1
|
Chiriac R, Gross Z, Donzel M. Atypical leukaemic presentation of CCND1-negative mantle cell lymphoma. BMJ Case Rep 2025; 18:e264371. [PMID: 40262918 DOI: 10.1136/bcr-2024-264371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Affiliation(s)
- Radu Chiriac
- Hematology laboratory, Hospices Civils de Lyon, Lyon, France
| | - Zofia Gross
- Hematology laboratory, Hospices Civils de Lyon, Lyon, France
| | - Marie Donzel
- Pathology department, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
2
|
Ip A, Della Pia A, Goy AH. SOHO State of the Art Updates and Next Questions: Treatment Evolution of Mantle Cell Lymphoma: Navigating the Different Entities and Biological Heterogeneity of Mantle Cell Lymphoma in 2024. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:491-505. [PMID: 38493059 DOI: 10.1016/j.clml.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 03/18/2024]
Abstract
Progress in mantle cell lymphoma (MCL) has led to significant improvement in outcomes of patients even in the real world (RW) setting albeit to a lesser degree. In parallel to the demonstration of benefit using combination therapy with rituximab plus high-dose cytarabine (R-AraC) as well as dose intensive therapy-autologous stem cell transplantation (DIT-ASCT) consolidation and maintenance, it became clear over the last 2 decades that MCL is a highly heterogenous disease at the molecular level, explaining differences observed in clinical behavior and response to therapy. While clinical prognostic factors and models have helped stratify patients with distinct outcomes, they failed to help guide therapy. The identification of molecular high-risk (HR) features, in particular, but not only, p53 aberrations (including mutations and deletions [del]), as well as complex karyotype (CK), has allowed to identify subsets of patients with poorer outcomes (median overall survival [OS] <2 years) regardless of conventional therapies used. The constant pattern of relapse seen in MCL has fueled sustained and productive efforts, with 7 novel agents approved in the United States (US), showing high and durable efficacy even in HR and chemo-refractory patients and likely curing a subset of patients in the relapsed or refractory (R/R) setting. Progress in diagnostics, in particular next-generation sequencing (NGS), which is accessible in routine practice nowadays, can help recognize patients with HR features, well beyond MIPI or Ki-67 prognostication, although the impact on decision making is still unclear. The era of integrating novel agents into our prior standard of care (SOC) has begun with a confirmed benefit, for example, ibrutinib (Ib) in the TRIANGLE study, defining the first new potential SOC in younger patients in over 30 years. Expanding on novel agents, either in combination, sequentially or to replace chemotherapy altogether, using biological doublets or triplets has led to a median progression-free survival (PFS) in excess of 72 months, certainly competitive with prior SOC and will continue to reshape the management of MCL patients. Achieving minimal residual disease negative (MRD-ve) status is becoming a new endpoint in MCL, and customizing maintenance and/or de-escalation/consolidation strategies is within reach, although it will require prospective, built-in MRD-based approaches, with the goal of eliminating subclinical disease and not simply delaying time to relapse. Taking into account the biological diversity of MCL is now feasible in routine clinical practice and has already helped recognize what not to do for HR patients (i.e., avoid intensive induction chemotherapy and/or ASCT for p53 mutated patients) as well as identify promising novel options. Ongoing and future work will help expand on these dedicated approaches, to further improve the management and outcomes of all MCL patients.
Collapse
Affiliation(s)
- Andrew Ip
- Lymphoma Division, John Theurer Cancer Center at Hackensack Meridian Health, Hackensack, NJ
| | - Alexandra Della Pia
- Lymphoma Division, John Theurer Cancer Center at Hackensack Meridian Health, Hackensack, NJ
| | - Andre H Goy
- Lymphoma Division, John Theurer Cancer Center at Hackensack Meridian Health, Hackensack, NJ.
| |
Collapse
|
3
|
Gallucci Figorelle L, Galvão PT, de Lima FMR, Marimon P, Pentagna N, Milito C, Schaffel R, Carneiro K. Mantle Cell Lymphoma Under the Scope of Personalized Medicine: Perspective and Directions. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:433-445. [PMID: 38641485 DOI: 10.1016/j.clml.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/24/2024] [Indexed: 04/21/2024]
Abstract
Mantle cell lymphoma (MCL) is a rare, incurable non-Hodgkin's lymphoma characterized by naive B cells infiltrating the lymphoid follicle's mantle zone. A key feature of MCL is the cytogenetic abnormality t(11;14) (q13:q14), found in 95% of cases, leading to Cyclin D1 overexpression resulting in uncontrolled cell cycle progression and genetic instability. Occasionally, Cyclin D2 or D3 overexpression can substitute for Cyclin D1, causing similar effects. The transcription factor SOX11 is a hallmark of classical Cyclin D1-positive MCL and also in cases without the typical t(11;14) abnormality, making it an important diagnostic marker. MCL's development necessitates secondary genetic changes, including mutations in the ATM, TP53, and NOTCH1 genes, with the TP53 mutation being the only genetic biomarker with established clinical prognostic value. The Mantle Cell Lymphoma International Prognostic Index (MIPI) score, which considers age, performance status, serum LDH levels, and leukocyte count, stratifies patients into risk groups. Histologic variants of MCL, such as classic, blastoid, and pleomorphic, offer additional prognostic information. Recent research highlights new mutations potentially tied to specific populations among MCL patients, suggesting the benefit of personalized management for better predicting outcomes like progression-free survival. This approach could lead to more effective, risk-adapted treatment strategies. However, challenges remain in patient stratification and in developing new therapeutic targets for MCL. This review synthesizes current knowledge on genetic mutations in MCL and their impact on prognosis. It aims to explore the prognostic value of genetic markers related to population traits, emphasizing the importance of tailored molecular medicine in MCL.
Collapse
Affiliation(s)
- Lara Gallucci Figorelle
- Laboratório de Proliferação e Diferenciação Celular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Programa de Pós-graduação em Medicina (Anatomia Patológica), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Peterson Tiago Galvão
- Laboratório de Proliferação e Diferenciação Celular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Programa de Pós-graduação em Medicina (Anatomia Patológica), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Patricia Marimon
- Laboratório de Proliferação e Diferenciação Celular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathalia Pentagna
- Programa de Pós-graduação em Medicina (Anatomia Patológica), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiane Milito
- Programa de Pós-graduação em Medicina (Anatomia Patológica), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rony Schaffel
- Programa de Pós-graduação em Medicina (Anatomia Patológica), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katia Carneiro
- Programa de Pós-graduação em Medicina (Anatomia Patológica), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Li S, Tang G, Jain P, Lin P, Xu J, Miranda RN, Cheng J, Yin CC, You MJ, Wang ML, Medeiros LJ. SOX11+ Large B-Cell Neoplasms: Cyclin D1-Negative Blastoid/Pleomorphic Mantle Cell Lymphoma or Large B-Cell Lymphoma? Mod Pathol 2024; 37:100405. [PMID: 38104893 DOI: 10.1016/j.modpat.2023.100405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Large or blastoid B-cell neoplasms that are SOX11+ are a diagnostic dilemma and raise a differential diagnosis of cyclin D1-negative blastoid/pleomorphic mantle cell lymphoma (MCL) versus diffuse large B-cell lymphoma (DLBCL) or blastoid high-grade B-cell lymphoma (HGBL) with aberrant SOX11 expression. Here we report a study cohort of 13 SOX11+ large/blastoid B-cell neoplasms. Fluorescence in situ hybridization analysis was negative for CCND1 rearrangement in all 13 cases; 1 of 8 (12.5%) cases tested showed CCND2 rearrangement and 2 (25%) cases had extracopies of CCND2. Gene expression profiling showed that the study group had a gene expression signature similar to cyclin D1+ blastoid/pleomorphic MCL but different from DLBCL. Principal component analysis revealed that the cohort cases overlapped with cyclin D1+ blastoid/pleomorphic MCL but had minimal overlap with DLBCL. All patients in the cohort had clinicopathologic features similar to those reported for patients with cyclin D1+ MCL. We also performed a survey of SOX11 expression in a group of 85 cases of DLBCL and 24 cases of blastoid HGBL. SOX11 expression showed a 100% specificity and positive predictive value for the diagnosis of MCL. Overall, the results support the conclusion that large or blastoid B-cell neoplasms that are positive for SOX11 are best classified as cyclin D1-negative blastoid/pleomorphic MCL, and not as DLBCL or blastoid HGBL. We also conclude that SOX11 is a specific marker for the diagnosis of MCL, including cyclin D1-negative blastoid/pleomorphic MCL cases and should be performed routinely on blastoid/large B-cell neoplasms to help identify potential cases of cyclin D1-negative blastoid/pleomorphic MCL.
Collapse
Affiliation(s)
- Shaoying Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Preetesh Jain
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pei Lin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jie Xu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roberto N Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joanne Cheng
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - C Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - M James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael L Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
5
|
Karolová J, Kazantsev D, Svatoň M, Tušková L, Forsterová K, Maláriková D, Benešová K, Heizer T, Dolníková A, Klánová M, Winkovska L, Svobodová K, Hojný J, Krkavcová E, Froňková E, Zemanová Z, Trněný M, Klener P. Sequencing-based analysis of clonal evolution of 25 mantle cell lymphoma patients at diagnosis and after failure of standard immunochemotherapy. Am J Hematol 2023; 98:1627-1636. [PMID: 37605345 DOI: 10.1002/ajh.27044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/03/2023] [Accepted: 07/16/2023] [Indexed: 08/23/2023]
Abstract
Our knowledge of genetic aberrations, that is, variants and copy number variations (CNVs), associated with mantle cell lymphoma (MCL) relapse remains limited. A cohort of 25 patients with MCL at diagnosis and the first relapse after the failure of standard immunochemotherapy was analyzed using whole-exome sequencing. The most frequent variants at diagnosis and at relapse comprised six genes: TP53, ATM, KMT2D, CCND1, SP140, and LRP1B. The most frequent CNVs at diagnosis and at relapse included TP53 and CDKN2A/B deletions, and PIK3CA amplifications. The mean count of mutations per patient significantly increased at relapse (n = 34) compared to diagnosis (n = 27). The most frequent newly detected variants at relapse, LRP1B gene mutations, correlated with a higher mutational burden. Variant allele frequencies of TP53 variants increased from 0.35 to 0.76 at relapse. The frequency and length of predicted CNVs significantly increased at relapse with CDKN2A/B deletions being the most frequent. Our data suggest, that the resistant MCL clones detected at relapse were already present at diagnosis and were selected by therapy. We observed enrichment of genetic aberrations of DNA damage response pathway (TP53 and CDKN2A/B), and a significant increase in MCL heterogeneity. We identified LRP1B inactivation as a new potential driver of MCL relapse.
