2022; 30:259-270. [PMID: 35124603 PMCID: PMC9028614 DOI: 10.3233/thc-228025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND: Brain metastasis (BM) is one of the main causes of high morbidity and mortality in cancer patients. OBJECTIVE: To evaluate the factors that influenced the survival time of patients with primary cancer and survival time after BM. METHODS: Ninety patients with BM diagnosed by magnetic resonance imaging (MRI) were included in the study. We retrospectively analyzed the time to brain metastasis (TTB), overall survival time (OS1) and survival time after BM (OS2). The Kaplan-Meier method and Cox regression analysis were used for survival analyses. RESULTS: The median TTB was 12.0 (95% CI: 9.2–14.8 months), the median OS1 was 31.0 (95% CI: 25.8–35.2 months) and the median OS2 was 14.0 (95% CI: 10.9–17.1 months). Surgical excision of the primary tumor was an independent factor for a prolonged TTB (p< 0.000) and prolonged OS1 (p< 0.000). A single intracranial metastatic lesion was an independent protective factor for prolonged OS1 (p= 0.011) and prolonged OS2 (p= 0.050). TTB, OS1 and OS2 were analyzed with Gender (p< 0.000, < 0.000, and = 0.017, respectively). CONCLUSIONS: It suggests that TTB can be prolonged by primary tumor resection. Furthermore, women with a prolonged TTB and single intracranial metastasis are associated with high OS. These were helpful for the clinical treatment of BM patients before brain metastasis.
Collapse
Affiliation(s)
- Peiyu Hao
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Fujian, China
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Fujian, China
| | - Limei Chen
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Fujian, China
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Fujian, China
| | - Yuxi Ge
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi, Fujian, China
| | - Yaqian You
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Fujian, China
| | - Gen Yan
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi, Fujian, China
- Deparment of Radiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China
| | - Zhe-Wu Jin
- Department of Anatomy, Wuxi School of Medicine, Jiangnan University, Wuxi, Fujian, China
| |
Collapse
|
37
|
Yang Z, Chen M, Kazemimoghadam M, Ma L, Stojadinovic S, Timmerman R, Dan T, Wardak Z, Lu W, Gu X. Deep-learning and radiomics ensemble classifier for false positive reduction in brain metastases segmentation. Phys Med Biol 2022; 67:10.1088/1361-6560/ac4667. [PMID: 34952535 PMCID: PMC8858586 DOI: 10.1088/1361-6560/ac4667] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/24/2021] [Indexed: 01/21/2023]
Abstract
Stereotactic radiosurgery (SRS) is now the standard of care for brain metastases (BMs) patients. The SRS treatment planning process requires precise target delineation, which in clinical workflow for patients with multiple (>4) BMs (mBMs) could become a pronounced time bottleneck. Our group has developed an automated BMs segmentation platform to assist in this process. The accuracy of the auto-segmentation, however, is influenced by the presence of false-positive segmentations, mainly caused by the injected contrast during MRI acquisition. To address this problem and further improve the segmentation performance, a deep-learning and radiomics ensemble classifier was developed to reduce the false-positive rate in segmentations. The proposed model consists of a Siamese network and a radiomic-based support vector machine (SVM) classifier. The 2D-based Siamese network contains a pair of parallel feature extractors with shared weights followed by a single classifier. This architecture is designed to identify the inter-class difference. On the other hand, the SVM model takes the radiomic features extracted from 3D segmentation volumes as the input for twofold classification, either a false-positive segmentation or a true BM. Lastly, the outputs from both models create an ensemble to generate the final label. The performance of the proposed model in the segmented mBMs testing dataset reached the accuracy (ACC), sensitivity (SEN), specificity (SPE) and area under the curve of 0.91, 0.96, 0.90 and 0.93, respectively. After integrating the proposed model into the original segmentation platform, the average segmentation false negative rate (FNR) and the false positive over the union (FPoU) were 0.13 and 0.09, respectively, which preserved the initial FNR (0.07) and significantly improved the FPoU (0.55). The proposed method effectively reduced the false-positive rate in the BMs raw segmentations indicating that the integration of the proposed ensemble classifier into the BMs segmentation platform provides a beneficial tool for mBMs SRS management.
