1
|
Zhang T, Moore SC, Fu S, Wang X, Albanes D, Weinstein SJ, Yu K, Stolzenberg-Solomon RZ. Association between prediagnostic serum metabolites and pancreatic ductal adenocarcinoma risk in two prospective cohorts. Int J Cancer 2025. [PMID: 40401725 DOI: 10.1002/ijc.35479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/17/2025] [Accepted: 05/08/2025] [Indexed: 05/23/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is highly fatal, with incidence rising worldwide. Metabolomics may provide insight into etiology and mechanisms contributing to pancreatic carcinogenesis. We examined associations between 1483 prediagnostic (up to 24 years) serum metabolites and PDAC in nested case-control studies within a cohort of male Finnish smokers and another of American men and women (n = 732 matched pairs). We used conditional logistic regression to calculate odds ratios (OR) and 95% confidence intervals per standard deviation increase in log-metabolite level within each cohort and combined using fixed-effect meta-analyses. We performed elastic net regression (EN) to select metabolites and calculated area under the curve (AUC) for established PDAC risk factors (smoking, diabetes, and overweight/obesity), selected metabolites, and their combination. Sixty-six metabolites were associated with PDAC at false discovery rate <0.05, with 26 below Bonferroni threshold (p < 3.4 × 10-5) and 38 not reported previously. Notable findings include fibrinopeptide B (1-9); 13 modified, di- or poly-peptides; 11 tobacco-chemical related xenobiotics; glycolysis-gluconeogenesis-tricarboxylic acid (TCA) cycle metabolites (aspartate, glutamate, lactate, α-ketoglutarate, and pyruvate); and four secondary and two primary bile acids that were positively (OR = 1.18-1.58) and five fibrinogen cleavage peptides that were inversely (OR = 0.70-0.84) associated with PDAC. AUCs for combined metabolites-risk factors outperformed known risk factors (p ≤ .01) but not metabolites (p ≥ .31) alone. Systemic metabolism is prospectively associated with PDAC. New metabolite associations include those related to immune response, tobacco, microbiome, glycolysis-gluconeogenesis and TCA cycle, and adiposity or diabetes. The EN selected metabolites were more sensitive indicators of prediagnostic metabolic processes and exposures associated with PDAC than established risk factors.
Collapse
Affiliation(s)
- Ting Zhang
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Steven C Moore
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Sheng Fu
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Xiaoyu Wang
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Rockville, Maryland, USA
| | - Demetrius Albanes
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Stephanie J Weinstein
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Kai Yu
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Rachael Z Stolzenberg-Solomon
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
2
|
Salvatore M, Mondul AM, Friese CR, Hanauer D, Xu H, Pearce CL, Mukherjee B. Impacts of sample weighting on transferability of risk prediction models across EHR-Linked biobanks with different recruitment strategies. J Biomed Inform 2025; 167:104853. [PMID: 40398830 DOI: 10.1016/j.jbi.2025.104853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/15/2025] [Accepted: 05/18/2025] [Indexed: 05/23/2025]
Abstract
OBJECTIVE To evaluate whether using poststratification weights when training risk prediction models enhances transferability when the external test cohort has a different sampling strategy, a commonly encountered scenario when analyzing electronic health record (EHR)-linked biobanks. METHODS PS weights were calculated to align a health system-based biobank, the Michigan Genomics Initiative (MGI; n = 76,757), with a nationally recruited biobank, All of Us (AOU; n = 226,764), which oversamples underrepresented groups. Basic PS weights (PSBASIC) captured age, sex, and race/ethnicity; full PS weights (PSFULL) additionally included smoking, alcohol consumption, BMI, depression, hypertension, and the Charlson Comorbidity Index. Models for esophageal, liver, and pancreatic cancers were developed using EHR data from MGI at 0, 1, 2, and 5 years prior to diagnosis. Phenotype risk scores (PheRS) were constructed using six methods (e.g., regularized regression, random forest) and evaluated alongside covariates, risk factors, and symptoms. Evaluation metrics included the odds ratio (OR) for the top decile vs. the middle 40th-60th percentiles of the risk score distribution and the area under the receiver operating curve (AUC) evaluated in the AOU test cohort when models are trained with and without weighting. RESULTS Elastic net and random forest methods generally performed well in risk stratification, but no single PheRS construction method consistently outperformed others. Applying PS weights did not consistently improve risk stratification performance. For example, in liver cancer risk stratification at t = 1, unweighted random forest PheRS yielded an OR of 13.73 (95 % CI: 8.97, 21.01), compared to 14.55 (95 % CI: 9.45, 22.42) with PSBASIC and 13.62 (95 % CI: 8.90, 20.85) with PSFULL. CONCLUSION PS weights do not significantly enhance risk model transferability between biobanks. EHR-based PheRS are crucial for risk stratification and should be integrated with other multimodal data for improved risk prediction. Identifying high-risk populations for diseases like liver cancer early through health history mining shows promise.