Collapse
Affiliation(s)
- J Karolová
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine - Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - D Kazantsev
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - M Svatoň
- CLIP - Childhood Leukaemia Investigation Prague, Department of Pediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - L Tušková
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - K Forsterová
- First Department of Medicine - Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - D Maláriková
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine - Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - K Benešová
- First Department of Medicine - Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - T Heizer
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - A Dolníková
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - M Klánová
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine - Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - L Winkovska
- CLIP - Childhood Leukaemia Investigation Prague, Department of Pediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - K Svobodová
- Center for Oncocytogenetics, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University and General University Hospital, Prague, Czech Republic
| | - J Hojný
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - E Krkavcová
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - E Froňková
- CLIP - Childhood Leukaemia Investigation Prague, Department of Pediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Z Zemanová
- Center for Oncocytogenetics, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University and General University Hospital, Prague, Czech Republic
| | - M Trněný
- First Department of Medicine - Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - P Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine - Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
6
|
Deep Neural Networks and Machine Learning Radiomics Modelling for Prediction of Relapse in Mantle Cell Lymphoma. Cancers (Basel) 2022; 14:cancers14082008. [PMID: 35454914 PMCID: PMC9028737 DOI: 10.3390/cancers14082008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Mantle cell lymphoma (MCL) is an aggressive lymphoid tumour with a poor prognosis. There exist no routine biomarkers for the early prediction of relapse. Our study compared the potential of radiomics-based machine learning and 3D deep learning models as non-invasive biomarkers to risk-stratify MCL patients, thus promoting precision imaging in clinical oncology. Abstract Mantle cell lymphoma (MCL) is a rare lymphoid malignancy with a poor prognosis characterised by frequent relapse and short durations of treatment response. Most patients present with aggressive disease, but there exist indolent subtypes without the need for immediate intervention. The very heterogeneous behaviour of MCL is genetically characterised by the translocation t(11;14)(q13;q32), leading to Cyclin D1 overexpression with distinct clinical and biological characteristics and outcomes. There is still an unfulfilled need for precise MCL prognostication in real-time. Machine learning and deep learning neural networks are rapidly advancing technologies with promising results in numerous fields of application. This study develops and compares the performance of deep learning (DL) algorithms and radiomics-based machine learning (ML) models to predict MCL relapse on baseline CT scans. Five classification algorithms were used, including three deep learning models (3D SEResNet50, 3D DenseNet, and an optimised 3D CNN) and two machine learning models based on K-nearest Neighbor (KNN) and Random Forest (RF). The best performing method, our optimised 3D CNN, predicted MCL relapse with a 70% accuracy, better than the 3D SEResNet50 (62%) and the 3D DenseNet (59%). The second-best performing method was the KNN-based machine learning model (64%) after principal component analysis for improved accuracy. Our optimised CNN developed by ourselves correctly predicted MCL relapse in 70% of the patients on baseline CT imaging. Once prospectively tested in clinical trials with a larger sample size, our proposed 3D deep learning model could facilitate clinical management by precision imaging in MCL.
Collapse
|
7
|
Yi S, Yan Y, Jin M, Bhattacharya S, Wang Y, Wu Y, Yang L, Gine E, Clot G, Chen L, Yu Y, Zou D, Wang J, Phan AT, Cui R, Li F, Sun Q, Zhai Q, Wang T, Yu Z, Liu L, Liu W, Lyv R, Sui W, Huang W, Xiong W, Wang H, Li C, Xiao Z, Hao M, Wang J, Cheng T, Bea S, Herrera AF, Danilov A, Campo E, Ngo VN, Qiu L, Wang L. Genomic and transcriptomic profiling reveals distinct molecular subsets associated with outcomes in mantle cell lymphoma. J Clin Invest 2022; 132:e153283. [PMID: 34882582 PMCID: PMC8803323 DOI: 10.1172/jci153283] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a phenotypically and genetically heterogeneous malignancy in which the genetic alterations determining clinical indications are not fully understood. Here, we performed a comprehensive whole-exome sequencing analysis of 152 primary samples derived from 134 MCL patients, including longitudinal samples from 16 patients and matched RNA-Seq data from 48 samples. We classified MCL into 4 robust clusters (C1-C4). C1 featured mutated immunoglobulin heavy variable (IGHV), CCND1 mutation, amp(11q13), and active B cell receptor (BCR) signaling. C2 was enriched with del(11q)/ATM mutations and upregulation of NF-κB and DNA repair pathways. C3 was characterized by mutations in SP140, NOTCH1, and NSD2, with downregulation of BCR signaling and MYC targets. C4 harbored del(17p)/TP53 mutations, del(13q), and del(9p), and active MYC pathway and hyperproliferation signatures. Patients in these 4 clusters had distinct outcomes (5-year overall survival [OS] rates for C1-C4 were 100%, 56.7%, 48.7%, and 14.2%, respectively). We also inferred the temporal order of genetic events and studied clonal evolution of 16 patients before treatment and at progression/relapse. Eleven of these samples showed drastic clonal evolution that was associated with inferior survival, while the other samples showed modest or no evolution. Our study thus identifies genetic subsets that clinically define this malignancy and delineates clonal evolution patterns and their impact on clinical outcomes.
Collapse
Affiliation(s)
- Shuhua Yi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuting Yan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Systems Biology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Monrovia, California, USA
| | - Meiling Jin
- Department of Systems Biology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Monrovia, California, USA
| | - Supriyo Bhattacharya
- Division of Translational Bioinformatics, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Irwindale, California, USA
| | - Yi Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yiming Wu
- Department of Systems Biology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Monrovia, California, USA
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Monrovia, California, USA
| | - Eva Gine
- Lymphoid Neoplasm Program, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hematology Department, Hospital Clínic, Departament d’Anatomia Patològica, Universitat de Barcelona, Barcelona, Spain
| | - Guillem Clot
- Lymphoid Neoplasm Program, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hematology Department, Hospital Clínic, Departament d’Anatomia Patològica, Universitat de Barcelona, Barcelona, Spain
| | - Lu Chen
- Toni Stephenson Lymphoma Center, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Ying Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Dehui Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - An T. Phan
- Department of Systems Biology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Monrovia, California, USA
| | - Rui Cui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Hematology, Tianjin First Center Hospital, Tianjin, China
| | - Fei Li
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Institute of Hematology, Academy of Clinical Medicine of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Qi Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qiongli Zhai
- Department of Pathology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Tingyu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhen Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lanting Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Wei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Rui Lyv
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Weiwei Sui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Wenyang Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Wenjie Xiong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Huijun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Chengwen Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhijian Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Silvia Bea
- Lymphoid Neoplasm Program, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hematology Department, Hospital Clínic, Departament d’Anatomia Patològica, Universitat de Barcelona, Barcelona, Spain
| | - Alex F. Herrera
- Toni Stephenson Lymphoma Center, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California, USA
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Alexey Danilov
- Toni Stephenson Lymphoma Center, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California, USA
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Elias Campo
- Lymphoid Neoplasm Program, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hematology Department, Hospital Clínic, Departament d’Anatomia Patològica, Universitat de Barcelona, Barcelona, Spain
| | - Vu N. Ngo
- Department of Systems Biology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Monrovia, California, USA
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Institute of Hematology, Academy of Clinical Medicine of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Lili Wang
- Department of Systems Biology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Monrovia, California, USA
- Toni Stephenson Lymphoma Center, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| |
Collapse
|
8
|
Lisson CS, Lisson CG, Achilles S, Mezger MF, Wolf D, Schmidt SA, Thaiss WM, Bloehdorn J, Beer AJ, Stilgenbauer S, Beer M, Götz M. Longitudinal CT Imaging to Explore the Predictive Power of 3D Radiomic Tumour Heterogeneity in Precise Imaging of Mantle Cell Lymphoma (MCL). Cancers (Basel) 2022; 14:393. [PMID: 35053554 PMCID: PMC8773890 DOI: 10.3390/cancers14020393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
The study's primary aim is to evaluate the predictive performance of CT-derived 3D radiomics for MCL risk stratification. The secondary objective is to search for radiomic features associated with sustained remission. Included were 70 patients: 31 MCL patients and 39 control subjects with normal axillary lymph nodes followed over five years. Radiomic analysis of all targets (n = 745) was performed and features selected using the Mann Whitney U test; the discriminative power of identifying "high-risk MCL" was evaluated by receiver operating characteristics (ROC). The four radiomic features, "Uniformity", "Entropy", "Skewness" and "Difference Entropy" showed predictive significance for relapse (p < 0.05)-in contrast to the routine size measurements, which showed no relevant difference. The best prognostication for relapse achieved the feature "Uniformity" (AUC-ROC-curve 0.87; optimal cut-off ≤0.0159 to predict relapse with 87% sensitivity, 65% specificity, 69% accuracy). Several radiomic features, including the parameter "Short Axis," were associated with sustained remission. CT-derived 3D radiomics improves the predictive estimation of MCL patients; in combination with the ability to identify potential radiomic features that are characteristic for sustained remission, it may assist physicians in the clinical management of MCL.
Collapse
Affiliation(s)
- Catharina Silvia Lisson
- Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Center for Personalized Medicine (ZPM), University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Artificial Intelligence in Experimental Radiology (XAIRAD), Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Christoph Gerhard Lisson
- Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Sherin Achilles
- Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Marc Fabian Mezger
- Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Artificial Intelligence in Experimental Radiology (XAIRAD), Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Visual Computing Group, Institute of Media Informatics, Ulm University, James-Franck-Ring, 89081 Ulm, Germany
| | - Daniel Wolf
- Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Artificial Intelligence in Experimental Radiology (XAIRAD), Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Visual Computing Group, Institute of Media Informatics, Ulm University, James-Franck-Ring, 89081 Ulm, Germany
| | - Stefan Andreas Schmidt
- Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Center for Personalized Medicine (ZPM), University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Wolfgang M Thaiss
- Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Artificial Intelligence in Experimental Radiology (XAIRAD), Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Department of Nuclear Medicine, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Johannes Bloehdorn
- Department of Internal Medicine III, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Ambros J Beer
- Center for Personalized Medicine (ZPM), University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Artificial Intelligence in Experimental Radiology (XAIRAD), Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Department of Nuclear Medicine, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Center for Translational Imaging "From Molecule to Man" (MoMan), Department of Internal Medicine II, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- i2SouI-Innovative Imaging in Surgical Oncology Ulm, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Comprehensive Cancer Center Ulm (CCCU), University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Meinrad Beer
- Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Center for Personalized Medicine (ZPM), University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Artificial Intelligence in Experimental Radiology (XAIRAD), Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Center for Translational Imaging "From Molecule to Man" (MoMan), Department of Internal Medicine II, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- i2SouI-Innovative Imaging in Surgical Oncology Ulm, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Michael Götz
- Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Artificial Intelligence in Experimental Radiology (XAIRAD), Department of Diagnostic and Interventional Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- German Cancer Research Center (DKFZ), Division Medical Image Computing, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
Goy A. Exploiting gene mutations and biomarkers to guide treatment recommendations in mantle cell lymphoma. Expert Rev Hematol 2021; 14:927-943. [PMID: 34253131 DOI: 10.1080/17474086.2021.1950529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION While there has been an improvement in the treatment of mantle cell lymphoma (MCL) in both median progression-free survival (PFS; >7-8 years) and overall survival (OS; >10-12 years), patients with high-risk features such as high risk MIPI (mantle cell international prognostic index), high Ki-67 (≥30%), or blastoid variants still carry poor outcome with a median OS of 3 years. Furthermore, patients with high-risk molecular features, such as TP53 mutations, show dismal outcome, with a median OS of 1.8 years, regardless of therapy used. Further studies have led to the development of six novel drugs approved for the treatment of relapse/refractory (R/R) MCL, leading to improved survival even in refractory or high-risk patients. AREAS COVERED This review covers clinical biological and molecular features that impact MCL outcome with current standards. Beyond the recognition of separate subentities, we review how high-risk molecular features have paved the way towards a new paradigm away from chemoimmunotherapy. EXPERT OPINION Progress in novel therapies and in routine diagnostics, particularly next-generation sequencing (NGS), support the development of new treatment strategies, not based on the dose intensity/age dichotomy, which may prevent the need for chemotherapy and improve outcome across MCL including in high-risk subsets.
Collapse
Affiliation(s)
- Andre Goy
- John Theurer Cancer Center, Hackensack University Medical Center, NJ
| |
Collapse
|
10
|
Jing C, Zheng Y, Feng Y, Cao X, Xu C. Prognostic significance of p53, Sox11, and Pax5 co-expression in mantle cell lymphoma. Sci Rep 2021; 11:11896. [PMID: 34099776 PMCID: PMC8185106 DOI: 10.1038/s41598-021-91433-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 05/24/2021] [Indexed: 02/05/2023] Open
Abstract
Mantle cell lymphoma (MCL) is a relatively rare subtype of non-Hodgkin’s lymphoma. To identify molecular biomarkers in MCL, we performed immunohistochemistry tissue arrays using biopsies from 64 MCL patients diagnosed in West China Hospital from 2012 to 2016. TP53 mutation status in those patients was also examined by sequencing. The sequencing results showed TP53 mutations were highly heterogeneous in MCL. We identified four novel TP53 mutations in MCL: P151R, G199R, V218E, and G325R. The MCL patients with TP53 mutations had inferior progression-free survival (PFS, p = 0.002) and overall survival (OS, p = 0.011). Tissue array results showed the expression of p53, Sox11, or Pax5 alone did not correlate with the patient PFS and OS. However, the MCL patients with triple-positive expression of p53/Sox11/Pax5 had inferior PFS (p = 0.008) and OS (p = 0.002). Such risk stratification was independent to the mantle cell lymphoma international prognostic index (MIPI), Ki-67 value, and TP53 mutation status of the patients. The triple-positive patients might represent a subtype of high-risk MCL. Our findings might indicate a novel way to stratify MCL and predict patients’ prognosis.