Collapse
Affiliation(s)
- Zi Yang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas TX, 75390 USA
| | - Mingli Chen
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas TX, 75390 USA
| | - Mahdieh Kazemimoghadam
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas TX, 75390 USA
| | - Lin Ma
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas TX, 75390 USA
| | - Strahinja Stojadinovic
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas TX, 75390 USA
| | - Robert Timmerman
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas TX, 75390 USA
| | - Tu Dan
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas TX, 75390 USA
| | - Zabi Wardak
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas TX, 75390 USA
| | - Weiguo Lu
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas TX, 75390 USA
| | - Xuejun Gu
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas TX, 75390 USA
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305
| |
Collapse
|
38
|
Ehret F, Kaul D, Mose L, Budach V, Vajkoczy P, Fürweger C, Haidenberger A, Muacevic A, Mehrhof F, Kufeld M. Intracranial Hemorrhage in Patients with Anticoagulant Therapy Undergoing Stereotactic Radiosurgery for Brain Metastases: A Bi-Institutional Analysis. Cancers (Basel) 2022; 14:cancers14030465. [PMID: 35158734 PMCID: PMC8833468 DOI: 10.3390/cancers14030465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Stereotactic radiosurgery (SRS) is a well-established treatment modality for brain metastases (BM). Given the manifold implications of metastatic cancer on the body, affected patients have an increased risk of comorbidities, such as atrial fibrillation (AF) and venous thromboembolism (VTE), which includes pulmonary embolism (PE) and deep-vein thrombosis (DVT). These may require therapeutic anticoagulant therapy (ACT). Limited data are available on the risk of intracranial hemorrhage (ICH) after SRS for patients with BM who are receiving ACT. This bi-institutional analysis aimed to describe the bleeding risk for this patient subgroup. Methods: Patients with ACT at the time of single-fraction SRS for BM from two institutions were eligible for analysis. The cumulative incidence of ICH with death as a competing event was assessed during follow-up with magnetic resonance imaging or computed tomography. Results: Forty-one patients with 97 BM were included in the analyses. The median follow-up was 8.2 months (range: 1.7–77.5 months). The median and mean BM volumes were 0.47 and 1.19 cubic centimeters, respectively. The most common reasons for ACT were PE (41%), AF (34%), and DVT (7%). The ACT was mostly performed utilizing phenprocoumon (37%), novel oral anticoagulants (32%), or low-molecular-weight heparin (20%). Nine BM from a group of five patients with ICH after SRS were identified: none of them caused neurological or any other deficits. The 6-, 12-, and 18-month cumulative bleeding incidences per metastasis were 2.1%, 12.4%, and 12.4%, respectively. The metastases with previous bleeding events and those originating from malignant melanomas were found to more frequently demonstrate ICH after SRS (p = 0.02, p = 0.01). No surgical or medical intervention was necessary for ICH management, and no observed death was associated with an ICH. Conclusion: Patients receiving an ACT and single-fraction SRS for small- to medium-sized BM did not seem to have a clinically relevant risk of ICH. Previous bleeding and metastases originating from a malignant melanoma may favor bleeding events after SRS. Further studies are needed to validate our reported findings.
Collapse
Affiliation(s)
- Felix Ehret
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, 13353 Berlin, Germany; (D.K.); (V.B.); (F.M.)
- European Radiosurgery Center, 81377 Munich, Germany; (L.M.); (C.F.); (A.H.); (A.M.); (M.K.)
- Correspondence:
| | - David Kaul
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, 13353 Berlin, Germany; (D.K.); (V.B.); (F.M.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité CyberKnife Center, 13353 Berlin, Germany;
| | - Lucas Mose
- European Radiosurgery Center, 81377 Munich, Germany; (L.M.); (C.F.); (A.H.); (A.M.); (M.K.)
| | - Volker Budach
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, 13353 Berlin, Germany; (D.K.); (V.B.); (F.M.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité CyberKnife Center, 13353 Berlin, Germany;
| | - Peter Vajkoczy
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité CyberKnife Center, 13353 Berlin, Germany;
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurosurgery, 10117 Berlin, Germany
| | - Christoph Fürweger
- European Radiosurgery Center, 81377 Munich, Germany; (L.M.); (C.F.); (A.H.); (A.M.); (M.K.)
- Department of Stereotaxy and Functional Neurosurgery, University Hospital Cologne, 50937 Cologne, Germany
| | - Alfred Haidenberger
- European Radiosurgery Center, 81377 Munich, Germany; (L.M.); (C.F.); (A.H.); (A.M.); (M.K.)
| | - Alexander Muacevic
- European Radiosurgery Center, 81377 Munich, Germany; (L.M.); (C.F.); (A.H.); (A.M.); (M.K.)
| | - Felix Mehrhof
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, 13353 Berlin, Germany; (D.K.); (V.B.); (F.M.)
| | - Markus Kufeld
- European Radiosurgery Center, 81377 Munich, Germany; (L.M.); (C.F.); (A.H.); (A.M.); (M.K.)
| |
Collapse
|
39
|
Zhai X, Li W, Li J, Jia W, Jing W, Tian Y, Xu S, Li Y, Zhu H, Yu J. Therapeutic effect of osimertinib plus cranial radiotherapy compared to osimertinib alone in NSCLC patients with EGFR-activating mutations and brain metastases: a retrospective study. Radiat Oncol 2021; 16:233. [PMID: 34865626 PMCID: PMC8647301 DOI: 10.1186/s13014-021-01955-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/19/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The study aimed to compare the efficacy of osimertinib plus cranial radiotherapy (RT) with osimertinib alone in advanced non-small-cell lung cancer (NSCLC) patients harboring epidermal growth factor receptor (EGFR) mutations and brain metastases (BMs). METHODS The clinical data of advanced NSCLC patients with BMs who received osimertinib were retrospectively collected. The patients were assigned to one of the two groups according to the therapeutic modality used: the osimertinib monotherapy group or the osimertinib plus RT group. RESULTS This was a retrospective study and 61 patients were included from December 2015 to August 2020. Forty patients received osimertinib monotherapy, and twenty-one patients received osimertinib plus RT. Radiotherapy included whole-brain radiation therapy (WBRT, n = 14), WBRT with simultaneous integrated boost (WBRT-SIB, n = 5) and stereotactic radiosurgery (SRS, n = 2). The median number of prior systemic therapies in the two groups was one. Intracranial and systemic ORR and DCR were not significantly different between the two groups. No difference in iPFS was observed between the two groups (median iPFS: 16.67 vs. 13.50 months, P = 0.836). The median OS was 29.20 months in the osimertinib plus RT group compared with 26.13 months in the osimertinib group (HR = 0.895, P = 0.826). In the L858R mutational subgroup of 31 patients, the osimertinib plus RT group had a longer OS (P = 0.046). In the exon 19 deletion mutational subgroup of 30 patients, OS in the osimertinib alone group was longer than that in the osimertinib plus RT group (P = 0.011). The incidence of any-grade adverse events was not significantly different between the osimertinib plus RT group and the osimertinib alone group (47.6% vs. 32.5%, P = 0.762). However, six patients (28.5%) experienced leukoencephalopathy in the osimertinib plus RT group, and 50% (3/6) of the leukoencephalopathy was greater than or equal to grade 3. CONCLUSION The therapeutic effect of osimertinib with RT was similar to that of osimertinib alone in EGFR-positive NSCLC patients with BM. However, for patients with the L858R mutation, osimertinib plus RT could provide more benefit than osimertinib alone.