Collapse
Affiliation(s)
- Maxwell Salvatore
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA; Center for Precision Health Data Science, University of Michigan, Ann Arbor, MI, USA
| | - Alison M Mondul
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Christopher R Friese
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Systems, Populations, and Leadership, School of Nursing, University of Michigan, Ann Arbor, MI, USA; Department of Health Management and Policy, University of Michigan, Ann Arbor, MI, USA
| | - David Hanauer
- Department of Learning Health Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Hua Xu
- Department of Biomedical Informatics and Data Science, Yale University, New Haven, CT, USA
| | - Celeste Leigh Pearce
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
3
|
Ren G, Wang P, Wang Z, Xie Z, Liu L, Wang Y, Wu X. Automated detection of cervical spondylotic myelopathy: harnessing the power of natural language processing. Front Neurosci 2025; 19:1421792. [PMID: 40177375 PMCID: PMC11962790 DOI: 10.3389/fnins.2025.1421792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
Background The objective of this study was to develop machine learning (ML) algorithms utilizing natural language processing (NLP) techniques for the automated detection of cervical spondylotic myelopathy (CSM) through the analysis of positive symptoms in free-text admission notes. This approach enables the timely identification and management of CSM, leading to optimal outcomes. Methods The dataset consisted of 1,214 patients diagnosed with cervical diseases as their primary condition between June 2013 and June 2020. A random ratio of 7:3 was employed to partition the dataset into training and testing subsets. Two machine learning models, Extreme Gradient Boosting (XGBoost) and Bidirectional Long Short Term Memory Network (LSTM), were developed. The performance of these models was assessed using various metrics, including the Receiver Operating Characteristic (ROC) curve, Area Under the Curve (AUC), accuracy, precision, recall, and F1 score. Results In the testing set, the LSTM achieved an AUC of 0.9025, an accuracy of 0.8740, a recall of 0.9560, an F1 score of 0.9122, and a precision of 0.8723. The LSTM model demonstrated superior clinical applicability compared to the XGBoost model, as evidenced by calibration curves and decision curve analysis. Conclusions The timely identification of suspected CSM allows for prompt confirmation of diagnosis and treatment. The utilization of NLP algorithm demonstrated excellent discriminatory capabilities in identifying CSM based on positive symptoms in free-text admission notes complaint data. This study showcases the potential of a pre-diagnosis system in the field of spine.
Collapse
Affiliation(s)
- GuanRui Ren
- Department of Orthopedics, Zhongda Hospital, Medical College, Southeast University, Nanjing, Jiangsu, China
| | - PeiYang Wang
- Department of Spine Surgery, Zhongda Hospital, Medical College, Southeast University, Nanjing, Jiangsu, China
| | - ZhiWei Wang
- Department of Orthopedics, Zhongda Hospital, Medical College, Southeast University, Nanjing, Jiangsu, China
| | - ZhiYang Xie
- Department of Spine Surgery, Zhongda Hospital, Medical College, Southeast University, Nanjing, Jiangsu, China
| | - Lei Liu
- Department of Spine Surgery, Zhongda Hospital, Medical College, Southeast University, Nanjing, Jiangsu, China
| | - YunTao Wang
- Department of Spine Surgery, Zhongda Hospital, Medical College, Southeast University, Nanjing, Jiangsu, China
- Xuyi County People's Hospital, Huai'an, Jiangsu, China
| | - XiaoTao Wu
- Department of Spine Surgery, Zhongda Hospital, Medical College, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Yin X, Shen H, Wang H, Wang Q, Zhang S, Zhang C, Jia Q, Guo S, Xu X, Zhang W, Li B, Shi X, Gao S, Shi M, Zhao X, Wang S, Han J, Zhang G, Li Y, Li P, Jing W, Song B, Zheng K, Li G, Zhang Y, Jiang H, Wu C, Song Z, Niu G, Zhang Q, Guo J, Sun Z, Han F, Li Y, Gao D, Jin H, Yang H, Li J, Jin G. Pathogenic germline variants in Chinese pancreatic adenocarcinoma patients. Nat Commun 2025; 16:2214. [PMID: 40044664 PMCID: PMC11882848 DOI: 10.1038/s41467-025-57520-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/25/2025] [Indexed: 03/09/2025] Open
Abstract
Putting pancreatic adenocarcinoma (PAAD) screening into perspective for high-risk individuals could significantly reduce cancer morbidity and mortality. Previous studies have profiled somatic mutations in PAAD. In contrast, the prevalence of mutations in PAAD predisposition genes has not been defined, especially in the Asian population. Using a multi-tier cohort design and whole genome/exome sequencing, we create a comprehensive germline mutation map of PAAD in 1,123 Chinese cancer patients in comparison with 11 pan-ethnic studies. For well-known pathogenic/likely pathogenic germline variants, Chinese patients exhibit overlapping but distinct germline mutation patterns comparing with Western cohorts, highlighted by lower mutation rates in known PAAD genes including BRCA1, BRCA2, ATM, CDKN2A, and CHEK2, and distinct mutations in CFTR, RAD51D, FANCA, ERCC2, and GNAS exclusive to Chinese patients. CFTR emerges as a top candidate gene following loss of heterozygosity analysis. Using an integrative multi-omics and functional validation paradigm, we discover that deleterious variants of uncertain significance may compromise CFTR's tumor suppressor function, and demonstrate the clinical relevance by using patient derived organoids for drug screen. Our multifaceted approach not only deepens the knowledge of population differences in PAAD germline mutations but also unveils potential avenues for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Xiaoyi Yin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
- Department of Pathology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Hui Shen
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, 264000, China
- Center for Translational Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Huan Wang
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Qingchen Wang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Shan Zhang
- Center for Translational Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Chunming Zhang
- Western Institute of Advanced Technology, Chinese Academy of Science, Chongqing, China
| | - Qi Jia
- Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Shiwei Guo
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Xiongfei Xu
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Wenhui Zhang
- Department of Urology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Bo Li
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Xiaohan Shi
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Suizhi Gao
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Meilong Shi
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Xuenan Zhao
- Center for Translational Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Sheng Wang
- Center for Translational Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Jiawei Han
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
- Department of General Surgery, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200433, China
| | - Guoxiao Zhang
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
- Department of General Surgery, The 72nd Group Army Hospital of Chinese People's Liberation Army, Huzhou, China
| | - Yikai Li
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Penghao Li
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Wei Jing
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Bin Song
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Kailian Zheng
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Gang Li
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Yijie Zhang
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Hui Jiang
- Department of Pathology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Cong Wu
- Clinical Research Unit, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | | | - Gang Niu
- Western Institute of Advanced Technology, Chinese Academy of Science, Chongqing, China
| | - Qiangzu Zhang
- Western Institute of Advanced Technology, Chinese Academy of Science, Chongqing, China
| | - Jianglong Guo
- Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Zhen Sun
- Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Fengxian Han
- Center for Translational Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yunguang Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dong Gao
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Haojie Jin
- Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China.
| | - Hongbo Yang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
| | - Jing Li
- Center for Translational Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
- Department of Precision Medicine, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| |
Collapse
|
5
|
Mohamed G, Munir M, Rai A, Gaddam S. Pancreatic Cancer: Screening and Early Detection. Gastroenterol Clin North Am 2025; 54:205-221. [PMID: 39880528 DOI: 10.1016/j.gtc.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Pancreatic cancer, often diagnosed at advanced stages, has poor survival rates. Effective screening aims to detect the disease early, improving outcomes. Current guidelines recommend screening high-risk groups, including those with a family history or genetic predispositions, using methods like endoscopic ultrasound and MRI. The American Gastroenterological Association and other organizations advise annual surveillance for high-risk individuals, typically starting at the age of 50 or 10 years younger than the youngest affected relative. For certain genetic syndromes, such as Peutz-Jeghers syndrome or hereditary pancreatitis, screening may begin as early as the age of 35 to 40 years.