Collapse
Affiliation(s)
- Caixia Jing
- Department of Hematology/Hematology Research Laboratory, West China Hospital, Sichuan University, #37 Guo Xue Xiang Street, Chengdu, 610041, China.,Department of Hematology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhuan Zheng
- Department of Hematology/Hematology Research Laboratory, West China Hospital, Sichuan University, #37 Guo Xue Xiang Street, Chengdu, 610041, China.,State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Feng
- Department of Hematology/Hematology Research Laboratory, West China Hospital, Sichuan University, #37 Guo Xue Xiang Street, Chengdu, 610041, China
| | - Xia Cao
- Department of Hematology/Hematology Research Laboratory, West China Hospital, Sichuan University, #37 Guo Xue Xiang Street, Chengdu, 610041, China
| | - Caigang Xu
- Department of Hematology/Hematology Research Laboratory, West China Hospital, Sichuan University, #37 Guo Xue Xiang Street, Chengdu, 610041, China.
| |
Collapse
|
11
|
Navarro A, Beà S, Jares P, Campo E. Molecular Pathogenesis of Mantle Cell Lymphoma. Hematol Oncol Clin North Am 2020; 34:795-807. [PMID: 32861278 DOI: 10.1016/j.hoc.2020.05.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mantle cell lymphoma (MCL) is a mature B-cell neoplasm with heterogeneous clinical behavior molecularly characterized by the constitutive overexpression of cyclin D1 and deregulation of different signaling pathways. SOX11 expression determines an aggressive phenotype associated with accumulation of many chromosomal alterations and somatic gene mutations. A subset of patients with the SOX11-negative leukemic non-nodal MCL subtype follows an initial indolent clinical evolution and may not require treatment at diagnosis, although eventually may progress to an aggressive disease. We discuss the genetic and molecular alterations with impact on the cancer hallmarks that characterize the lymphomagenesis of the 2 MCL subtypes.
Collapse
Affiliation(s)
- Alba Navarro
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló, 149-153, Barcelona 08036, Spain; Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Sílvia Beà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló, 149-153, Barcelona 08036, Spain; Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain; Hematopathology Unit, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, Barcelona 08036, Spain
| | - Pedro Jares
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló, 149-153, Barcelona 08036, Spain; Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain; Hematopathology Unit, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, Barcelona 08036, Spain
| | - Elías Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló, 149-153, Barcelona 08036, Spain; Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain; Hematopathology Unit, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, Barcelona 08036, Spain.
| |
Collapse
|
12
|
Cortelazzo S, Ponzoni M, Ferreri AJM, Dreyling M. Mantle cell lymphoma. Crit Rev Oncol Hematol 2020; 153:103038. [PMID: 32739830 DOI: 10.1016/j.critrevonc.2020.103038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/29/2019] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
MCL is a well-characterized generally aggressive lymphoma with a poor prognosis. However, patients with a more indolent disease have been reported in whom the initiation of therapy can be delayed without any consequence for the survival. In 2017 the World Health Organization updated the classification of MCL describing two main subtypes with specific molecular characteristics and clinical features, classical and indolent leukaemic nonnodal MCL. Recent research results suggested an improving outcome of this neoplasm. The addition of rituximab to conventional chemotherapy has increased overall response rates, but it did not improve overall survival compared to chemotherapy alone. The use of intensive frontline therapies including rituximab and consolidation with autologous stem cell transplantation ameliorated response rate and prolonged progression-free survival in young fit patients, but any impact on survival remains to be proven. Furthermore, the optimal timing, cytoreductive regimen and conditioning regimen, and the clinical implications of achieving a disease remission even at molecular level remain to be elucidated. The development of targeted therapies as the consequence of better understanding of pathogenetic pathways in MCL might improve the outcome of conventional chemotherapy and spare the toxicity of intense therapy in most patients. Cases not eligible for intensive regimens, may be considered for less demanding therapies, such as the combination of rituximab either with CHOP or with purine analogues, or bendamustine. Allogeneic SCT can be an effective option for relapsed disease in patients who are fit enough and have a compatible donor. Maintenance rituximab may be considered after response to immunochemotherapy as the first-line strategy in a wide range of patients. Finally, since the optimal approach to the management of MCL is still evolving, it is critical that these patients are enrolled in clinical trials to identify the better treatment options.
Collapse
Affiliation(s)
| | - Maurilio Ponzoni
- Pathology Unit, San Raffaele Scientific Institute, Milan, Italy; Unit of Lymphoid Malignancies, San Raffaele Scientific Institute, Milan, Italy
| | - Andrés J M Ferreri
- Unit of Lymphoid Malignancies, San Raffaele Scientific Institute, Milan, Italy; Medical Oncology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Martin Dreyling
- Medizinische Klinik III der Universität München-Grosshadern, München, Germany
| |
Collapse
|
13
|
Le Bris Y, Magrangeas F, Moreau A, Chiron D, Guérin-Charbonnel C, Theisen O, Pichon O, Canioni D, Burroni B, Maisonneuve H, Thieblemont C, Oberic L, Gyan E, Pellat-Deceunynck C, Hermine O, Delfau-Larue MH, Tessoulin B, Béné MC, Minvielle S, Le Gouill S. Whole genome copy number analysis in search of new prognostic biomarkers in first line treatment of mantle cell lymphoma. A study by the LYSA group. Hematol Oncol 2020; 38:446-455. [PMID: 32472610 DOI: 10.1002/hon.2750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/11/2020] [Accepted: 05/24/2020] [Indexed: 11/09/2022]
Abstract
Mantle cell lymphoma (MCL) is a lymphoproliferative disorder characterized by the t(11;14)(q13;q32) CCND1/IGH translocation. This lymphoma is however extremely heterogeneous in terms of molecular alterations. Moreover, the course of the disease can vary greatly between indolent forms with slow progression and aggressive conditions rapidly pejorative. The identification of early markers allowing to predict individual patients outcome has however been unsuccessful so far. The LyMa trial treated homogeneously a cohort of young MCL patients. This appeared as a good opportunity to search for biomarkers of response to therapy. DNA extracted from diagnostic paraffin-embedded lymph node biopsies from 100 patients with newly diagnosed MCL, homogeneously treated in this prospective clinical trial, were investigated for copy number alterations and copy neutral loss of heterozygosity using the Oncoscan SNP-array scanning the whole genome. An independent confirmatory cohort was used to strengthen the possibly relevant anomalies observed. Here we describe the recurrent anomalies identified with this technique. Deletions of 17p(TP53) and 9p(CDKN2A) were more frequent in refractory or early relapsing patients (10%), but had no significant impact in univariate analysis on progression-free (PFS) or overall survival (OS). Regardless of the presence of TP53 or CDKN2A deletions, gains in 7p22 (8,5%) were associated with better PFS in univariate but not in multivariate analysis including MCL International Prognostic Index and treatment. Gains of 11q(CCDN1), suggesting gains of the CCND1/IGH fusion, were associated with worse OS and PFS in univariate and multivariate analyses. This worse prognosis impact was confirmed by FISH in an independent confirmatory cohort. This work, using a whole genome approach, confirms the broad genomic landscape of MCL and shows that gains of the CCND1/IGH fusion can be considered as a new prognostic structural variant. Genomic abnormalities of prognostic impact could be useful to strengthen or de-escalate treatment schedules or choosing targeted therapies or CART-cells.
Collapse
Affiliation(s)
- Yannick Le Bris
- Hematology Biology Department, Nantes University Hospital, Nantes, France.,CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Florence Magrangeas
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Anne Moreau
- Pathology Department Nantes University Hospital, now in Centre Hospitalier Départemental de Vendée, La Roche sur Yon, France
| | - David Chiron
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Catherine Guérin-Charbonnel
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Institut de Cancérologie de l'Ouest, U892, Saint-Herblain, France
| | - Olivier Theisen
- Hematology Biology Department, Nantes University Hospital, Nantes, France
| | - Olivier Pichon
- Genetic Department, Nantes University Hospital, Nantes, France
| | | | - Barbara Burroni
- Pathology Department, Cochin University Hospital, Paris, France
| | - Hervé Maisonneuve
- Hematology Clinic, Centre Hospitalier Départemental de Vendée, La Roche sur Yon, France
| | | | - Lucie Oberic
- Clinical Hematology Department, IUCT Oncopole, Toulouse University Hospital, Toulouse, France
| | - Emmanuel Gyan
- Clinical Hematology Department, Tours University Hospital, Tours, France
| | | | - Olivier Hermine
- Clinical Hematology Department, Necker University Hospital, Paris, France
| | | | - Benoît Tessoulin
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Clinical Hematology Department, Nantes University Hospital, Nantes, France
| | - Marie-Christine Béné
- Hematology Biology Department, Nantes University Hospital, Nantes, France.,CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Stéphane Minvielle
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Steven Le Gouill
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Clinical Hematology Department, Nantes University Hospital, Nantes, France
| |
Collapse
|
14
|
Sarkozy C, Ribrag V. Novel agents for mantle cell lymphoma: molecular rational and clinical data. Expert Opin Investig Drugs 2020; 29:555-566. [PMID: 32321318 DOI: 10.1080/13543784.2020.1760245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Mantle cell lymphoma (MCL) is an aggressive B cell non-Hodgkin lymphoma (NHL) that is characterized by the translocation t(11;14)(q13;q32) and a poor response to rituximab-anthracycline-based chemotherapy. Intensive regimens offer durable response, but a subgroup of MCL patients will not be eligible for those regimens and hence are candidates for less toxic, novel therapies based on a more tailored personalized approach. AREAS COVERED This article examines the molecular landscape of MCL, drug resistance mechanisms, and the data on emerging targeted therapies. EXPERT OPINION DNA damage pathway, ATM mutation, TP53, and epigenetic abnormalities are key drivers of MCL. sBCL2, PARP, ATR, CDK inhibitors or epigenetic modifiers are among the most promising drugs under investigation in clinical trials. The genomic landscape of MCL suggests two types of disease based on the presence of ATM or TP53 alterations which should be the framework of future molecular driven strategies. Among novel drugs, those interacting with the DNA damage response pathway offer the most effective rational for their use in MCL.