Collapse
Affiliation(s)
- Xiaoyang Zhai
- Shantou University Medical College, Shantou, 515041, Guangdong Province, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China
| | - Wanhu Li
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Ji Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Wenxiao Jia
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China
| | - Wang Jing
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China
| | - Yaru Tian
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China
| | - Shuhui Xu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China
| | - Yuying Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute Affiliated to Shandong University, Shandong First Medical University, Shandong Academy of Medical Sciences, Shandong Province, 250117, Jinan, China.
| | - Jinming Yu
- Shantou University Medical College, Shantou, 515041, Guangdong Province, China.
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China.
| |
Collapse
|
40
|
Tonse R, Rubens M, Appel H, Tom MC, Hall MD, Odia Y, McDermott MW, Ahluwalia MS, Mehta MP, Kotecha R. Systematic review and meta-analysis of lung cancer brain metastasis and primary tumor receptor expression discordance. Discov Oncol 2021; 12:48. [PMID: 35201504 PMCID: PMC8777541 DOI: 10.1007/s12672-021-00445-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Treatment paradigms for metastatic non-small cell lung cancer are increasingly based on biomarker-driven therapies, with the most common alteration being mutation in the epidermal growth factor receptor (EGFR). Change in expression of such biomarkers could have a profound impact on the choice and efficacy of a selected targeted therapeutic, and hence the objective of this study was to analyze discordance in EGFR status in patients with lung cancer brain metastasis (LCBM). METHODS Using PRISMA guidelines, a systematic review was performed of series in the Medline database of biopsied or resected LCBM published before May, 2020. Key words included "lung cancer" and "brain metastasis" combined with "epidermal growth factor receptor/EGFR," and "receptor conversion/discordance or concordance." Weighted random effects models were used to calculate pooled estimates. RESULTS We identified 501 patients from 19 full-text articles for inclusion in this study. All patients underwent biopsy or resection of at least one intracranial lesion to compare to the primary tumor. On primary/LCBM comparison, the weighted pooled estimate for overall EGFR receptor discordance was 10% (95% CI 5-17%). The weighted effects model estimated a gain of an EGFR mutation in a brain metastases in patients with negative primary tumors was 7% (95% CI 4-12%). Alternatively, the weighted effects model estimate of loss of an EGFR mutation in patients with detected mutations in the primary tumor was also 7% (95% CI 4-10%). KRAS testing was also performed on both primary tumors and LCBM in a subset of 148 patients. The weighted effects estimate of KRAS-mutation discordance among LCBM compared to primary tumors was 13% (95% CI 5-27%). The weighted effects estimated of KRAS gain and loss in LCBM was 10% (95% CI 6-18%) and 8% (95% CI 4-15%), respectively. Meta-regression analysis did not find any association with any factors that could be associated with discordances. CONCLUSIONS EGFR and KRAS mutation status discordance between primary tumor and LCBM occurs in approximately 10% and 13% of patients, respectively. Evaluation of LCBM receptor status is key to biomarker-driven targeted therapy for intracranial disease and awareness of subtype switching is critical for those patients treated with systemic therapy alone for intracranial disease.
Collapse
Affiliation(s)
- Raees Tonse
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Office 1R203, Miami, FL, 33176, USA
| | - Muni Rubens
- Office of Clinical Research, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Haley Appel
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Office 1R203, Miami, FL, 33176, USA
| | - Martin C Tom
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Office 1R203, Miami, FL, 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Matthew D Hall
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Office 1R203, Miami, FL, 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Yazmin Odia
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Division of Neuro-Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Michael W McDermott
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Department of Neurosurgery, Miami Neuroscience Institute, Baptist Health South Florida, Miami, FL, USA
| | - Manmeet S Ahluwalia
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Office 1R203, Miami, FL, 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Office 1R203, Miami, FL, 33176, USA.
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| |
Collapse
|
41
|
Thomas NJ, Myall NJ, Sun F, Patil T, Mushtaq R, Yu C, Sinha S, Pollom EL, Nagpal S, Camidge DR, Rusthoven CG, Braunstein SE, Wakelee HA, McCoach CE. Brain Metastases in EGFR- and ALK-Positive NSCLC: Outcomes of Central Nervous System-Penetrant Tyrosine Kinase Inhibitors Alone Versus in Combination With Radiation. J Thorac Oncol 2021; 17:116-129. [PMID: 34455066 DOI: 10.1016/j.jtho.2021.08.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Management of central nervous system (CNS) metastases in patients with driver-mutated NSCLC has traditionally incorporated both tyrosine kinase inhibitors (TKIs) and intracranial radiation. Whether next generation, CNS-penetrant TKIs can be used alone without upfront radiation, however, remains unknown. This multi-institutional retrospective analysis aimed to compare outcomes in patients with EGFR- or ALK-positive NSCLC who received CNS-penetrant TKI therapy alone versus in combination with radiation for new or progressing intracranial metastases. METHODS Data were retrospectively collected from three academic institutions. Two treatment groups (CNS-penetrant TKI alone versus TKI + CNS radiation therapy) were compared for both EGFR- and ALK-positive cohorts. Outcome variables included time to progression, time to intracranial progression, and time to treatment failure, measured from the date of initiation of CNS-penetrant TKI therapy. RESULTS A total of 147 patients were included (EGFR n = 94, ALK n = 52, both n = 1). In patients receiving radiation, larger metastases, neurologic symptoms, and receipt of steroids were more common. There were no significant differences between TKI and CNS radiation therapy plus TKI groups for any of the study outcomes, including time to progression (8.5 versus 6.9 mo, p = 0.13 [EFGR] and 11.4 versus 13.4 mo, p = 0.98 [ALK]), time to intracranial progression (14.8 versus 20.5 mo, p = 0.51 [EGFR] and 18.1 versus 21.8 mo, p = 0.65 [ALK]), or time to treatment failure (13.8 versus 8.6 mo, p = 0.26 [EGFR] and 13.5 versus 23.2 mo, p = 0.95 [ALK]). CONCLUSIONS These results provide preliminary evidence that intracranial activity of CNS-penetrant TKIs may enable local radiation to be deferred in appropriately selected patients without negatively affecting progression.