Collapse
Affiliation(s)
- Ghada Mohamed
- Department of Internal Medicine, Lahey Hospital & Medical Center, 41 Mall Road, Burlington, MA 01805, USA
| | - Malak Munir
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, ST, Suite 7705, Los Angeles, CA 90048, USA
| | - Amar Rai
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, ST, Suite 7705, Los Angeles, CA 90048, USA
| | - Srinivas Gaddam
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, ST, Suite 7705, Los Angeles, CA 90048, USA.
| |
Collapse
|
6
|
Shah Y, Dahiya DS, Tiwari A, Kumar H, Gangwani MK, Ali H, Hayat U, Alsakarneh S, Singh S, Malik S, Sohail AH, Chandan S, Ali MA, Inamdar S. Advancements in Early Detection and Screening Strategies for Pancreatic Cancer: From Genetic Susceptibility to Novel Biomarkers. J Clin Med 2024; 13:4706. [PMID: 39200847 PMCID: PMC11355237 DOI: 10.3390/jcm13164706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Pancreatic cancer is a rare but lethal cancer due to its biologically aggressive nature, advanced stage at the time of diagnosis, and poor response to oncologic therapies. The risk of pancreatic cancer is significantly higher to 5% in certain high-risk individuals with inherited genetic susceptibility. Screening for pancreatic cancer in these individuals from high-risk groups can help with the early detection of pancreatic cancer as well as the detection of precursor lesions leading to early surgical resection and improved overall outcomes. The advancements in radiological imaging as well as advanced endoscopic procedures has made a significant impact on the early diagnosis, surveillance, and staging of pancreatic cancer. There is also a significant advancement in the development of biomarkers for the early detection of pancreatic cancer, which has also led to the development of liquid biopsy, allowing for microRNA detection in serum and circulating tumor cells. Various societies and organizations have provided guidelines for pancreatic cancer screening and surveillance in high-risk individuals. In this review, we aim to discuss the hereditary risk factors for developing pancreatic cancer, summarize the screening recommendations by different societies, and discuss the development of novel biomarkers and areas for future research in pancreatic cancer screening for high-risk individuals.
Collapse
Affiliation(s)
- Yash Shah
- Department of Internal Medicine, Trinity Health Oakland/Wayne State University, Pontiac, MI 48341, USA
| | - Dushyant Singh Dahiya
- Division of Gastroenterology, Hepatology & Motility, The University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Angad Tiwari
- Department of Internal Medicine, Maharani Laxmi Bai Medical College, Jhansi 284001, Uttar Pradesh, India
| | - Harendra Kumar
- Department of Internal Medicine, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Manesh Kumar Gangwani
- Department of Gastroenterology and Hepatology, University of Arkansas For Medical Sciences, Little Rock, AR 72205, USA
| | - Hassam Ali
- Division of Gastroenterology, Hepatology & Nutrition, East Carolina University/Brody School of Medicine, Greenville, NC 27834, USA
| | - Umar Hayat
- Department of Internal Medicine, Geisinger Wyoming Valley Medical Center, Wilkes Barre, PA 18711, USA
| | - Saqr Alsakarneh
- Department of Internal Medicine, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Sahib Singh
- Department of Internal Medicine, Sinai Hospital, Baltimore, MD 21215, USA
| | - Sheza Malik
- Department of Internal Medicine, Rochester General Hospital, Rochester, NY 14621, USA
| | - Amir H. Sohail
- Department of Surgery, University of New Mexico, Albuquerque, NM 87131, USA
| | - Saurabh Chandan
- Center for Interventional Endoscopy (CIE), Advent Health, Orlando, FL 32803, USA
| | - Meer A. Ali
- Department of Gastroenterology and Hepatology, University of Arkansas For Medical Sciences, Little Rock, AR 72205, USA
| | - Sumant Inamdar
- Department of Gastroenterology and Hepatology, University of Arkansas For Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
7
|
Archibugi L, Casciani F, Carrara S, Secchettin E, Falconi M, Capurso G, Paiella S. The Italian registry of families at risk for pancreatic cancer (IRFARPC): implementation and evolution of a national program for pancreatic cancer surveillance in high-risk individuals. Fam Cancer 2024; 23:373-382. [PMID: 38493228 DOI: 10.1007/s10689-024-00366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/12/2024] [Indexed: 03/18/2024]
Abstract
Screening programs for early detection and treatment of pancreatic cancer (PC) and its precursor lesions are increasingly implemented worldwide to reduce disease-specific lethality. Given the relatively low prevalence of the disease, the ideal target of such approaches is an enriched cohort of individuals harboring a lifetime risk of developing PC significantly higher compared to the general population, given either a substantial aggregation of PC cases in their family (i.e. familial pancreatic cancer) or a genomic landscape enriched with pathogenic variants associated with pancreatic carcinogenesis (i.e. mutation carriers). In Italy, a national registry for the census and surveillance of high-risk individuals for PC was launched in 2015, enrolling some 1200 subjects as of today. In this perspective, the scientific background, multi-level structure, and evolution of IRFARPC are outlined, as well as its long-term results, future developments, and areas for improvement.