Collapse
Affiliation(s)
- Clémentine Sarkozy
- Centre National de la Recherche UMR 5286, Centre de Recherche en Cancérologie de lyon, INSERM Unité Mixte de Recherche (UMR)-S1052 , Lyon, France
| | | |
Collapse
|
15
|
Streich L, Sukhanova M, Lu X, Chen YH, Venkataraman G, Mathews S, Zhang S, Kelemen K, Segal J, Gao J, Gordon L, Chen Q, Behdad A. Aggressive morphologic variants of mantle cell lymphoma characterized with high genomic instability showing frequent chromothripsis, CDKN2A/B loss, and TP53 mutations: A multi-institutional study. Genes Chromosomes Cancer 2020; 59:484-494. [PMID: 32277542 DOI: 10.1002/gcc.22849] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 11/09/2022] Open
Abstract
Aggressive morphologic variants of mantle cell lymphoma (MCL), including blastoid and pleomorphic (B/P-MCL), are rare and associated with poor clinical outcomes. The genomic landscape of these variants remains incompletely explored. In this multi-institutional study, we describe recurrent mutations and novel genomic copy number alterations (CNAs) in B/P-MCL, using next generation sequencing and SNP-array. Chromothripsis, a recently described phenomenon of massive chromosomal rearrangements, was identified in eight of 13 (62%) B/P MCL cases, and a high degree of genomic complexity with frequent copy number gains and losses was also seen. In contrast, a comparative cohort of nine cases of conventional MCL (C-MCL) showed no chromothripsis and less complexity. Twelve of 13 (92%) B/P-MCL cases showed loss of CDKN2A/B (6 biallelic and 6 monoallelic losses); while only one C-MCL showed monoallelic CDKN2A/B loss. In B/P-MCL, TP53 was the most commonly mutated gene, with mutations present in eight cases (62%), six of which showed concurrent loss of chromosome 17p. Of the eight cases with chromothripsis, six (85%) harbored TP53 mutations. Other recurrent mutations in B/P-MCL included ATM (7, 53%), CCND1 (5, 38%), NOTCH1 (2, 18%), NOTCH2, and BIRC3 (each in 3, 23%). Here, we describe high genomic instability associated with chromothripsis and a high frequency of CDKN2A/B and TP53 alterations in the aggressive variants of MCL. The nonrandom chromothripsis events observed in B/P-MCL may be an indicator of clinically aggressive MCL. In addition, frequent CDKN2A deletion and high genomic instability may provide potential targets for alternative treatment.
Collapse
Affiliation(s)
- Lukas Streich
- Department of Pathology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Madina Sukhanova
- Department of Pathology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xinyan Lu
- Department of Pathology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yi-Hua Chen
- Department of Pathology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Girish Venkataraman
- Department of Pathology, University of Chicago Hospitals, Chicago, Illinois, USA
| | - Stephanie Mathews
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Shanxiang Zhang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Bloomington, Indiana, USA
| | | | - Jeremy Segal
- Department of Pathology, University of Chicago Hospitals, Chicago, Illinois, USA
| | - Juehua Gao
- Department of Pathology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Leo Gordon
- Division of Hematology-Oncology, Department of Medicine, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Qing Chen
- Department of Pathology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Amir Behdad
- Department of Pathology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Division of Hematology-Oncology, Department of Medicine, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
16
|
Mareckova A, Malcikova J, Tom N, Pal K, Radova L, Salek D, Janikova A, Moulis M, Smardova J, Kren L, Mayer J, Trbusek M. ATM and TP53 mutations show mutual exclusivity but distinct clinical impact in mantle cell lymphoma patients. Leuk Lymphoma 2019; 60:1420-1428. [DOI: 10.1080/10428194.2018.1542144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Andrea Mareckova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jitka Malcikova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Nikola Tom
- Central European Institute of Technology (CEITEC), Center of Molecular Medicine, Masaryk University, Brno, Czech Republic
| | - Karol Pal
- Central European Institute of Technology (CEITEC), Center of Molecular Medicine, Masaryk University, Brno, Czech Republic
| | - Lenka Radova
- Central European Institute of Technology (CEITEC), Center of Molecular Medicine, Masaryk University, Brno, Czech Republic
| | - David Salek
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Andrea Janikova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Mojmir Moulis
- Department of Pathology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Smardova
- Department of Pathology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Leos Kren
- Department of Pathology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiri Mayer
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Trbusek
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
17
|
Agarwal R, Chan YC, Tam CS, Hunter T, Vassiliadis D, Teh CE, Thijssen R, Yeh P, Wong SQ, Ftouni S, Lam EYN, Anderson MA, Pott C, Gilan O, Bell CC, Knezevic K, Blombery P, Rayeroux K, Zordan A, Li J, Huang DCS, Wall M, Seymour JF, Gray DHD, Roberts AW, Dawson MA, Dawson SJ. Dynamic molecular monitoring reveals that SWI–SNF mutations mediate resistance to ibrutinib plus venetoclax in mantle cell lymphoma. Nat Med 2018; 25:119-129. [DOI: 10.1038/s41591-018-0243-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 09/21/2018] [Indexed: 11/09/2022]
|
18
|
Condoluci A, Rossi D, Zucca E, Cavalli F. Toward a Risk-Tailored Therapeutic Policy in Mantle Cell Lymphoma. Curr Oncol Rep 2018; 20:79. [PMID: 30132080 DOI: 10.1007/s11912-018-0728-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Mantle cell lymphoma (MCL) prognosis is strictly related to the characteristics of the disease, which can range from very indolent cases to highly aggressive and refractory ones. Here we will review the current knowledge on MCL biomarkers. RECENT FINDINGS Biomarker-informed diagnosis is essential for differentiating MCL from other mature B cell tumors. Diagnosis of MCL relies on the identification of the t(11;14) translocation by FISH or the consequently aberrant expression of cyclin D1 by immunohistochemistry. For the few cases staining negative for cyclin D1, SOX11 may help to define the diagnosis. Prognostic biomarkers have been proposed to stratify MCL patients, including baseline clinical aspects (leukemic non-nodal presentation, in situ presentation, Mantle cell International Prognostic Index-MIPI), pathological aspects (blastoid morphology, Ki-67 proliferation index, SOX11 expression), genetic aspects (immunoglobulin gene mutation status, TP53 deletion or mutation, CDKN2A deletion), and depth of response after treatment (PET imaging, molecular minimal residual disease). Such tools are increasingly used as a guide for therapeutic decisions. Watchful waiting approach is recommended for patients harboring favorable clinico-biological features, such as leukemic non-nodal presentation, low MIPI score, non-blastoid disease, low Ki-67 proliferation rate, mutated immunoglobulin genes, and the lack of SOX11 expression. For patients in need of frontline therapy, the decision of whether to undertake intensive regimens is based upon patient's age and comorbidities. Central nervous system prophylaxis is recommended for cases showing blastoid morphology. The duration of remission is tightly correlated to the depth of response. With the aim of achieving a longer duration of remission and survival, younger patients may pursue more intensive regimens incorporating high-dose cytarabine, followed by myeloablative consolidation chemotherapy, autologous stem cell transplantation, and rituximab maintenance. Older patients could, on the other hand, benefit from lower intensity immunochemotherapy followed or not by a maintenance therapy depending on which frontline regimen is used. Despite the identification of several potential useful biomarkers that may inform the treatment decisions and the design of clinical trials, the treatment choice remains nowadays determined by the patient age and fitness rather than by the individual patient characteristics. Tailoring therapy toward a risk-adapted strategy to accommodate the wide spectrum of disease is an urgent challenge, and clinical trials may explore the feasibility of a biomarker-defined therapeutic policy.
Collapse
Affiliation(s)
- Adalgisa Condoluci
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Institute of Oncology Research (IOR), Via Vela 6, 6500, Bellinzona, Switzerland
| | - Davide Rossi
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Institute of Oncology Research (IOR), Via Vela 6, 6500, Bellinzona, Switzerland
| | - Emanuele Zucca
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Institute of Oncology Research (IOR), Via Vela 6, 6500, Bellinzona, Switzerland
| | - Franco Cavalli
- Institute of Oncology Research (IOR), Via Vela 6, 6500, Bellinzona, Switzerland.
| |
Collapse
|
19
|
Fichtner M, Dreyling M, Binder M, Trepel M. The role of B cell antigen receptors in mantle cell lymphoma. J Hematol Oncol 2017; 10:164. [PMID: 29041946 PMCID: PMC5646121 DOI: 10.1186/s13045-017-0533-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022] Open
Abstract
Mantle cell lymphoma (MCL) is characterized by an aggressive clinical course and secondary resistance to currently available therapies in most cases. Therefore, despite recent advances in the treatment of this disease, it is still considered to be incurable in the majority of cases. MCL B cells retain their B cell antigen receptor (BCR) expression during and after neoplastic transformation. BCRs in MCL show distinct patterns of antigen selection and ongoing BCR signaling. However, little is known about the involved antigens and the mechanisms leading to lymphomagenesis and lymphoma progression in MCL. Recent preclinical and clinical studies have established a crucial role of the BCR and the potential of inhibiting its signaling in this disease. This has established the B cell antigen receptor signaling cascade as a very promising therapeutic target to improve outcome in MCL alone or in combination with chemo-immunotherapy in recent years.
Collapse
Affiliation(s)
- Michael Fichtner
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland.,Department of Oncology and Hematology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Martin Dreyling
- Department of Medicine III, University Hospital LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Mascha Binder
- Department of Oncology and Hematology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Martin Trepel
- Department of Oncology and Hematology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany. .,Department of Hematology and Oncology, Augsburg Medical Center, Stenglinstr. 2, 86156, Augsburg, Germany.
| |
Collapse
|
20
|
Edlinger L, Berger-Becvar A, Menzl I, Hoermann G, Greiner G, Grundschober E, Bago-Horvath Z, Al-Zoughbi W, Hoefler G, Brostjan C, Gille L, Moriggl R, Spittler A, Sexl V, Hoelbl-Kovacic A. Expansion of BCR/ABL1 + cells requires PAK2 but not PAK1. Br J Haematol 2017; 179:229-241. [PMID: 28707321 PMCID: PMC5655792 DOI: 10.1111/bjh.14833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/30/2017] [Indexed: 01/13/2023]
Abstract
The p21‐activated kinases (PAKs) are key nodes in oncogenic signalling pathways controlling growth, survival, and motility of cancer cells. Their activity is increased in many human cancers and is associated with poor prognosis. To date, PAK deregulation has mainly been studied in solid tumours, where PAK1 and PAK4 are the main isoforms deregulated. We show that PAK1 and PAK2 are the critical isoforms in a BCR/ABL1+ haematopoietic malignancy. In suspension, leukaemic cells deficient for PAK1 and PAK2 undergo apoptosis, while the loss of either protein is well tolerated. Transfer of medium conditioned by shPAK2‐ but not shPAK1‐expressing leukaemic cells interferes with endothelial cell growth. We found that leukaemic cells produce exosomes containing PAK2. Transfer of isolated exosomes supports endothelial cell proliferation. In parallel, we found that leukaemic cells explicitly require PAK2 to grow towards an extracellular matrix. PAK2‐deficient cells fail to form colonies in methylcellulose and to induce lymphomas in vivo. PAK2 might therefore be the critical isoform in leukaemic cells by controlling tumour growth in a dual manner: vascularization via exosome‐mediated transfer to endothelial cells and remodelling of the extracellular matrix. This finding suggests that the PAK2 isoform represents a promising target for the treatment of haematological diseases.
Collapse
Affiliation(s)
- Leo Edlinger
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Angelika Berger-Becvar
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ingeborg Menzl
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gregor Hoermann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Georg Greiner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Eva Grundschober
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Zsuzsanna Bago-Horvath
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria.,Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Wael Al-Zoughbi
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Gerald Hoefler
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Christine Brostjan
- Department of Surgery, Research Laboratories, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Lars Gille
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andreas Spittler
- Core Facility Flow Cytometry & Department of Surgery, Research Laboratories, Medical University of Vienna, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andrea Hoelbl-Kovacic
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
21
|
Nguyen L, Papenhausen P, Shao H. The Role of c-MYC in B-Cell Lymphomas: Diagnostic and Molecular Aspects. Genes (Basel) 2017; 8:genes8040116. [PMID: 28379189 PMCID: PMC5406863 DOI: 10.3390/genes8040116] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 12/25/2022] Open
Abstract
c-MYC is one of the most essential transcriptional factors, regulating a diverse array of cellular functions, including proliferation, growth, and apoptosis. Dysregulation of c-MYC is essential in the pathogenesis of a number of B-cell lymphomas, but is rarely reported in T-cell lymphomas. c-MYC dysregulation induces lymphomagenesis by loss of the tight control of c-MYC expression, leading to overexpression of intact c-MYC protein, in contrast to the somatic mutations or fusion proteins seen in many other oncogenes. Dysregulation of c-MYC in B-cell lymphomas occurs either as a primary event in Burkitt lymphoma, or secondarily in aggressive lymphomas such as diffuse large B-cell lymphoma, plasmablastic lymphoma, mantle cell lymphoma, or double-hit lymphoma. Secondary c-MYC changes include gene translocation and gene amplification, occurring against a background of complex karyotype, and most often confer aggressive clinical behavior, as evidenced in the double-hit lymphomas. In low-grade B-cell lymphomas, acquisition of c-MYC rearrangement usually results in transformation into highly aggressive lymphomas, with some exceptions. In this review, we discuss the role that c-MYC plays in the pathogenesis of B-cell lymphomas, the molecular alterations that lead to c-MYC dysregulation, and their effect on prognosis and diagnosis in specific types of B-cell lymphoma.