Collapse
Affiliation(s)
- Nicholas J Thomas
- Division of Medical Oncology, UCSF Helen Diller Comprehensive Cancer Center, San Francisco, California
| | - Nathaniel J Myall
- Department of Medicine, Division of Oncology, Stanford University, Stanford, California
| | - Fangdi Sun
- Division of Medical Oncology, UCSF Helen Diller Comprehensive Cancer Center, San Francisco, California
| | - Tejas Patil
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Rao Mushtaq
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Chandler Yu
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Sumi Sinha
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Erqi L Pollom
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford, California
| | - Seema Nagpal
- Department of Neurology, Stanford University, Stanford, California
| | - D Ross Camidge
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Chad G Rusthoven
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Steve E Braunstein
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Heather A Wakelee
- Department of Medicine, Division of Oncology, Stanford University, Stanford, California
| | - Caroline E McCoach
- Division of Medical Oncology, UCSF Helen Diller Comprehensive Cancer Center, San Francisco, California; Currently employed by Genentech Inc., South San Francisco, California.
| |
Collapse
|
42
|
Hanke B, Jünger ST, Kirches E, Waldt N, Schreiber J, Lücke E, Franke S, Sandalcioglu IE, Warnke JP, Meisel HJ, Prell J, Scheller C, Braunsdorf WEK, Preusser M, Schildhaus HU, Mawrin C. Frequency of actionable molecular drivers in lung cancer patients with precocious brain metastases. Clin Neurol Neurosurg 2021; 208:106841. [PMID: 34343913 DOI: 10.1016/j.clineuro.2021.106841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 11/27/2022]
Abstract
Brain metastases frequently occur during the course of disease in patients suffering from lung cancer. Occasionally, neurological symptoms caused by brain metastases (BM) might represent the first sign of systemic tumor disease (so called precocious metastases), leading to the detection of the primary lung tumor. The biological basis of precocious BM is largely unknown, and treatment options are not well established for this subgroup of patients. Therefore, we retrospectively analyzed 33 patients (24 non-small cell lung cancer (NSCLC)), 9 small cell lung cancer (SCLC)) presenting with precocious BM focusing on molecular alterations potentially relevant for the tumor's biology and treatment. We found five FGFR1 amplifications (4 adenocarcinoma, 1 SCLC) among 31 analyzed patients (16.1%), eight MET amplifications among 30 analyzed tumors (7 NSCLC, 1 SCLC; 26.7%), three EGFR mutations within 33 patients (all adenocarcinomas, 9.1%), and five KRAS mutations among 32 patients (all adenocarcinomas; 15.6%). No ALK, ROS1 or RET gene rearrangements were detected. Our findings suggest that patients with precocious BM of lung cancer harbor EGFR mutations, MET amplifications or FGFR1 amplifications as potential targeted treatment options.
Collapse
Affiliation(s)
- Benjamin Hanke
- Department of Neuropathology, Otto-von-Guericke University Magdeburg, Germany
| | - Stephanie T Jünger
- Centre for Neurosurgery, Department of General Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Elmar Kirches
- Department of Neuropathology, Otto-von-Guericke University Magdeburg, Germany
| | - Natalie Waldt
- Department of Neuropathology, Otto-von-Guericke University Magdeburg, Germany
| | - Jens Schreiber
- Department of Pneumonology, Otto-von-Guericke University Magdeburg, Germany
| | - Eva Lücke
- Department of Pneumonology, Otto-von-Guericke University Magdeburg, Germany
| | - Sabine Franke
- Department of Pathology, Otto-von-Guericke University Magdeburg, Germany
| | | | - Jan-Peter Warnke
- Department of Neurosurgery, Paracelsus Hospital Zwickau, Germany
| | - Hans-Jörg Meisel
- Department of Neurosurgery, Bergmannstrost Hospital Halle/Saale, Germany
| | - Julian Prell
- Department of Neurosurgery, University Hospital Halle/Saale, Germany
| | | | | | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Austria
| | | | - Christian Mawrin
- Department of Neuropathology, Otto-von-Guericke University Magdeburg, Germany.