Collapse
Affiliation(s)
- Livia Archibugi
- Pancreatico-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Fabio Casciani
- Unit of Pancreatic Surgery, The Pancreas Institute, University of Verona Hospital Trust, Verona, Italy
| | - Silvia Carrara
- Department of Gastroenterology, Endoscopy Unit, Humanitas Research Hospital, IRCCS, Rozzano, MI, Italy
| | - Erica Secchettin
- Department of Surgery, Dentistry, Pediatrics and Gynaecology, University of Verona, Verona, Italy
| | - Massimo Falconi
- Division of Pancreatic and Transplantation Surgery, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Gabriele Capurso
- Pancreatico-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Salvatore Paiella
- Unit of Pancreatic Surgery, The Pancreas Institute, University of Verona Hospital Trust, Verona, Italy.
| |
Collapse
|
8
|
Sharma B, Twelker K, Nguyen C, Ellis S, Bhatia ND, Kuschner Z, Agriantonis A, Agriantonis G, Arnold M, Dave J, Mestre J, Shafaee Z, Arora S, Ghanta H, Whittington J. Bile Acids in Pancreatic Carcinogenesis. Metabolites 2024; 14:348. [PMID: 39057671 PMCID: PMC11278541 DOI: 10.3390/metabo14070348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Pancreatic cancer (PC) is a dangerous digestive tract tumor that is becoming increasingly common and fatal. The most common form of PC is pancreatic ductal adenocarcinoma (PDAC). Bile acids (BAs) are closely linked to the growth and progression of PC. They can change the intestinal flora, increasing intestinal permeability and allowing gut microbes to enter the bloodstream, leading to chronic inflammation. High dietary lipids can increase BA secretion into the duodenum and fecal BA levels. BAs can cause genetic mutations, mitochondrial dysfunction, abnormal activation of intracellular trypsin, cytoskeletal damage, activation of NF-κB, acute pancreatitis, cell injury, and cell necrosis. They can act on different types of pancreatic cells and receptors, altering Ca2+ and iron levels, and related signals. Elevated levels of Ca2+ and iron are associated with cell necrosis and ferroptosis. Bile reflux into the pancreatic ducts can speed up the kinetics of epithelial cells, promoting the development of pancreatic intraductal papillary carcinoma. BAs can cause the enormous secretion of Glucagon-like peptide-1 (GLP-1), leading to the proliferation of pancreatic β-cells. Using Glucagon-like peptide-1 receptor agonist (GLP-1RA) increases the risk of pancreatitis and PC. Therefore, our objective was to explore various studies and thoroughly examine the role of BAs in PC.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Kate Twelker
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Cecilia Nguyen
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Scott Ellis
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Navin D. Bhatia
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Zachary Kuschner
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Andrew Agriantonis
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - George Agriantonis
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Monique Arnold
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Jasmine Dave
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Juan Mestre
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Zahra Shafaee
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Shalini Arora
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Hima Ghanta
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| | - Jennifer Whittington
- Department of Surgery, NYC Health + Hospitals/Elmhurst, New York, NY 11373, USA; (K.T.); (C.N.); (S.E.); (N.D.B.); (Z.K.); (G.A.); (J.D.); (J.M.); (Z.S.); (S.A.); (H.G.); (J.W.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (A.A.); (M.A.)
| |
Collapse
|
9
|
Carballal S, Balaguer F, Bujanda L, Capellá G, González Santiago S, Jover R, Moreira L, Pineda M, Ruiz-Ponte C, Sánchez Heras AB, Serrano Blanch R, Soto JL, Vidal Tocino R, Cubiella J. Use of multi-gene panels in patients at high risk of hereditary digestive cancer: position statement of AEG, SEOM, AEGH and IMPaCT-GENÓMICA consortium. GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:293-318. [PMID: 37315767 DOI: 10.1016/j.gastrohep.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
This position statement, sponsored by the Asociación Española de Gastroenterología, the Sociedad Española de Oncología Médica, the Asociación Española de Genética Humana and the IMPaCT-Genómica Consortium aims to establish recommendations for use of multi-gene panel testing in patients at high risk of hereditary gastrointestinal and pancreatic cancer. To rate the quality of the evidence and the levels of recommendation, we used the methodology based on the GRADE system (Grading of Recommendations Assessment, Development and Evaluation). We reached a consensus among experts using a Delphi method. The document includes recommendations on clinical scenarios where multi-gene panel testing is recommended in colorectal cancer, polyposis syndromes, gastric and pancreatic cancer, as well as the genes to be considered in each clinical scenario. Recommendations on the evaluation of mosaicisms, counseling strategies in the absence of an index subject and, finally, constitutional analysis after identification of pathogenic tumor variants are also made.
Collapse
Affiliation(s)
- Sabela Carballal
- Servicio de Gastroenterología, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, España.
| | - Francesc Balaguer
- Servicio de Gastroenterología, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, España
| | - Luis Bujanda
- Servicio de Aparato Digestivo, Hospital Universitario Donostia, Instituto Biodonostia. Universidad del País Vasco (UPV/EHU), CIBEREHD, San Sebastián, Guipúzcoa, España
| | - Gabriel Capellá
- Programa de Cáncer Hereditario, Instituto Catalán de Oncología, Programa ONCOBELL, IDIBELL, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), L'Hospitalet de Llobregat, Barcelona, España
| | | | - Rodrigo Jover
- Servicio de Medicina Digestiva, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria de Alicante (ISABIAL), Departamento de Medicina Clínica, Universidad Miguel Hernández, Alicante, España
| | - Leticia Moreira
- Servicio de Gastroenterología, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, España
| | - Marta Pineda
- Programa de Cáncer Hereditario, Instituto Catalán de Oncología, Programa ONCOBELL, IDIBELL, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), L'Hospitalet de Llobregat, Barcelona, España
| | - Clara Ruiz-Ponte
- Fundación Pública Galega de Medicina Xenómica (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), Grupo de Medicina Xenomica (USC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERer), Santiago de Compostela, La Coruña, España
| | - Ana Beatriz Sánchez Heras
- Unidad de Consejo Genético en Cáncer, Servicio de Oncología Médica, Hospital General Universitario de Elche, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Elche, Alicante, España
| | - Raquel Serrano Blanch
- Unidad de Consejo Genético en Cáncer, Unidad de Gestión Clínica de Oncología Médica, H.U. Reina Sofía de Córdoba. Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), CIBERONC, Universidad de Córdoba (UCO), Córdoba, España
| | - José Luis Soto
- Unidad de Genética Molecular, Hospital General Universitario de Elche, FISABIO, Elche, Alicante, España
| | - Rosario Vidal Tocino
- Servicio de Oncología Médica, Complejo Asistencial Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, España
| | - Joaquín Cubiella
- Servicio de Aparato Digestivo, Hospital Universitario de Ourense, Grupo de Investigación en Oncología Digestiva-Ourense (GIODO), CIBEREHD, Ourense, España.