Collapse
Affiliation(s)
- Lynh Nguyen
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| | - Peter Papenhausen
- Cytogenetics Laboratory, Laboratory Corporation of America, Research Triangle Park, NC 27709, USA.
| | - Haipeng Shao
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
22
|
Abstract
The recent application of next-generation sequencing technologies lead to significant improvements in our understanding of genetic underpinnings of non-Hodgkin lymphomas with identification of an unexpectedly high number of novel mutation targets across the different B-cell lymphoma entities. These recently discovered molecular lesions are expected to have a major impact on development of novel biomarkers and targeted therapies as well as patient stratification based on the underlying genetic profile. This review will cover the major discoveries in B-cell lymphomas using next-generation sequencing technologies over the last few years, highlighting alterations associated with relapse and progression of these diseases.
Collapse
Affiliation(s)
- Csaba Bödör
- MTA-SE Lendulet Molecular Oncohematology Research Group, Budapest, Hungary.,1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Lilla Reiniger
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary. .,2nd Department of Pathology, MTA-SE NAP, Brain Metastasis Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
23
|
Peluso AL, Ieni A, Mignogna C, Zeppa P. Lymph Node Fine-Needle Cytology: Beyond Flow Cytometry. Acta Cytol 2016; 60:372-384. [PMID: 27560152 DOI: 10.1159/000447734] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/20/2016] [Indexed: 12/16/2022]
Abstract
Lymph node (LN) fine-needle cytology (FNC) coupled with flow cytometry immunophenotyping provides relevant information for the diagnosis of non-Hodgkin lymphoma (NHL). Numerous studies have shown FNC samples to be suitable for different molecular procedures; in this review, some of the molecular procedures most commonly employed for NHL are briefly described and evaluated in this perspective. Fluorescence in situ hybridization and chromogenic in situ hybridization are briefly described. Polymerase chain reaction (PCR)-based assays are used to identify and quantify mutations and translocations, namely immunoglobulin (IGH) and T-cell receptor rearrangements by clonality testing and IGVH somatic hypermutations either by Sanger sequencing, single-strand conformational polymorphisms or RT-PCR strategies. High-throughput technologies (HTT) encompass numerous and different diagnostic tools that share the capacity of multiple molecular investigation and sample processing in a fast and reproducible manner. HTT includes gene expression profiling, comparative genomic hybridization, single-nucleotide polymorphism arrays and next-generation sequencing technologies. A brief description of these tools and their potential application to LN FNC is reported. The challenge for FNC will be to achieve new knowledge and apply new technologies to FNC, exploiting its own basic qualities.
Collapse
Affiliation(s)
- Anna Lucia Peluso
- Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | | | | | | |
Collapse
|
24
|
An unusual case of co-existing classic mantle cell lymphoma and transformed lymphoma with Burkitt-like features with leukemic presentation. J Hematop 2016. [DOI: 10.1007/s12308-016-0274-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
25
|
Liu Y, Chen C, Xu Z, Scuoppo C, Rillahan CD, Gao J, Spitzer B, Bosbach B, Kastenhuber ER, Baslan T, Ackermann S, Cheng L, Wang Q, Niu T, Schultz N, Levine RL, Mills AA, Lowe SW. Deletions linked to TP53 loss drive cancer through p53-independent mechanisms. Nature 2016; 531:471-475. [PMID: 26982726 PMCID: PMC4836395 DOI: 10.1038/nature17157] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 01/20/2016] [Indexed: 02/06/2023]
Abstract
Mutations disabling the TP53 tumour suppressor gene represent the most frequent events in human cancer and typically occur through a two-hit mechanism involving a missense mutation in one allele and a 'loss of heterozygosity' deletion encompassing the other. While TP53 missense mutations can also contribute gain-of-function activities that impact tumour progression, it remains unclear whether the deletion event, which frequently includes many genes, impacts tumorigenesis beyond TP53 loss alone. Here we show that somatic heterozygous deletion of mouse chromosome 11B3, a 4-megabase region syntenic to human 17p13.1, produces a greater effect on lymphoma and leukaemia development than Trp53 deletion. Mechanistically, the effect of 11B3 loss on tumorigenesis involves co-deleted genes such as Eif5a and Alox15b (also known as Alox8), the suppression of which cooperates with Trp53 loss to produce more aggressive disease. Our results imply that the selective advantage produced by human chromosome 17p deletion reflects the combined impact of TP53 loss and the reduced dosage of linked tumour suppressor genes.
Collapse
MESH Headings
- Alleles
- Animals
- Cell Transformation, Neoplastic/genetics
- Chromosomes, Human, Pair 17/genetics
- Chromosomes, Mammalian/genetics
- Disease Models, Animal
- Disease Progression
- Female
- Genes, p53/genetics
- Heterozygote
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Lymphoma/genetics
- Lymphoma/pathology
- Male
- Mice
- Neoplasms/genetics
- Neoplasms/pathology
- Peptide Initiation Factors/genetics
- Peptide Initiation Factors/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Sequence Deletion/genetics
- Synteny/genetics
- Tumor Suppressor Protein p53/deficiency
- Eukaryotic Translation Initiation Factor 5A
Collapse
Affiliation(s)
- Yu Liu
- Department of Hematology and Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu 610041, China
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Chong Chen
- Department of Hematology and Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu 610041, China
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Zhengmin Xu
- Department of Hematology and Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu 610041, China
| | - Claudio Scuoppo
- institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
| | - Cory D Rillahan
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Jianjiong Gao
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Barbara Spitzer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Human Oncology & Pathogenesis Program and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Benedikt Bosbach
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Edward R Kastenhuber
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Timour Baslan
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Sarah Ackermann
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Lihua Cheng
- Department of Hematology & Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingguo Wang
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Ting Niu
- Department of Hematology & Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nikolaus Schultz
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Ross L Levine
- Human Oncology & Pathogenesis Program and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Scott W Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Howard Hughes Medical Institute, New York, New York 10065, USA
| |
Collapse
|
26
|
Iqbal J, Naushad H, Bi C, Yu J, Bouska A, Rohr J, Chao W, Fu K, Chan WC, Vose JM. Genomic signatures in B-cell lymphoma: How can these improve precision in diagnosis and inform prognosis? Blood Rev 2016; 30:73-88. [DOI: 10.1016/j.blre.2015.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 01/07/2023]
|
27
|
Yi S, Zou D, Li C, Zhong S, Chen W, Li Z, Xiong W, Liu W, Liu E, Cui R, Ru K, Zhang P, Xu Y, An G, Lv R, Qi J, Wang J, Cheng T, Qiu L. High incidence of MYC and BCL2 abnormalities in mantle cell lymphoma, although only MYC abnormality predicts poor survival. Oncotarget 2015; 6:42362-71. [PMID: 26517511 PMCID: PMC4747232 DOI: 10.18632/oncotarget.5705] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 10/13/2015] [Indexed: 12/12/2022] Open
Abstract
The incidence and prognostic role of MYC and BCL2 rearrangements in mature B-cell lymphomas have been extensively studied, except the infrequent mantle cell lymphoma (MCL). Here, we analyzed the MYC and BCL2 abnormalities and other cytogenetic aberrations by fluorescence in situ hybridization (FISH) in 50 MCL patients with bone marrow involvement. Eighteen patients (36.0%) had MYC gains and/or amplifications, and twelve patients (24.0%) had BCL2 gains and/or amplifications. Among the 18 patients with MYC abnormality, four had simultaneous MYC translocations, but no BCL2 translocation was detected among patients with BCL2 abnormality. Only two patients (4.0%) had both MYC and BCL2 abnormalities. The patients with a MYC abnormality had a significantly higher tumor burden, a higher percentage of medium/high risk MIPI group and genomic instability compared to those without this abnormality. However, no significant difference was observed between patients with or without a BCL2 abnormality in terms of clinical and cytogenetic factors. Patients with a MYC abnormality had poorer progress-free survival (PFS) (9.0 vs. 48.0 months, p = .000) and overall survival (OS) (12.0 vs. 94.5 months, p = .000), but the presence of a BCL2 abnormality did not significantly influence either PFS or OS. In multivariate analysis, the MYC abnormality was the independent adverse factor for both PFS and OS, and intensive chemotherapy did not improve the outcome of these patients. Thus, the presence of a MYC but not BCL2 abnormality predicted the poor survival of MCL patients, and a new treatment strategy should be developed for these patients.
Collapse
Affiliation(s)
- Shuhua Yi
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Dehui Zou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Chengwen Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shizhen Zhong
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Weiwei Chen
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zengjun Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Wenjie Xiong
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Wei Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Enbin Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Rui Cui
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Hematology, Tianjin First Center Hospital, Tianjin, China
| | - Kun Ru
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Peihong Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yan Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Rui Lv
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Junyuan Qi
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
28
|
Etebari M, Navari M, Piccaluga PP. SNPs Array Karyotyping in Non-Hodgkin Lymphoma. MICROARRAYS (BASEL, SWITZERLAND) 2015; 4:551-569. [PMID: 27600240 PMCID: PMC4996401 DOI: 10.3390/microarrays4040551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/29/2015] [Accepted: 11/04/2015] [Indexed: 02/06/2023]
Abstract
The traditional methods for detection of chromosomal aberrations, which included cytogenetic or gene candidate solutions, suffered from low sensitivity or the need for previous knowledge of the target regions of the genome. With the advent of single nucleotide polymorphism (SNP) arrays, genome screening at global level in order to find chromosomal aberrations like copy number variants, DNA amplifications, deletions, and also loss of heterozygosity became feasible. In this review, we present an update of the knowledge, gained by SNPs arrays, of the genomic complexity of the most important subtypes of non-Hodgkin lymphomas.
Collapse
Affiliation(s)
- Maryam Etebari
- Department of Experimental, Diagnostic, and Specialty Medicine; Hematopathology Unit, S. Orsola-Malpighi Hospital, Bologna 40138, Italy.
| | - Mohsen Navari
- Department of Experimental, Diagnostic, and Specialty Medicine; Hematopathology Unit, S. Orsola-Malpighi Hospital, Bologna 40138, Italy.
| | - Pier Paolo Piccaluga
- Department of Experimental, Diagnostic, and Specialty Medicine; Hematopathology Unit, S. Orsola-Malpighi Hospital, Bologna 40138, Italy.
| |
Collapse
|
29
|
Skin Involvement of Mantle Cell Lymphoma May Mimic Primary Cutaneous Diffuse Large B-cell Lymphoma, Leg Type. Am J Surg Pathol 2015; 39:1093-101. [PMID: 26034867 DOI: 10.1097/pas.0000000000000445] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mantle cell lymphoma (MCL) is a B-cell neoplasm with a variable and generally aggressive clinical course. So far our knowledge of skin involvement of MCL is limited. To understand the clinical and histopathologic features of MCL with skin involvement, the files of the Lymph Node Registry Kiel were screened for MCL diagnosed in the skin. Over a period of 13 years, 1321 biopsy specimens were diagnosed as MCL; among them, 14 patients (1%) showed skin involvement. Of these, skin was the initial site of manifestation in 6/11 (55%) cases. One patient presented with a skin-limited lymphoma. Furthermore, 7/12 (58%) patients presented with lesions on the leg. The lymphomas were highly proliferative with blastoid cytology in 12/14 (86%) cases. Moreover, the immunophenotype with expression of BCL2 (100%), MUM-1/IRF4 (83%), and IgM (82%) and lack of CD10 (25%) and BCL6 (0%) closely resembled the features of primary cutaneous diffuse large B-cell lymphoma, leg type. Solely the expression of cyclin D1 (100%) and the presence of t(11;14) (100%) allowed a distinction from cases of primary cutaneous diffuse large B-cell lymphoma, leg type. Only 2 MCL cases with skin involvement presented with classical cytology. Interestingly, in these 2 cases skin involvement occurred simultaneously in a lesion of coexisting primary cutaneous marginal zone lymphoma. Our data suggest that clinical presentation on the leg and blastoid cytology along with high proliferation and expression of Bcl2, Mum-1/IRF4, and IgM are typical for MCL involving the skin. Lymphomas with these features might be erroneously diagnosed as diffuse large B-cell lymphoma, leg type, if cyclin D1 staining is not performed.