| |
Collapse
|
43
|
Tsakonas G, Martín-Bernabé A, Rounis K, Moreno-Ruiz P, Botling J, De Petris L, Ylipää A, Mezheyeuski A, Micke P, Östman A, Ekman S. High Density of NRF2 Expression in Malignant Cells Is Associated with Increased Risk of CNS Metastasis in Early-Stage NSCLC. Cancers (Basel) 2021; 13:cancers13133151. [PMID: 34202448 PMCID: PMC8268817 DOI: 10.3390/cancers13133151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 01/14/2023] Open
Abstract
Simple Summary We retrospectively analyzed 304 patients with surgically removed non-small cell lung cancer (NSCLC). Multiplex antibody staining of nuclear factor erythroid 2-related factor 2 (NRF2) and thioredoxin reductase 1 (TrxR1) was conducted and scored in cytokeratin-positive (CK+) cells within the whole-tissue core as well as the tumor and stromal compartments of each tissue microarray (TMA) core. A high density of NRF2+/CK+ cells in the whole-tissue core compartment was an independent prognostic factor, with an eightfold increase in odds regarding the risk of relapse in the central nervous system (CNS). This is the first study to report a tumor-cell-associated protein biomarker for CNS relapse in early-stage lung cancer and the first trial to report the correlation between NRF2 expression and risk of CNS relapse. The results of our study may have an impact on the follow-up strategy for early-stage NSCLC patients and eventually improve their prognosis. Abstract Nuclear factor erythroid 2-related factor 2 (NRF2) protein expression promotes cancer progression in non-small cell lung cancer (NSCLC). However, its role in the clinical setting has not been established. We retrospectively analyzed data from 304 patients with surgically removed NSCLC. Multiplex antibody staining of NRF2 and thioredoxin reductase 1 (TrxR1) was conducted and scored in cytokeratin-positive (CK+) cells within the whole-tissue core as well as the tumor and stromal compartments of each tissue microarray (TMA) core. A high density of NRF2+/CK+ cells in the whole-tissue core compartment was correlated with a higher risk of central nervous system (CNS) relapse OR = 7.36 (95% CI: 1.64–33.06). The multivariate analysis showed an OR = 8.00 (95% CI: 1.70–37.60) for CNS relapse in NRF2+/CK+ high-density cases. The density of TrxR1+/CK+ cells failed to show any statistically significant risk of relapse. The OS analyses for NRF2+/CK+ and TrxR1+/CK+ cell density failed to show any statistical significance. This is the first study to report a correlation between NRF2+/CK+ cell density and the risk of CNS relapse in early-stage NSCLC. The results of our study may impact the follow-up strategy for early-stage NSCLC patients and eventually improve their prognosis.
Collapse
Affiliation(s)
- Georgios Tsakonas
- Thoracic Oncology Center, Theme Cancer, Karolinska University Hospital, Solna, 17164 Stockholm, Sweden; (K.R.); (L.D.P.); (S.E.)
- Department of Oncology–Pathology, Karolinska Institutet, 17164 Stockholm, Sweden; (A.M.-B.); (P.M.-R.); (A.Ö.)
- Correspondence: ; Tel.: +46-(0)762129941
| | - Alfonso Martín-Bernabé
- Department of Oncology–Pathology, Karolinska Institutet, 17164 Stockholm, Sweden; (A.M.-B.); (P.M.-R.); (A.Ö.)
| | - Konstantinos Rounis
- Thoracic Oncology Center, Theme Cancer, Karolinska University Hospital, Solna, 17164 Stockholm, Sweden; (K.R.); (L.D.P.); (S.E.)
| | - Pablo Moreno-Ruiz
- Department of Oncology–Pathology, Karolinska Institutet, 17164 Stockholm, Sweden; (A.M.-B.); (P.M.-R.); (A.Ö.)
| | - Johan Botling
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (J.B.); (A.M.); (P.M.)
| | - Luigi De Petris
- Thoracic Oncology Center, Theme Cancer, Karolinska University Hospital, Solna, 17164 Stockholm, Sweden; (K.R.); (L.D.P.); (S.E.)
- Department of Oncology–Pathology, Karolinska Institutet, 17164 Stockholm, Sweden; (A.M.-B.); (P.M.-R.); (A.Ö.)
| | - Antti Ylipää
- Genevia Technologies Oy, 33100 Tampere, Finland;
| | - Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (J.B.); (A.M.); (P.M.)
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (J.B.); (A.M.); (P.M.)
| | - Arne Östman
- Department of Oncology–Pathology, Karolinska Institutet, 17164 Stockholm, Sweden; (A.M.-B.); (P.M.-R.); (A.Ö.)
| | - Simon Ekman
- Thoracic Oncology Center, Theme Cancer, Karolinska University Hospital, Solna, 17164 Stockholm, Sweden; (K.R.); (L.D.P.); (S.E.)
- Department of Oncology–Pathology, Karolinska Institutet, 17164 Stockholm, Sweden; (A.M.-B.); (P.M.-R.); (A.Ö.)