| |
Collapse
|
10
|
Nguyen D, Gilad O, Drogan CM, Eilers Z, Liao C, Kupfer SS. Risk perception and surveillance uptake in individuals at increased risk for pancreatic ductal adenocarcinoma. J Med Genet 2024; 61:270-275. [PMID: 37852748 DOI: 10.1136/jmg-2023-109539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Surveillance for pancreatic ductal adenocarcinoma (PDAC) is recommended for high-risk individuals with genetic variants in PDAC-associated genes and/or family history. Surveillance uptake and adherence may depend on the perception of PDAC risk and cancer worry. We aimed to determine PDAC risk perception in at-risk individuals and assess factors associated with PDAC surveillance uptake. METHODS At-risk individuals identified from a prospective academic registry were sent a survey electronically. PDAC risk perception, cancer worry and surveillance uptake were surveyed. Factors associated with increased risk perception and surveillance were assessed. Five-year PDAC risk was calculated using the PancPRO risk assessment model, and correlation with subjective risk assessment was assessed. RESULTS The overall survey response rate was 34% (279/816). The median perceived PDAC risk was twofold (IQR 1-4) above respondents' estimates of general population risk. Factors significantly associated with higher perceived PDAC risk included non-Hispanic white race, post-graduate education level, PDAC-affected first-degree relative, genetic variants and lack of personal cancer history. Cancer worry had a very weak correlation across PDAC risk estimates (r=0.16). No correlation between perceived PDAC risk and 5-year calculated PDAC risk was found. Older age, having a first-degree relative with PDAC, meeting with a medical provider about PDAC cancer risk and awareness of surveillance modalities were significant predictors of undergoing PDAC surveillance. CONCLUSIONS Individuals at risk for PDAC do not report risk perception that correlates with calculated risk. This presents an opportunity for counselling of at-risk patients to individualise management and improve surveillance uptake for eligible individuals.
Collapse
Affiliation(s)
- Denis Nguyen
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Ophir Gilad
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Christine M Drogan
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Zoe Eilers
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Chuanhong Liao
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Sonia S Kupfer
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
11
|
Nguyen NH, Dodd-Eaton EB, Peng G, Corredor JL, Jiao W, Woodman-Ross J, Arun BK, Wang W. LFSPROShiny: An Interactive R/Shiny App for Prediction and Visualization of Cancer Risks in Families With Deleterious Germline TP53 Mutations. JCO Clin Cancer Inform 2024; 8:e2300167. [PMID: 38346271 PMCID: PMC10871774 DOI: 10.1200/cci.23.00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/13/2023] [Accepted: 12/19/2023] [Indexed: 02/15/2024] Open
Abstract
PURPOSE LFSPRO is an R library that implements risk prediction models for Li-Fraumeni syndrome (LFS), a genetic disorder characterized by deleterious germline mutations in the TP53 gene. To facilitate the use of these models in clinics, we developed LFSPROShiny, an interactive R/Shiny interface of LFSPRO that allows genetic counselors (GCs) to perform risk predictions without any programming components and further visualize the risk profiles of their patients to aid the decision-making process. METHODS LFSPROShiny implements two models that have been validated on multiple LFS patient cohorts: a competing risk model that predicts cancer-specific risks for the first primary and a recurrent-event model that predicts the risk of a second primary tumor. Starting with a visualization template, we keep regular contact with GCs, who ran LFSPROShiny in their counseling sessions, to collect feedback and discuss potential improvement. On receiving the family history as input, LFSPROShiny renders the family into a pedigree and displays the risk estimates of the family members in a tabular format. The software offers interactive overlaid side-by-side bar charts for visualization of the patients' cancer risks relative to the general population. RESULTS We walk through a detailed example to illustrate how GCs can run LFSPROShiny in clinics from data preparation to downstream analyses and interpretation of results with an emphasis on the utilities that LFSPROShiny provides to aid decision making. CONCLUSION Since December 2021, we have applied LFSPROShiny to over 100 families from counseling sessions at the MD Anderson Cancer Center. Our study suggests that software tools with easy-to-use interfaces are crucial for the dissemination of risk prediction models in clinical settings, hence serving as a guideline for future development of similar models.