Collapse
|
30
|
De Novo CD5 Negative Blastic Mantle Cell Lymphoma Presented with Massive Bone Marrow Necrosis without Adenopathy or Organomegaly. Case Rep Hematol 2015; 2015:146598. [PMID: 26347832 PMCID: PMC4546951 DOI: 10.1155/2015/146598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/12/2015] [Accepted: 07/26/2015] [Indexed: 11/17/2022] Open
Abstract
The recent World Health Organization (WHO) classification defines mantle cell lymphoma (MCL) as a distinct entity characterized by a unique immunophenotype and a molecular hallmark of chromosomal translocation t(11;14)(q13;q32). We report an unusual case of an advanced stage of CD5 negative MCL with a blastoid variant with a massive bone marrow (BM) necrosis as an initial presenting feature, with no adenopathy or hepatosplenomegaly. The pathologic features showed blastoid variant of MCL and flow cytometry showed that the tumor cells were CD5−, CD19+, CD20+, FMC-7+, CD23−, and lambda light chain restricted. Chromosomal analysis, using karyotype and fluorescent in situ hybridization (FISH), demonstrated karyotypic abnormalities in addition to the t(11;14). Our case study may be reported as a unique case of CD5− blastic MCL with unusual presentation and findings which made the diagnosis of MCL difficult.
Collapse
|
31
|
Mantle cell lymphoma—a spectrum from indolent to aggressive disease. Virchows Arch 2015; 468:245-57. [DOI: 10.1007/s00428-015-1840-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 08/17/2015] [Indexed: 01/18/2023]
|
32
|
High-dose cytarabine does not overcome the adverse prognostic value of CDKN2A and TP53 deletions in mantle cell lymphoma. Blood 2015; 126:604-11. [DOI: 10.1182/blood-2015-02-628792] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/24/2015] [Indexed: 12/25/2022] Open
Abstract
Key Points
CDKN2A and TP53 deletions remain of bad prognostic value in younger MCL patients treated according to the current standard of care. CDKN2A and TP53 deletions have independent deleterious effects and should be considered for treatment decisions in addition to MIPI and Ki-67 index.
Collapse
|
33
|
Dreyling M, Ferrero S, Vogt N, Klapper W. New paradigms in mantle cell lymphoma: is it time to risk-stratify treatment based on the proliferative signature? Clin Cancer Res 2015; 20:5194-206. [PMID: 25320369 DOI: 10.1158/1078-0432.ccr-14-0836] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The elucidation of crucial biologic pathways of cell survival and proliferation has led to the development of highly effective drugs, some of which have markedly improved mantle cell lymphoma (MCL) therapeutic opportunities in the past 10 years. Moreover, an undeniable clinical heterogeneity in treatment response and disease behavior has become apparent in this neoplasm. Thus, the need for biologic markers stratifying patients with MCL in risk classes deserving different treatment approaches has recently been fervently expressed. Among several newly discovered biomarkers, the dismal predictive value of a high proliferative signature has been broadly recognized in large studies of patients with MCL. Different techniques have been used to assess tumor cell proliferation, including mitotic index, immunostaining with Ki-67 antibody, and gene expression profiling. Ki-67 proliferative index, in particular, has been extensively investigated, and its negative impact on relapse incidence and overall survival has been validated in large prospective clinical trials. However, one important pitfall limiting its widespread use in clinical practice is the reported interobserver variability, due to the previous lack of a standardized approach for quantification among different laboratories. In the present review, we describe some of the major techniques to assess cell proliferation in MCL, focusing in particular on the Ki-67 index and its need for a standardized approach to be used in multicenter clinical trials. The value of MCL biologic prognostic scores (as MIPI-b) is discussed, along with our proposal on how to integrate these scores in the planning of future trials investigating a tailored therapeutic approach for patients with MCL. See all articles in this CCR Focus section, "Paradigm Shifts in Lymphoma."
Collapse
Affiliation(s)
- Martin Dreyling
- Medizinische Klinik und Poliklinik III, Klinikum der Universität München, München, Germany.
| | - Simone Ferrero
- Division of Hematology, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Italy
| | - Niklas Vogt
- Department of Pathology, Hematopathology Section and Lymph Node Registry Kiel. University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section and Lymph Node Registry Kiel. University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | | |
Collapse
|
34
|
Cheah CY, Chihara D, Romaguera JE, Fowler NH, Seymour JF, Hagemeister FB, Champlin RE, Wang ML. Patients with mantle cell lymphoma failing ibrutinib are unlikely to respond to salvage chemotherapy and have poor outcomes. Ann Oncol 2015; 26:1175-1179. [PMID: 25712454 DOI: 10.1093/annonc/mdv111] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/18/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Although ibrutinib is highly effective in patients with relapsed/refractory mantle cell lymphoma (MCL), a substantial proportion of patients have resistant disease. The subsequent outcomes of such patients are unknown. PATIENTS AND METHODS We carried out a retrospective review of all patients with MCL treated with ibrutinib at MD Anderson Cancer Center between January 2011 and January 2014 using pharmacy and clinical databases. Patients who had discontinued ibrutinib for any reason were included in the study. RESULTS We identified 42 patients with MCL who discontinued therapy due to disease progression on treatment (n = 28), toxicity (n = 6), elective stem-cell transplant in remission (n = 4) or withdrawn consent (n = 4). The median age was 69 years, 35 (83%) were male; the median number of prior treatments was 2 (range 1-8) and the median time from initial diagnosis of MCL to commencing ibrutinib was 3.0 (range 0.5-15.5) years. Patients had received a median of 6.5 (range 1-43) cycles of ibrutinib. Among 31 patients who experienced disease progression following ibrutinib and underwent salvage therapy, the overall and complete response rates were 32% and 19%, respectively. After a median follow-up of 10.7 (range 2.4-38.9) months from discontinuation of ibrutinib, the median overall survival (OS) among patients with disease progression was 8.4 months. By univariate analysis, elevated serum lactate dehydrogenase at progression was associated with inferior OS. CONCLUSION The outcome of patients with MCL who experience disease progression following ibrutinib therapy is poor, with both low response rates to salvage therapy and short duration of responses. Further studies to better understand and overcome ibrutinib resistance are urgently needed.
Collapse
Affiliation(s)
- C Y Cheah
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, USA
| | - D Chihara
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, USA
| | - J E Romaguera
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, USA
| | - N H Fowler
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, USA
| | - J F Seymour
- Department of Haematology, Peter MacCallum Cancer Center, Melbourne; Department of Haematology, University of Melbourne, Melbourne, Australia
| | - F B Hagemeister
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, USA
| | - R E Champlin
- Department of Stem Cell Transplantation, University of Texas MD Anderson Cancer Center, Houston, USA
| | - M L Wang
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, USA.
| |
Collapse
|
35
|
Cohen JB, Ruppert AS, Heerema NA, Andritsos LA, Jones JA, Porcu P, Baiocchi R, Christian BA, Byrd JC, Flynn J, Penza S, Devine SM, Blum KA. Complex Karyotype Is Associated With Aggressive Disease and Shortened Progression-Free Survival in Patients With Newly Diagnosed Mantle Cell Lymphoma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2015; 15:278-285.e1. [DOI: 10.1016/j.clml.2014.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 10/24/2022]
|
36
|
Thompson AM, Gansen A, Paguirigan AL, Kreutz JE, Radich JP, Chiu DT. Self-digitization microfluidic chip for absolute quantification of mRNA in single cells. Anal Chem 2014; 86:12308-14. [PMID: 25390242 PMCID: PMC4270397 DOI: 10.1021/ac5035924] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
![]()
Quantification
of mRNA in single cells provides direct insight
into how intercellular heterogeneity plays a role in disease progression
and outcomes. Quantitative polymerase chain reaction (qPCR), the current
gold standard for evaluating gene expression, is insufficient for
providing absolute measurement of single-cell mRNA transcript abundance.
Challenges include difficulties in handling small sample volumes and
the high variability in measurements. Microfluidic digital PCR provides
far better sensitivity for minute quantities of genetic material,
but the typical format of this assay does not allow for counting of
the absolute number of mRNA transcripts samples taken from single
cells. Furthermore, a large fraction of the sample is often lost during
sample handling in microfluidic digital PCR. Here, we report the absolute
quantification of single-cell mRNA transcripts by digital, one-step
reverse transcription PCR in a simple microfluidic array device called
the self-digitization (SD) chip. By performing the reverse transcription
step in digitized volumes, we find that the assay exhibits a linear
signal across a wide range of total RNA concentrations and agrees
well with standard curve qPCR. The SD chip is found to digitize a
high percentage (86.7%) of the sample for single-cell experiments.
Moreover, quantification of transferrin receptor mRNA in single cells
agrees well with single-molecule fluorescence in situ hybridization
experiments. The SD platform for absolute quantification of single-cell
mRNA can be optimized for other genes and may be useful as an independent
control method for the validation of mRNA quantification techniques.
Collapse
Affiliation(s)
- Alison M Thompson
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | | | | | | | | | | |
Collapse
|
37
|
Disruption of the PRKCD-FBXO25-HAX-1 axis attenuates the apoptotic response and drives lymphomagenesis. Nat Med 2014; 20:1401-9. [PMID: 25419709 DOI: 10.1038/nm.3740] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 10/02/2014] [Indexed: 12/12/2022]
Abstract
We searched for genetic alterations in human B cell lymphoma that affect the ubiquitin-proteasome system. This approach identified FBXO25 within a minimal common region of frequent deletion in mantle cell lymphoma (MCL). FBXO25 encodes an orphan F-box protein that determines the substrate specificity of the SCF (SKP1-CUL1-F-box)(FBXO25) ubiquitin ligase complex. An unbiased screen uncovered the prosurvival protein HCLS1-associated protein X-1 (HAX-1) as the bona fide substrate of FBXO25 that is targeted after apoptotic stresses. Protein kinase Cδ (PRKCD) initiates this process by phosphorylating FBXO25 and HAX-1, thereby spatially directing nuclear FBXO25 to mitochondrial HAX-1. Our analyses in primary human MCL identify monoallelic loss of FBXO25 and stabilizing HAX1 phosphodegron mutations. Accordingly, FBXO25 re-expression in FBXO25-deleted MCL cells promotes cell death, whereas expression of the HAX-1 phosphodegron mutant inhibits apoptosis. In addition, knockdown of FBXO25 significantly accelerated lymphoma development in Eμ-Myc mice and in a human MCL xenotransplant model. Together we identify a PRKCD-dependent proapoptotic mechanism controlling HAX-1 stability, and we propose that FBXO25 functions as a haploinsufficient tumor suppressor and that HAX1 is a proto-oncogene in MCL.