| |
Collapse
|
44
|
Corroyer-Dulmont A, Valable S, Fantin J, Chatre L, Toutain J, Teulier S, Bazille C, Letissier E, Levallet J, Divoux D, Ibazizène M, Guillouet S, Perrio C, Barré L, Serres S, Sibson NR, Chapon F, Levallet G, Bernaudin M. Multimodal evaluation of hypoxia in brain metastases of lung cancer and interest of hypoxia image-guided radiotherapy. Sci Rep 2021; 11:11239. [PMID: 34045576 PMCID: PMC8159969 DOI: 10.1038/s41598-021-90662-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/05/2021] [Indexed: 02/04/2023] Open
Abstract
Lung cancer patients frequently develop brain metastases (BM). Despite aggressive treatment including neurosurgery and external-radiotherapy, overall survival remains poor. There is a pressing need to further characterize factors in the microenvironment of BM that may confer resistance to radiotherapy (RT), such as hypoxia. Here, hypoxia was first evaluated in 28 biopsies from patients with non‑small cell lung cancer (NSCLC) BM, using CA-IX immunostaining. Hypoxia characterization (pimonidazole, CA-IX and HIF-1α) was also performed in different preclinical NSCLC BM models induced either by intracerebral injection of tumor cells (H2030-Br3M, H1915) into the cortex and striatum, or intracardial injection of tumor cells (H2030-Br3M). Additionally, [18F]-FMISO-PET and oxygen-saturation-mapping-MRI (SatO2-MRI) were carried out in the intracerebral BM models to further characterize tumor hypoxia and evaluate the potential of Hypoxia-image-guided-RT (HIGRT). The effect of RT on proliferation of BM ([18F]-FLT-PET), tumor volume and overall survival was determined. We showed that hypoxia is a major yet heterogeneous feature of BM from lung cancer both preclinically and clinically. HIGRT, based on hypoxia heterogeneity observed between cortical and striatal metastases in the intracerebrally induced models, showed significant potential for tumor control and animal survival. These results collectively highlight hypoxia as a hallmark of BM from lung cancer and the value of HIGRT in better controlling tumor growth.
Collapse
Affiliation(s)
- Aurélien Corroyer-Dulmont
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France
- Medical Physics Department, CLCC François Baclesse, 14000, Caen, France
| | - Samuel Valable
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France
| | - Jade Fantin
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France
| | - Laurent Chatre
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France
| | - Jérôme Toutain
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France
| | - Sylvain Teulier
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France
- Department of Pulmonology and Thoracic Oncology, University Hospital of Caen, Caen, France
| | - Céline Bazille
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France
- Department of Pathology, University Hospital of Caen, Caen, France
| | - Elise Letissier
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France
| | - Jérôme Levallet
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France
| | - Didier Divoux
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France
| | - Méziane Ibazizène
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/LDM-TEP Group, GIP CYCERON, 14000, Caen, France
| | - Stéphane Guillouet
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/LDM-TEP Group, GIP CYCERON, 14000, Caen, France
| | - Cécile Perrio
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/LDM-TEP Group, GIP CYCERON, 14000, Caen, France
| | - Louisa Barré
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/LDM-TEP Group, GIP CYCERON, 14000, Caen, France
| | - Sébastien Serres
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Nicola R Sibson
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Françoise Chapon
- Department of Pathology, University Hospital of Caen, Caen, France
| | - Guénaëlle Levallet
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France
- Department of Pathology, University Hospital of Caen, Caen, France
| | - Myriam Bernaudin
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000, Caen, France.
| |
Collapse
|
45
|
Amin S, Baine M, Meza J, Lin C. The impact of treatment facility type on the survival of brain metastases patients regardless of the primary cancer type. BMC Cancer 2021; 21:387. [PMID: 33836694 PMCID: PMC8033704 DOI: 10.1186/s12885-021-08129-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cancer patients with brain metastases (BMs) require multidisciplinary care, and treatment facility may play a role. This study aimed to investigate the impact of receiving treatment at academic centers on the overall survival (OS) of cancer patients with brain metastases (BMs) regardless of the primary cancer site. METHODS This retrospective analysis of the National Cancer Database (NCDB) included patients diagnosed with non-small cell lung cancer, small-cell lung cancer, other types of lung cancer, breast cancer, melanoma, colorectal cancer, and kidney cancer and had brain metastases at the time of diagnosis. The data were extracted from the de-identified file of the NCDB, a joint program of the Commission on Cancer of the American College of Surgeons and the American Cancer Society. The Cox proportional hazard model adjusted for age at diagnosis, race, sex, place of living, income, education, primary tumor type, year of diagnosis, chemotherapy, radiation therapy (RT), and surgery of the primary cancer site was used to determine treatment facility-associated hazard ratios (HR) for survival. Overall survival was the primary outcome, which was analyzed with multivariable Cox proportional hazards regression modeling. RESULTS A total of 93,633 patients were analyzed, among whom 31,579/93,633 (34.09%) were treated at academic centers. Based on the log-rank analysis, patients who received treatment at an academic facility had significantly improved OS (median OS: 6.18, CI: 6.05-6.31 vs. 4.57, CI: 4.50-4.63 months; p < 0.001) compared to patients who were treated at non-academic facilities. In the multivariable Cox regression analysis, receiving treatment at an academic facility was associated with significantly improved OS (HR: 0.85, CI: 0.84-0.87; p < 0.001) compared to non-academic facility. CONCLUSIONS In this extensive analysis of the NCDB, receiving treatment at academic centers was associated with significantly improved OS compared to treatment at non-academic centers.
Collapse
Affiliation(s)
- Saber Amin
- Department of Radiation Oncology, University of Nebraska Medical Center, 986861 Nebraska Medical Center, Omaha, NE, 68198-6861, USA
| | - Michael Baine
- Department of Radiation Oncology, University of Nebraska Medical Center, 986861 Nebraska Medical Center, Omaha, NE, 68198-6861, USA
| | - Jane Meza
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, USA
| | - Chi Lin
- Department of Radiation Oncology, University of Nebraska Medical Center, 986861 Nebraska Medical Center, Omaha, NE, 68198-6861, USA.
| |
Collapse
|
46
|
Raffa EH, Branson HM, Ngan B, Alexander S, Abla O. Central nervous system relapse in a child with anaplastic large cell lymphoma: potential for new therapeutic strategies. Cancer Rep (Hoboken) 2021; 4:e1377. [PMID: 33822480 PMCID: PMC8551994 DOI: 10.1002/cnr2.1377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Central nervous system (CNS) relapse is rare in childhood anaplastic large cell lymphoma (ALCL) and is associated with a poor prognosis. CASE We describe an 8-year-old boy with ALCL who developed an early CNS relapse without initial CNS disease. Despite aggressive medical management, the patient's neurological status deteriorated rapidly and he died shortly after. CONCLUSION Optimal treatment for children with relapsed ALCL involving the CNS remains unclear. Novel agents, including ALK inhibitors, that have CNS-penetration might be helpful and pediatric studies are warranted.