Collapse
Affiliation(s)
- Nam H. Nguyen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Statistics, Rice University, Houston, TX
| | - Elissa B. Dodd-Eaton
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gang Peng
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Jessica L. Corredor
- Department of Clinical Cancer Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Wenwei Jiao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Statistics, North Caroline State University, Raleigh, NC
| | - Jacynda Woodman-Ross
- Department of Clinical Cancer Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Banu K. Arun
- Department of Clinical Cancer Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Wenyi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
12
|
Li Z, Zhang X, Sun C, Li Z, Fei H, Zhao D. Global, regional, and national burdens of early onset pancreatic cancer in adolescents and adults aged 15-49 years from 1990 to 2019 based on the Global Burden of disease study 2019: A cross-sectional study. Int J Surg 2024; 110:01279778-990000000-00947. [PMID: 38215264 PMCID: PMC11020133 DOI: 10.1097/js9.0000000000001054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/21/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND Early-onset pancreatic cancer (EOPC) in younger populations (age≤50 y) is likely to be a more aggressive phenotype characterized by poor differentiation. The emerging analysis of the global burden of EOPC is limited and outdated. AIM To systematically investigate the burden and trend of EOPC based on global populations. METHODS In this systematic analysis based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we present the number of cases, age-standardized rates (ASRs) per 100,000 population, and risk factors for 204 countries and territories. The average annual percentage changes (AAPCs) for the incidence, mortality, and disability-adjusted life-years (DALYs) of EOPC were calculated using joinpoint regression analysis. RESULTS According to the GBD 2019 estimates, there were 36,852 new cases of EOPC and 32,004 related deaths. East Asia had the highest number of cases, with 11,401 incidences and 10,149 deaths. The ASRs were 0.94 per 100,000 individuals for incidence and 0.81 per 100,000 for mortality. From 1990 to 2019, the age-standardized incidence increased by 46.9%, mortality increased by 44.6%, and DALYs increased by 41.9% globally. In trend analysis, the global incidence (AAPC, 1.26), mortality (AAPC, 1.24), and DALYs (AAPC, 1.25) of EOPC showed an increasing pattern. The ASRs of incidence, mortality, and DALYs of EOPC in Africa, America, and Asia exhibited a continuous upward trend, while the trend in Europe was fluctuating. Asian males exhibited the fastest growth in incidence (AAPC, 2.15) and mortality (AAPC, 2.13), whereas males in the Americas experienced the slowest increase in new cases (AAPC, 0.72) and deaths (AAPC, 0.67). A certain proportion of EOPC DALYs were attributable to known risk factors: tobacco smoking (13.3%), high body-mass index (BMI, 5.6%), and high fasting plasma glucose (FPG, 3.2%). Integrating the socio-demographic index (SDI), ASRs of incidence and mortality initially increased with rising SDI, reaching a peak in central Europe (1.5 per 100,000 CONCLUSIONS The findings offer valuable insights into the global distribution and magnitude of the EOPC burden. The burden is increasing at a rapid pace worldwide, particularly in Asia, and is notably high in central and eastern Europe. This highlights the need for additional preventive control efforts targeting high-risk populations.
Collapse
Affiliation(s)
| | | | | | | | | | - Dongbing Zhao
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
13
|
Nguyen NH, Dodd-Eaton EB, Peng G, Corredor JL, Jiao W, Woodman-Ross J, Arun BK, Wang W. LFSPROShiny: an interactive R/Shiny app for prediction and visualization of cancer risks in families with deleterious germline TP53 mutations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.11.23293956. [PMID: 37645796 PMCID: PMC10462184 DOI: 10.1101/2023.08.11.23293956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Purpose LFSPRO is an R library that implements risk prediction models for Li-Fraumeni syndrome (LFS), a genetic disorder characterized by deleterious germline mutations in the TP53 gene. To facilitate the use of these models in clinics, we developed LFSPROShiny, an interactive R/Shiny interface of LFSPRO that allows genetic counselors (GCs) to perform risk predictions without any programming components, and further visualize the risk profiles of their patients to aid the decision-making process. Methods LFSPROShiny implements two models that have been validated on multiple LFS patient cohorts: a competing-risk model that predicts cancer-specific risks for the first primary, and a recurrent-event model that predicts the risk of a second primary tumor. Starting with a visualization template, we keep regular contact with GCs, who ran LFSPROShiny in their counseling sessions, to collect feedback and discuss potential improvement. Upon receiving the family history as input, LFSPROShiny renders the family into a pedigree, and displays the risk estimates of the family members in a tabular format. The software offers interactive overlaid side-by-side bar charts for visualization of the patients' cancer risks relative to the general population. Results We walk through a detailed example to illustrate how GCs can run LFSPROShiny in clinics, from data preparation to downstream analyses and interpretation of results with an emphasis on the utilities that LFSPROShiny provides to aid decision making. Conclusion Since Dec 2021, we have applied LFSPROShiny to over 100 families from counseling sessions at MD Anderson Cancer Center. Our study suggests that software tools with easy-to-use interfaces are crucial for the dissemination of risk prediction models in clinical settings, hence serving as a guideline for future development of similar models.
Collapse
Affiliation(s)
- Nam H Nguyen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Statistics, Rice University, Houston, TX
| | - Elissa B Dodd-Eaton
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gang Peng
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Jessica L. Corredor
- Department of Clinical Cancer Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Wenwei Jiao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Statistics, North Caroline State University, Raleigh, NC
| | - Jacynda Woodman-Ross
- Department of Clinical Cancer Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Banu K. Arun
- Department of Clinical Cancer Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Wenyi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
14
|
Bae E, Dias JA, Huang T, Chen J, Parmigiani G, Rebbeck TR, Braun D. Variant-specific Mendelian Risk Prediction Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531363. [PMID: 36945459 PMCID: PMC10028799 DOI: 10.1101/2023.03.06.531363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Many pathogenic sequence variants (PSVs) have been associated with increased risk of cancers. Mendelian risk prediction models use Mendelian laws of inheritance to predict the probability of having a PSV based on family history, as well as specified PSV frequency and penetrance (agespecific probability of developing cancer given genotype). Most existing models assume penetrance is the same for any PSVs in a certain gene. However, for some genes (for example, BRCA1/2), cancer risk does vary by PSV. We propose an extension of Mendelian risk prediction models to relax the assumption that risk is the same for any PSVs in a certain gene by incorporating variant-specific penetrances and illustrating these extensions on two existing Mendelian risk prediction models, BRCAPRO and PanelPRO. Our proposed BRCAPRO-variant and PanelPRO-variant models incorporate variant-specific BRCA1/2 PSVs through the region classifications. Due to the sparsity of the variant information we classify BRCA1/2 PSVs into three regions; the breast cancer clustering region (BCCR), the ovarian cancer clustering region (OCCR), and an other region. Simulations were conducted to evaluate the performance of the proposed BRCAPRO-variant model compared to the existing BRCAPRO model which assumes the penetrance is the same for any PSVs in BRCA1 (and respectively BRCA2). Simulation results showed that the BRCAPRO-variant model was well calibrated to predict region-specific BRCA1/2 carrier status with high discrimination and accuracy on the region-specific level. In addition, we showed that the BRCAPRO-variant model achieved performance gains over the existing risk prediction models in terms of calibration without loss in discrimination and accuracy. We also evaluated the performance of the two proposed models, BRCAPRO-variant and PanelPRO-variant, on a cohort of 1,961 families from the Cancer Genetics Network (CGN). We showed that our proposed models provide region-specific PSV carrier probabilities with high accuracy, while the calibration, discrimination and accuracy of gene-specific PSV carrier probabilities were comparable to the existing gene-specific models. As more variant-specific PSV penetrances become available, we have shown that Mendelian risk prediction models can be extended to integrate the additional information, providing precise variant or region-specific PSV carrier probabilities and improving future cancer risk predictions.