Collapse
|
38
|
Vogt N, Abramov D, Koch K, Masqué-Soler N, Szczepanowski M, Klapper W. No evidence of cell cycle dysregulation in mantle cell lymphoma in vivo. Leuk Lymphoma 2014; 56:2134-40. [PMID: 25315075 DOI: 10.3109/10428194.2014.975700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mantle cell lymphoma (MCL) is characterized by the translocation t(11;14)(q13;q32) leading to an overexpression of cyclin D1, a mediator of G1-S phase transition. Thus MCL is regarded as a paradigm of lymphoma with a dysregulated cell cycle. The proliferation rate of MCL is in fact a strong predictor of outcome. We analyzed proteins that are expressed at defined cell cycle phases, such as Ki67, survivin and phosphorylated histone H3 as well as cyclin D1, p53 and p27, on the cellular level by immunofluorescence double stainings in MCL biopsy specimens. Unexpectedly, we did not detect a shortening of early phases in MCL in vivo. Despite the control of the immunoglobulin enhancer, cyclin D1 was expressed in a cell cycle-dependent manner. However, the proliferating Ki67-positive tumor cells expressed low amounts of cyclin D1. Therefore, the expression of cyclin D1 appears not to be the driving factor behind the total proliferation rate of MCL.
Collapse
Affiliation(s)
- Niklas Vogt
- Department of Pathology, Hematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein , Campus Kiel, Kiel , Germany
| | | | | | | | | | | |
Collapse
|
39
|
Mahe E, Akhter A, Le A, Street L, Pournaziri P, Kosari F, Shabani-Rad MT, Stewart D, Mansoor A. PARP1 expression in mantle cell lymphoma: the utility of PARP1 immunohistochemistry and its relationship with markers of DNA damage. Hematol Oncol 2014; 33:159-65. [PMID: 25143154 DOI: 10.1002/hon.2160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 11/05/2022]
Abstract
Mantle cell lymphoma (MCL) is an aggressive disease with poor overall survival, attributable in part to frequent defects of the DNA repair genes. In such malignancies, additional inhibition of the ubiquitous DNA damage repair protein, poly-ADP ribose polymerase-1 (PARP1) has shown enhanced cytotoxicity (so-called synthetic lethality). We studied PARP1 expression in a series of clinical cases of MCL, with the secondary aim to ascertain the relationship between PARP1 expression and DNA repair gene expression (namely ATM and p53) by immunohistochemical methods. We also examined the relationship between PARP1 expression and the well-established prognostic biomarker Ki-67, in addition to correlating PARP1 expression with the overall survival. From amongst our series of 79 unselected cases of MCL, we detected PARP1 expression in all but two cases with variable intensity. We also noted correlations between PARP1 expression and ATM and p53 expression. As described in previous studies, we identified a significant survival difference on the basis of Ki-67 and p53 expression. When digital H-score analysis of PARP1 expression was performed, there was a distinct survival advantage noted in patients with lower levels of expression. When our biomarker data were assessed by Cox regression, furthermore, the dominant effects of p53 and PARP1 expression were highlighted. Our data support the need for further research into the potential utility of PARP1 as a biomarker in MCL and for the potential direction of future PARP1 inhibitor-targeted therapy studies.
Collapse
Affiliation(s)
- Etienne Mahe
- Department of Pathology & Laboratory Medicine, University of Calgary/Calgary Laboratory Services, Calgary, AB, Canada
| | - Ariz Akhter
- Department of Pathology & Laboratory Medicine, University of Calgary/Calgary Laboratory Services, Calgary, AB, Canada
| | - Anne Le
- Department of Pathology & Laboratory Medicine, University of Calgary/Calgary Laboratory Services, Calgary, AB, Canada
| | - Lelsey Street
- Division of Hematology, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Payam Pournaziri
- Department of Pathology & Laboratory Medicine, University of Calgary/Calgary Laboratory Services, Calgary, AB, Canada
| | - Farid Kosari
- Department of Pathology & Laboratory Medicine, University of Calgary/Calgary Laboratory Services, Calgary, AB, Canada
| | - Meer-Taher Shabani-Rad
- Department of Pathology & Laboratory Medicine, University of Calgary/Calgary Laboratory Services, Calgary, AB, Canada
| | - Douglas Stewart
- Division of Hematology, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Adnan Mansoor
- Department of Pathology & Laboratory Medicine, University of Calgary/Calgary Laboratory Services, Calgary, AB, Canada
| |
Collapse
|
40
|
Chen Y, Wang M, Romaguera J. Current regimens and novel agents for mantle cell lymphoma. Br J Haematol 2014; 167:3-18. [PMID: 24974852 DOI: 10.1111/bjh.13000] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 05/28/2014] [Indexed: 02/02/2023]
Abstract
Mantle cell lymphoma is a heterogeneous subtype of non-Hodgkin lymphoma. Conventional treatment with immunochemotherapy followed by autologous stem cell transplantation or intensive immunochemotherapy alone has improved outcomes, but the disease remains incurable. Recent advances in basic and translational research have significantly enhanced our understanding of disease pathogenesis and have sparked the development of novel therapies. Novel agents include the proteasome inhibitor bortezomib, the immunomodulatory agent lenalidomide, the phosphatidylinositol-4,5-bisphosphate 3-kinase pathway inhibitor idelalisib and the Bruton tyrosine kinase inhibitor ibrutinib. Preliminary results from clinical trials, especially from studies of ibrutinib, have proven these agents to be effective. In ongoing studies, these agents are being integrated into conventional immunochemotherapy regimens to hopefully improve patient outcomes.
Collapse
Affiliation(s)
- Yiming Chen
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|
41
|
Abstract
Non-Hodgkin lymphomas (NHLs) include any kind of lymphoma except Hodgkin's lymphoma. Mantle cell lymphoma (MCL) is a B-cell NHL and it accounts for about 6% of all NHL cases. Its epidemiologic and clinical features, as well as biomarkers, can differ from those of other NHL subtypes. This article first provides a very brief description of MCL's epidemiology and clinical features. For etiology and prognosis separately, we review clinical, environmental, and molecular risk factors that have been suggested in the literature. Among a large number of potential risk factors, only a few have been independently validated, and their clinical utilization has been limited. More data need to be accumulated and effectively analyzed before clinically useful risk factors can be identified and used for prevention, diagnosis, prediction of prognosis path, and treatment selection.
Collapse
Affiliation(s)
- Yu Wang
- School of Statistics, Renmin University of China, 59 Zhongguancun Ave. Beijing, 100872, China
| | - Shuangge Ma
- School of Public Health, Yale University, 60 College ST, New Haven CT, 06520, USA
| |
Collapse
|
42
|
Sarkozy C, Terré C, Jardin F, Radford I, Roche-Lestienne C, Penther D, Bastard C, Rigaudeau S, Pilorge S, Morschhauser F, Bouscary D, Delarue R, Farhat H, Rousselot P, Hermine O, Tilly H, Chevret S, Castaigne S. Complex karyotype in mantle cell lymphoma is a strong prognostic factor for the time to treatment and overall survival, independent of the MCL international prognostic index. Genes Chromosomes Cancer 2013; 53:106-16. [DOI: 10.1002/gcc.22123] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/09/2013] [Indexed: 12/22/2022] Open
Affiliation(s)
- Clémentine Sarkozy
- Department of Hematology; Centre Hospitalier de Versailles, Le Chesnay; Université de Versailles-Saint Quentin; Versailles France
| | - Christine Terré
- Department of Cytogenetics; Centre Hospitalier de Versailles; Le Chesnay France
| | - Fabrice Jardin
- Department of Hematology and INSERM U918; Centre Henri Becquerel; Rouen France
| | - Isabelle Radford
- Department of Cytogenetics; Necker Hospital, AP-HP; Paris France
| | | | - Dominique Penther
- Department of Cytogenetics; Centre Hospitalier Henri Becquerel; Rouen France
| | - Christian Bastard
- Department of Cytogenetics; Centre Hospitalier Henri Becquerel; Rouen France
| | - Sophie Rigaudeau
- Department of Hematology; Centre Hospitalier de Versailles, Le Chesnay; Université de Versailles-Saint Quentin; Versailles France
| | - Sylvain Pilorge
- Department of Hematology; Centre Hospitalier de Versailles, Le Chesnay; Université de Versailles-Saint Quentin; Versailles France
| | | | - Didier Bouscary
- Department of Hematology; Cochin Hospital, AP-HP; Paris France
| | - Richard Delarue
- Department of Hematology; Necker Hospital, AP-HP; Paris France
| | - Hassan Farhat
- Department of Hematology; Centre Hospitalier de Versailles, Le Chesnay; Université de Versailles-Saint Quentin; Versailles France
| | - Philippe Rousselot
- Department of Hematology; Centre Hospitalier de Versailles, Le Chesnay; Université de Versailles-Saint Quentin; Versailles France
| | - Olivier Hermine
- Department of Hematology; Necker Hospital, AP-HP; Paris France
| | - Hervé Tilly
- Department of Hematology and INSERM U918; Centre Henri Becquerel; Rouen France
| | - Sylvie Chevret
- Department of Biostatistics; Saint Louis Hospital, AP-HP; Université Paris-Diderot; Inserm S717 Paris France
| | - Sylvie Castaigne
- Department of Hematology; Centre Hospitalier de Versailles, Le Chesnay; Université de Versailles-Saint Quentin; Versailles France
| |
Collapse
|
43
|
Abstract
Over the past decade, it has become increasingly clear that mantle cell lymphoma (MCL) is a more heterogeneous disease than originally recognized. Several groups have reported on a subgroup of patients with a less aggressive course than expected resulting in the term "indolent MCL". Unlike the recognized histologic variants, the definition of indolent mantle cell lymphoma is unclear, and patients with indolent MCL are often identified only after having undergone prolonged periods of observation. In this review, we will discuss clinical and biologic features and provide a framework for the approach in identifying patients with indolent MCL.
Collapse
Affiliation(s)
- Eric D Hsi
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic , Cleveland, OH , USA
| | | |
Collapse
|
44
|
Enjuanes A, Albero R, Clot G, Navarro A, Beà S, Pinyol M, Martín-Subero JI, Klapper W, Staudt LM, Jaffe ES, Rimsza L, Braziel RM, Delabie J, Cook JR, Tubbs RR, Gascoyne R, Connors JM, Weisenburger DD, Greiner TC, Chan WC, López-Guillermo A, Rosenwald A, Ott G, Campo E, Jares P. Genome-wide methylation analyses identify a subset of mantle cell lymphoma with a high number of methylated CpGs and aggressive clinicopathological features. Int J Cancer 2013; 133:2852-63. [PMID: 23754783 DOI: 10.1002/ijc.28321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 04/23/2013] [Indexed: 01/02/2023]
Abstract
Mantle cell lymphoma (MCL) is a B-cell neoplasm with an aggressive clinical behavior characterized by the t(11;14)(q13;q32) and cyclin D1 overexpression. To clarify the potential contribution of altered DNA methylation in the development and/or progression of MCL, we performed genome-wide methylation profiling of a large cohort of primary MCL tumors (n = 132), MCL cell lines (n = 6) and normal lymphoid tissue samples (n = 31), using the Infinium HumanMethylation27 BeadChip. DNA methylation was compared to gene expression, chromosomal alterations and clinicopathological parameters. Primary MCL displayed a heterogeneous methylation pattern dominated by DNA hypomethylation when compared to normal lymphoid samples. A total of 454 hypermethylated and 875 hypomethylated genes were identified as differentially methylated in at least 10% of primary MCL. Annotation analysis of hypermethylated genes recognized WNT pathway inhibitors and several tumor suppressor genes as frequently methylated, and a substantial fraction of these genes (22%) showed a significant downregulation of their transcriptional levels. Furthermore, we identified a subset of tumors with extensive CpG methylation that had an increased proliferation signature, higher number of chromosomal alterations and poor prognosis. Our results suggest that a subset of MCL displays a dysregulation of DNA methylation characterized by the accumulation of CpG hypermethylation highly associated with increased proliferation that may influence the clinical behavior of the tumors.