Collapse
Affiliation(s)
- Enass H Raffa
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Helen M Branson
- Division of Neuroradiology, Department of Diagnostic Radiology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Bo Ngan
- Division of Pathology, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Sarah Alexander
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Oussama Abla
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Correlation of Clinical Parameters with Intracranial Outcome in Non-Small Cell Lung Cancer Patients with Brain Metastases Treated with Pd-1/Pd-L1 Inhibitors as Monotherapy. Cancers (Basel) 2021; 13:cancers13071562. [PMID: 33805335 PMCID: PMC8036699 DOI: 10.3390/cancers13071562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary We analyzed data from patients with advanced Non-Small Lung Cancer (NSCLC) and brain metastases (BM) who were treated with PD-1/PD-L1 inhibitors as monotherapy at Karolinska University Hospital, Sweden, and University Hospital of Heraklion, Greece in order to identify parameters that can potentially affect the intracranial (IC) outcome of these individuals. We assessed IC immunotherapy (I-O) efficacy in the patients who had BM prior to I-O administration, radiological evaluation for IC response assessment and they had not received any local CNS treatment modality for ≥3 months before I-O initiation. Age < 70 years old, prior radiation treatment to CNS, and primary (BM present at diagnosis) BM were associated, at a statistically significant level, with an increased probability of achieving IC disease control in our cohort. These results suggest that specific clinical parameters may potentially influence IC outcomes in NSCLC patients with BM. Abstract There is a paucity of biomarkers for the prediction of intracranial (IC) outcome in immune checkpoint inhibitor (ICI)-treated non-small cell lung cancer (NSCLC) patients (pts) with brain metastases (BM). We identified 280 NSCLC pts treated with ICIs at Karolinska University Hospital, Sweden, and University Hospital of Heraklion, Greece. The inclusion criteria for response assessment were brain metastases (BM) prior to ICI administration, radiological evaluation with CT or MRI for IC response assessment, PD-1/PD-L1 inhibitors as monotherapy, and no local central nervous system (CNS) treatment modalities for ≥3 months before ICI initiation. In the IC response analysis, 33 pts were included. Non-primary (BM not present at diagnosis) BM, odds ratio (OR): 13.33 (95% CI: 1.424–124.880, p = 0.023); no previous brain radiation therapy (RT), OR: 5.49 (95% CI: 1.210–25.000, p = 0.027); and age ≥70 years, OR: 6.19 (95% CI: 1.27–30.170, p = 0.024) were associated with increased probability of IC disease progression. Two prognostic groups (immunotherapy (I-O) CNS score) were created based on the abovementioned parameters. The I-O CNS poor prognostic group B exhibited a higher probability for IC disease progression, OR: 27.50 (95% CI: 2.88–262.34, p = 0.004). Age, CNS radiotherapy before the start of ICI treatment, and primary brain metastatic disease can potentially affect the IC outcome of NSCLC pts with BM.
Collapse
|
48
|
Marchand-Crety C, Riverain J, Drouet Y, Felici F, Jeandidier CL, Thariat J, Servagi-Vernat S. A new model outperforming RPA and DS-GPA scores for individualized survival prediction of patients following whole brain irradiation for brain metastasis. Cancer Radiother 2021; 25:447-456. [PMID: 33678525 DOI: 10.1016/j.canrad.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE Survival after whole brain radiation therapy (WBRT) in patients with multiple brain metastases (BM) is currently predicted by group-based scoring systems with limited usability for decision. We aimed to develop a more relevant individualized predictive model than Radiation Therapy Oncology Group - Recursive Partitioning Analysis (RTOG-RPA) and Diagnosis - Specific Graded Prognostic Assessment (DS-GPA) for patients with limited life-expectancy. METHODS Based on a Discovery cohort of patients undergoing WBRT, multivariable piecewise Cox regression models with time cut-offs at 1 and 3 months were developed to predict overall survival (OS). A final parsimonious model was defined, and an external validation cohort was used to assess its discrimination and calibration at one, six, and 12 months. RESULTS In the 173-patient Discovery cohort, the majority of patients had primary lung cancer (56%), presence of extracranial disease (ECD) (75%), Eastern Cooperative Oncolgy Group - Performance Status (ECOG-PS) score 1 (41%) and no intracranial hypertension (ICH) (74%). Most patients were classified as the RPA class II (48%). The final piecewise Cox model was based on primary site, age, ECD, ECOG-PS and ICH. An external validation of the model was carried out using a cohort of 79 patients. Individualized survival estimates obtained with this model outperformed the RPA and DS-GPA scores for overall survival prediction at 1-month, 6-months and 12- months in both Discovery and Validation cohorts. A R/Shiny web application was developed to obtain individualized predictions for new patients, providing an easy-to-use tool for clinicians and researchers. CONCLUSION Our model provides individualized estimates of survival for poor prognosis patients undergoing WBRT, outperforming actual scoring systems.