Collapse
|
15
|
Klatte DC, Clift KE, Mantia SK, Millares L, Hoogenboom SA, Presutti RJ, Wallace MB. Identification of individuals at high-risk for pancreatic cancer using a digital patient-input tool combining family cancer history screening and new-onset diabetes. Prev Med Rep 2023; 31:102110. [PMID: 36820377 PMCID: PMC9938327 DOI: 10.1016/j.pmedr.2023.102110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 01/02/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Capturing family history might be a valuable tool for identification of individuals at increased risk of pancreatic cancer, which would allow enrollment into pancreatic surveillance programs. In addition, weight loss and concurrent new-onset diabetes may be utilized as an early marker for pancreatic cancer. This study evaluates the yield of combining family history and the Enriching New-Onset Diabetes for Pancreatic Cancer (ENDPAC) model to identify individuals who could benefit from pancreatic surveillance. A novel questionnaire and digital input tool was created that combined questions on family cancer history and criteria of the ENDPAC model. Individuals meeting ENDPAC criteria were enrolled directly in the high-risk pancreatic clinic. Individuals who met the criteria for a significant family history of cancer were offered referral to a genetic counselor. The questionnaire was completed by 453 patients. Of those, 25.8% (117/453) had significant familial risk factors. Eighteen individuals (15.4%) completed genetic testing previously, of whom five had a pathogenic variant. Thirty-four (29.9%) out of 117 individuals with a strong family history - flagged by the questionnaire - underwent genetic testing. Four (11.8%) of these patients harbored a pathogenic variant. Additionally, through cascade family testing, two siblings were found to carry pathogenic variants. Four (0.9%) of the 453 patients matched ENDPAC criteria. Two were diagnosed with pancreatic cancer and the others were enrolled in the surveillance program. In conclusion, identification of high-risk individuals for pancreatic cancer can be achieved by combining family history screening and the ENDPAC model to facilitate referral to genetic counseling and high-risk clinics.
Collapse
Affiliation(s)
- Derk C.F. Klatte
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Kristin E. Clift
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
| | - Sarah K. Mantia
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA
| | | | - Sanne A.M. Hoogenboom
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Michael B. Wallace
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
- Department of Gastroenterology, Sheikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates
| |
Collapse
|
16
|
Mazer BL, Lee JW, Roberts NJ, Chu LC, Lennon AM, Klein AP, Eshleman JR, Fishman EK, Canto MI, Goggins MG, Hruban RH. Screening for pancreatic cancer has the potential to save lives, but is it practical? Expert Rev Gastroenterol Hepatol 2023; 17:555-574. [PMID: 37212770 PMCID: PMC10424088 DOI: 10.1080/17474124.2023.2217354] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/21/2023] [Accepted: 05/19/2023] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Most patients with pancreatic cancer present with advanced stage, incurable disease. However, patients with high-grade precancerous lesions and many patients with low-stage disease can be cured with surgery, suggesting that early detection has the potential to improve survival. While serum CA19.9 has been a long-standing biomarker used for pancreatic cancer disease monitoring, its low sensitivity and poor specificity have driven investigators to hunt for better diagnostic markers. AREAS COVERED This review will cover recent advances in genetics, proteomics, imaging, and artificial intelligence, which offer opportunities for the early detection of curable pancreatic neoplasms. EXPERT OPINION From exosomes, to circulating tumor DNA, to subtle changes on imaging, we know much more now about the biology and clinical manifestations of early pancreatic neoplasia than we did just five years ago. The overriding challenge, however, remains the development of a practical approach to screen for a relatively rare, but deadly, disease that is often treated with complex surgery. It is our hope that future advances will bring us closer to an effective and financially sound approach for the early detection of pancreatic cancer and its precursors.
Collapse
Affiliation(s)
- Benjamin L. Mazer
- The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jae W. Lee
- The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nicholas J. Roberts
- The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Linda C. Chu
- Department of Radiology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anne Marie Lennon
- Department of Medicine, Division of Gastroenterology and Hepatology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alison P. Klein
- The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James R. Eshleman
- The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elliot K. Fishman
- Department of Radiology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marcia Irene Canto
- Department of Medicine, Division of Gastroenterology and Hepatology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael G. Goggins
- The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ralph H. Hruban
- The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
17
|
Liang JW, Idos GE, Hong C, Gruber SB, Parmigiani G, Braun D. Statistical methods for Mendelian models with multiple genes and cancers. Genet Epidemiol 2022; 46:395-414. [PMID: 35583099 PMCID: PMC9452449 DOI: 10.1002/gepi.22460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/06/2022] [Accepted: 05/05/2022] [Indexed: 01/29/2023]
Abstract
Risk evaluation to identify individuals who are at greater risk of cancer as a result of heritable pathogenic variants is a valuable component of individualized clinical management. Using principles of Mendelian genetics, Bayesian probability theory, and variant-specific knowledge, Mendelian models derive the probability of carrying a pathogenic variant and developing cancer in the future, based on family history. Existing Mendelian models are widely employed, but are generally limited to specific genes and syndromes. However, the upsurge of multigene panel germline testing has spurred the discovery of many new gene-cancer associations that are not presently accounted for in these models. We have developed PanelPRO, a flexible, efficient Mendelian risk prediction framework that can incorporate an arbitrary number of genes and cancers, overcoming the computational challenges that arise because of the increased model complexity. We implement an 11-gene, 11-cancer model, the largest Mendelian model created thus far, based on this framework. Using simulations and a clinical cohort with germline panel testing data, we evaluate model performance, validate the reverse-compatibility of our approach with existing Mendelian models, and illustrate its usage. Our implementation is freely available for research use in the PanelPRO R package.