Collapse
Affiliation(s)
- Anna Enjuanes
- Genomics Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Goswami RS, Atenafu EG, Xuan Y, Waldron L, Reis PP, Sun T, Datti A, Xu W, Kuruvilla J, Good DJ, Lai R, Church AJ, Lam WS, Baetz T, Lebrun DP, Sehn LH, Farinha P, Jurisica I, Bailey DJ, Gascoyne RD, Crump M, Kamel-Reid S. MicroRNA signature obtained from the comparison of aggressive with indolent non-Hodgkin lymphomas: potential prognostic value in mantle-cell lymphoma. J Clin Oncol 2013; 31:2903-11. [PMID: 23835716 DOI: 10.1200/jco.2012.45.3050] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Mantle-cell lymphoma (MCL) has a variable natural history but is incurable with current therapies. MicroRNAs (miRs) are useful in prognostic assessment of cancer. We determined an miR signature defining aggressiveness in B-cell non-Hodgkin lymphomas (NHL) and assessed whether this signature aids in MCL prognosis. METHODS We assessed miR expression in a training set of 43 NHL cases. The miR signature was validated in 44 additional cases and examined on a training set of 119 MCL cases from four institutions in Canada. miRs significantly associated with overall survival were examined in an independent cohort of 114 MCL cases to determine association with patient outcome. miR expression was combined with current clinical prognostic factors to develop an enhanced prognostic model in patients with MCL. RESULTS Fourteen miRs were differentially expressed between aggressive and indolent NHL; 11 of 14 were validated in an independent set of NHL (excluding MCL). miR-127-3p and miR-615-3p were significantly associated with overall survival in the MCL training set. Their expression was validated in an independent MCL patient set. In comparison with Ki-67, expression of these miRs was more significantly associated with overall survival among patients with MCL. miR-127-3p was combined with Ki-67 to create a new prognostic model for MCL. A similar model was created with miR-615-3p and Mantle Cell Lymphoma International Prognostic Index scores. CONCLUSION Eleven miRs are differentially expressed between aggressive and indolent NHL. Two novel miRs were associated with overall survival in MCL and were combined with clinical prognostic models to generate novel prognostic data for patients with MCL.
Collapse
|
46
|
Rasmussen PK. Diffuse large B-cell lymphoma and mantle cell lymphoma of the ocular adnexal region, and lymphoma of the lacrimal gland: an investigation of clinical and histopathological features. Acta Ophthalmol 2013; 91 Thesis 5:1-27. [PMID: 24041159 DOI: 10.1111/aos.12189] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
UNLABELLED Diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) constitute two distinct subtypes of non-Hodgkin lymphoma (NHL) associated with considerable morbidity and mortality. Marked diversities with regard to molecular biology and clinical features are recognized in different subsets of the two lymphomas. Because these differences could be related to the location of the lymphoma, it is of interest to investigate the clinical and histopathological features of DLBCL and MCL involving the ocular adnexal region (i.e. the orbit, eyelids, conjunctiva, lacrimal gland and lacrimal sac). Similarly, the lacrimal gland is the only glandular structure within the orbit. Because the lacrimal gland represents an important part of the immunological system, it is of interest to investigate lymphomas involving this location with regard to clinical and histological characteristics. PURPOSE To characterize the clinical and histopathological features of Danish patients with DLBCL of the ocular adnexal region between 1980 and 2009 and of Danish ocular adnexal MCL patients from 1980 to 2005. Furthermore, the aim of this PhD was to review all specimens from patients with lymphoma of the lacrimal gland in Denmark between 1975 and 2009 to determine the distribution of lymphoma subtypes of the lacrimal gland and to describe the clinicopathological features of these patients. RESULTS A total of 34 patients with DLBCL and 21 with MCL of the ocular adnexal region were identified. Twenty-seven patients had lacrimal gland lymphoma, including four DLBCLs and three MCLs from studies I and II. Elderly patients predominated in all three groups, with median ages of 78, 75 and 69 years in the DLBCL, the MCL and the lacrimal gland lymphoma groups, respectively. MCL patients had a preponderance of males, whereas females prevailed among lacrimal gland lymphoma patients. The orbit was the most common site of involvement in DLBCL and MCL. Most DLBCL patients had unilateral involvement, while MCL patients had a high frequency of bilateral involvement. Similarly, localized lymphoma was relatively frequently seen in DLBCL patients in contrast to the predominance of disseminated lymphoma in the MCL group. The majority of lacrimal gland lymphomas were low grade, and the distribution of subtypes was as follows: extranodal marginal zone lymphoma, 10 (37%); follicular lymphoma, 5 (19%); DLBCL, 4 (15%); MCL, 3 (11%); chronic lymphocytic leukaemia/small lymphatic lymphoma, 2 (7%); and unclassified B-cell lymphoma, 3 (11%). The overall survival rates at 3 and 5 years for the entire study group of DLBCL were 42% and 20%, whereas 58% and 22% of MCL patients were alive 3 and 5 years after the time of diagnosis. The 5-year overall survival rate of lacrimal gland lymphoma patients was 70%. Concordant bone marrow involvement and the International Prognostic Index score were predictive factors for the overall survival in the DLBCL group in Cox regression analysis. Rituximab-containing chemotherapy was associated with an improved survival rate in MCL patients. CONCLUSIONS Diffuse large B-cell lymphoma and MCL involving the ocular adnexal region and lymphoma of the lacrimal gland are prevalent among elderly patients. The overall prognosis in DLBCL and MCL was poor, whereas the prognosis for lacrimal gland lymphoma patients was relatively good. Concordant bone marrow involvement and the International Prognostic Index score were independent predictive factors for mortality in the DLBCL group. Chemotherapy containing rituximab significantly improved survival in the MCL group.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal, Murine-Derived/therapeutic use
- Antineoplastic Agents/therapeutic use
- Female
- Humans
- Lacrimal Apparatus/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, Follicular/drug therapy
- Lymphoma, Follicular/mortality
- Lymphoma, Follicular/pathology
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Mantle-Cell/drug therapy
- Lymphoma, Mantle-Cell/mortality
- Lymphoma, Mantle-Cell/pathology
- Male
- Middle Aged
- Morbidity
- Orbital Neoplasms/drug therapy
- Orbital Neoplasms/mortality
- Orbital Neoplasms/pathology
- Prevalence
- Prognosis
- Registries
- Rituximab
- Survival Rate
Collapse
Affiliation(s)
- Peter Kristian Rasmussen
- Eye Pathology Institute, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
47
|
Clinical practice guidelines for diagnosis, treatment, and follow-up of patients with mantle cell lymphoma. Recommendations from the GEL/TAMO Spanish Cooperative Group. Ann Hematol 2013; 92:1151-79. [PMID: 23716187 DOI: 10.1007/s00277-013-1783-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 05/02/2013] [Indexed: 12/22/2022]
Abstract
Mantle cell lymphoma (MCL) is considered a distinct type of B-cell lymphoma genetically characterized by the t(11;14) translocation and cyclin D1 overexpression. There is also a small subset of tumors negative for cyclin D1 expression that are morphologically and immunophenotypically indistinguishable from conventional MCL. Although in the last decades, the median overall survival of patients with MCL has improved significantly, it is still considered as one of the poorest prognoses diseases among B-cell lymphomas. Election of treatment for patients with MCL is complex due to the scarcity of solid evidence. Current available data shows that conventional chemotherapy does not yield satisfactory results as in other types of B-cell lymphomas. However, the role of other approaches such as autologous or allogenic stem cell transplantation, immunotherapy, the administration of consolidation or maintenance schedules, or the use of targeted therapies still lack clear indications. In view of this situation, the Spanish Group of Lymphomas/Autologous Bone Marrow Transplantation has conducted a series of reviews on different aspects of MCL, namely its diagnosis, prognosis, first-line and salvage treatment (both in young and elderly patients), new targeted therapies, and detection of minimal residual disease. On the basis of the available evidence, a series of recommendations have been issued with the intention of providing guidance to clinicians on the diagnosis, treatment, and monitoring of patients with MCL.
Collapse
|
48
|
Dreyling M, Thieblemont C, Gallamini A, Arcaini L, Campo E, Hermine O, Kluin-Nelemans JC, Ladetto M, Le Gouill S, Iannitto E, Pileri S, Rodriguez J, Schmitz N, Wotherspoon A, Zinzani P, Zucca E. ESMO Consensus conferences: guidelines on malignant lymphoma. part 2: marginal zone lymphoma, mantle cell lymphoma, peripheral T-cell lymphoma. Ann Oncol 2013; 24:857-77. [PMID: 23425945 DOI: 10.1093/annonc/mds643] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
To complement the existing treatment guidelines for all tumour types, ESMO organizes consensus conferences to focus on specific issues in each type of tumour. In this setting, a consensus conference on the management of lymphoma was held on 18 June 2011 in Lugano, next to the 11th International Conference on Malignant Lymphoma. The conference convened ∼30 experts from all around Europe, and selected six lymphoma entities to be addressed; for each of them, three to five open questions were to be addressed by the experts. For each question, a recommendation should be given by the panel, referring to the strength of the recommendation based on the level of evidence. This consensus report focuses on the three less common lymphoproliferative malignancies: marginal zone lymphoma, mantle cell lymphoma, and peripheral T-cell lymphomas. A first report had focused on diffuse large B-cell lymphoma, follicular lymphoma, and chronic lymphocytic leukaemia.
Collapse
Affiliation(s)
- M Dreyling
- Department of Medicine III, University Hospital, LMU Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Humala K, Younes A. Current and emerging new treatment strategies for mantle cell lymphoma. Leuk Lymphoma 2013; 54:912-21. [DOI: 10.3109/10428194.2012.726719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
Setoodeh R, Schwartz S, Papenhausen P, Zhang L, Sagatys EM, Moscinski LC, Shao H. Double-hit mantle cell lymphoma with MYC gene rearrangement or amplification: a report of four cases and review of the literature. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 6:155-167. [PMID: 23330001 PMCID: PMC3544229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 12/12/2012] [Indexed: 06/01/2023]
Abstract
Mature B-cell lymphomas with both BCL2 and MYC translocations are known as "double hit" lymphomas. These lymphomas are aggressive and show high proliferation rate due to the growth advantages provided by MYC and BCL2 translocation and overexpression. Mantle cell lymphoma (MCL) is a neoplasm of mature B-lymphocytes with characteristic t(11;14) and subsequent Cyclin D1 overexpression. Secondary cytogenetic changes are frequent in MCL, but MYC translocation has only been rarely reported. In this study, we report four cases of MCL with MYC translocation or MYC gene amplification detected by conventional cytogenetics, fluorescence in situ hybridization and whole genome single nucleotide polymorphism (SNP) array, and determined the clinicopathologic features. Our study provides further evidence supporting the concept of "double hit" MCL with co-involvement of MYC gene rearrangement and/or amplification and CCND1 gene rearrangement.
Collapse
Affiliation(s)
- Reza Setoodeh
- Department of Hematopathology, Moffitt Cancer Center and Research InstituteTampa, FL
- Department of Pathology, University of South FloridaTampa, FL
| | - Stuart Schwartz
- Cytogenetics Laboratory, Laboratory Corporation of AmericaResearch Triangle Park, NC
| | - Peter Papenhausen
- Cytogenetics Laboratory, Laboratory Corporation of AmericaResearch Triangle Park, NC
| | - Ling Zhang
- Department of Hematopathology, Moffitt Cancer Center and Research InstituteTampa, FL
- Department of Pathology, University of South FloridaTampa, FL
| | - Elizabeth M Sagatys
- Department of Hematopathology, Moffitt Cancer Center and Research InstituteTampa, FL
- Department of Pathology, University of South FloridaTampa, FL
| | - Lynn C Moscinski
- Department of Hematopathology, Moffitt Cancer Center and Research InstituteTampa, FL
- Department of Pathology, University of South FloridaTampa, FL
| | - Haipeng Shao
- Department of Hematopathology, Moffitt Cancer Center and Research InstituteTampa, FL
- Department of Pathology, University of South FloridaTampa, FL
| |
Collapse
|