Collapse
Affiliation(s)
- C Marchand-Crety
- Department of Radiation Oncology, Institut Godinot, Reims, France.
| | - J Riverain
- Department of Radiation Oncology, Centre François Baclesse, ARCHADE, Caen, France; Laboratoire de physique corpusculaire IN2P3/ENSICAEN, France
| | - Y Drouet
- Centre Léon Bérard, Département Prévention et Santé Publique, Lyon, France; Université de Lyon, CNRS UMR 5558 LBBE, Villeurbanne, France
| | - F Felici
- Department of Radiation Oncology, Institut Godinot, Reims, France
| | - C L Jeandidier
- Department of Radiation Oncology, Centre Paul Strauss, Unicancer, Strasbourg, France
| | - J Thariat
- Department of Radiation Oncology, Centre François Baclesse, ARCHADE, Caen, France; Laboratoire de physique corpusculaire IN2P3/ENSICAEN, France; UMR6534 Unicaen - Normandie Université, France
| | - S Servagi-Vernat
- Department of Radiation Oncology, Institut Godinot, Reims, France
| |
Collapse
|
49
|
Lin B, Huang D, Du H, Fan J, Zhang Y, Feng G, Gao F, Du XB. Whole-Brain Radiation Therapy With Simultaneous Integrated Boost Versus Whole-Brain Radiation Therapy Plus Stereotactic Radiosurgery for the Treatment of Brain Metastasis From Lung Cancer. Front Oncol 2021; 11:631422. [PMID: 33747953 PMCID: PMC7973358 DOI: 10.3389/fonc.2021.631422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/01/2021] [Indexed: 11/15/2022] Open
Abstract
Radiotherapy is one of the most important treatments for brain metastasis (BM). This study aimed to assess whether whole-brain radiation therapy (WBRT) with simultaneous integrated boost (SIB) provided any therapeutic benefit compared to WBRT followed by stereotactic radiosurgery (SRS). Seventy-two consecutive cases of lung cancer with BM treated from January 2014 to June 2020 were analyzed retrospectively. Thirty-seven patients were treated with WBRT (30 Gy in 10 fractions) and SIB (45 Gy in 10 fractions), and 35 patients were treated with WBRT (30 Gy in ten fractions) followed by SRS (16–24 Gy according to the maximum tumor diameter). The primary endpoint was intracranial progression-free survival (PFS). The secondary endpoints were intracranial objective response (partial and complete responses), pattern of intracranial progression, overall survival (OS), and toxicity. The WBRT + SIB group had a significantly longer median intracranial PFS (9.1 vs. 5.9 months, P = 0.001) than the WBRT + SRS group. The intracranial objective response rate was 67.6% and 62.9% in the WBRT + SIB and in WBRT + SRS groups, respectively (P = 0.675). The incidence of progression outside the P-GTV in the WBRT + SIB group was significantly lower than that in the WBRT + SRS group (39.4% vs. 75.0%, P = 0.004). The median OS was 24.3 and 20.3 months in the WBRT + SIB and WBRT + SRS groups, respectively (P = 0.205). There was no significant difference in the incidence of grade 3 or worse adverse reactions between the two groups. Compared to treatment with WBRT + SRS, that with WBRT + SIB for BM appeared to contribute to local control.
Collapse
Affiliation(s)
- Binwei Lin
- Department of Oncology, Mian Yang Central Hospital, Mianyang, China
| | - Dan Huang
- Radiology Department, Mian Yang Central Hospital, Mianyang, China
| | - Huan Du
- Department of Oncology, Mian Yang Central Hospital, Mianyang, China.,Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nan Chong, China
| | - Jinjia Fan
- Department of Oncology, Mian Yang Central Hospital, Mianyang, China.,Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nan Chong, China
| | - Yu Zhang
- Department of Oncology, Mian Yang Central Hospital, Mianyang, China
| | - Gang Feng
- Department of Oncology, Mian Yang Central Hospital, Mianyang, China
| | - Feng Gao
- Department of Oncology, Mian Yang Central Hospital, Mianyang, China
| | - Xiao Bo Du
- Department of Oncology, Mian Yang Central Hospital, Mianyang, China
| |
Collapse
|
50
|
Li H, Tong F, Meng R, Peng L, Wang J, Zhang R, Dong X. E2F1-mediated repression of WNT5A expression promotes brain metastasis dependent on the ERK1/2 pathway in EGFR-mutant non-small cell lung cancer. Cell Mol Life Sci 2021; 78:2877-2891. [PMID: 33078208 PMCID: PMC11072416 DOI: 10.1007/s00018-020-03678-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022]
Abstract
Brain metastasis (BM) is associated with poor prognosis in patients with advanced non-small cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) mutation reportedly enhances the development of BM. However, the exact mechanism of how EGFR-mutant NSCLC contributes to BM remains unknown. Herein, we found the protein WNT5A, was significantly downregulated in BM tissues and EGFR-mutant samples. In addition, the overexpression of WNT5A inhibited the growth, migration, and invasion of EGFR-mutant cells in vitro and retarded tumor growth and metastasis in vivo compared with the EGFR wide-type cells. We demonstrated a molecular mechanism whereby WNT5A be negatively regulated by transcription factor E2F1, and ERK1/2 inhibitor (U0126) suppressed E2F1's regulation of WNT5A expression in EGFR-mutant cells. Furthermore, WNT5A inhibited β-catenin activity and the transcriptional levels of its downstream genes in cancer progression. Our research revealed the role of WNT5A in NSCLC BM with EGFR mutation, and proved that E2F1-mediated repression of WNT5A was dependent on the ERK1/2 pathway, supporting the notion that targeting the ERK1/2-E2F1-WNT5A pathway could be an effective strategy for treating BM in EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Huanhuan Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Fan Tong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Ling Peng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Jiaojiao Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Ruiguang Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| |
Collapse
|