Collapse
Affiliation(s)
- Jane W. Liang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA, Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gregory E. Idos
- Center for Precision Medicine, City of Hope, Duarte, CA, USA
| | - Christine Hong
- Center for Precision Medicine, City of Hope, Duarte, CA, USA
| | | | - Giovanni Parmigiani
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA, Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Danielle Braun
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA, Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
18
|
Abstract
Background It is estimated that about 10% of pancreatic cancer cases have a genetic background. People with a familial predisposition to pancreatic cancer can be divided into 2 groups. The first is termed hereditary pancreatic cancer, which occurs in individuals with a known hereditary cancer syndrome caused by germline single gene mutations (e.g., BRCA1/2, CDKN2A). The second is considered as familial pancreatic cancer, which is associated with several genetic factors responsible for the more common development of pancreatic cancer in certain families, but the precise single gene mutation has not been found. Aim This review summarizes the current state of knowledge regarding the risk of pancreatic cancer development in hereditary pancreatic cancer and familial pancreatic cancer patients. Furthermore, it gathers the latest recommendations from the three major organizations dealing with the prevention of pancreatic cancer in high-risk groups and explores recent guidelines of scientific societies on screening for pancreatic cancers in individuals at risk for hereditary or familial pancreatic cancer. Conclusions In order to improve patients’ outcomes, authors of current guidelines recommend early and intensive screening in patients with pancreatic cancer resulting from genetic background. The screening should be performed in excellence centers. The scope, extent and cost-effectiveness of such interventions requires further studies.
Collapse
|
19
|
Wang Y, Cuggia A, Chen YI, Parent J, Stanek A, Denroche RE, Zhang A, Grant RC, Domecq C, Golesworthy B, Shwaartz C, Borgida A, Holter S, Wilson JM, Chong G, O'Kane GM, Knox JJ, Fischer SE, Gallinger S, Gao ZH, Foulkes WD, Waschke KA, Zogopoulos G. Is Biannual Surveillance for Pancreatic Cancer Sufficient in Individuals With Genetic Syndromes or Familial Pancreatic Cancer? J Natl Compr Canc Netw 2022; 20:663-673.e12. [PMID: 35714671 DOI: 10.6004/jnccn.2021.7107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Individuals with a family history of pancreatic adenocarcinoma (PC) or with a germline mutation in a PC susceptibility gene are at increased risk of developing PC. These high-risk individuals (HRIs) may benefit from PC surveillance. METHODS A PC surveillance program was developed to evaluate the detection of premalignant lesions and early-stage PCs using biannual imaging and to determine whether locally advanced or metastatic PCs develop despite biannual surveillance. From January 2013 to April 2020, asymptomatic HRIs were enrolled and followed with alternating MRI and endoscopic ultrasound every 6 months. RESULTS Of 75 HRIs, 43 (57.3%) had a germline mutation in a PC susceptibility gene and 32 (42.7%) had a familial pancreatic cancer (FPC) pedigree. Branch-duct intraductal papillary mucinous neoplasms (BD-IPMNs) were identified in 26 individuals (34.7%), but only 2 developed progressive lesions. One patient with Peutz-Jeghers syndrome (PJS) developed locally advanced PC arising from a BD-IPMN. Whole-genome sequencing of this patient's PC and of a second patient with PJS-associated PC from the same kindred revealed biallelic inactivation of STK11 in a KRAS-independent manner. A review of 3,853 patients from 2 PC registries identified an additional patient with PJS-associated PC. All 3 patients with PJS developed advanced PC consistent with the malignant transformation of an underlying BD-IPMN in <6 months. The other surveillance patient with a progressive lesion had FPC and underwent resection of a mixed-type IPMN that harbored polyclonal KRAS mutations. CONCLUSIONS PC surveillance identifies a high prevalence of BD-IPMNs in HRIs. Patients with PJS with BD-IPMNs may be at risk for accelerated malignant transformation.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Surgery, McGill University, Montreal, Quebec
- Research Institute of the McGill University Health Centre, Montreal, Quebec
- Rosalind and Morris Goodman Cancer Institute
| | - Adeline Cuggia
- Research Institute of the McGill University Health Centre, Montreal, Quebec
- Rosalind and Morris Goodman Cancer Institute
| | - Yen-I Chen
- Research Institute of the McGill University Health Centre, Montreal, Quebec
- Division of Gastroenterology and Hepatology, and
| | - Josée Parent
- Division of Gastroenterology and Hepatology, and
| | - Agatha Stanek
- Research Institute of the McGill University Health Centre, Montreal, Quebec
- Department of Diagnostic Radiology, McGill University, Montreal, Quebec
| | | | - Amy Zhang
- Ontario Institute for Cancer Research, Toronto, Ontario
| | - Robert C Grant
- Ontario Institute for Cancer Research, Toronto, Ontario
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto, Ontario
| | - Céline Domecq
- Research Institute of the McGill University Health Centre, Montreal, Quebec
- Rosalind and Morris Goodman Cancer Institute
| | - Bryn Golesworthy
- Research Institute of the McGill University Health Centre, Montreal, Quebec
- Rosalind and Morris Goodman Cancer Institute
| | - Chaya Shwaartz
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto, Ontario
| | - Ayelet Borgida
- Ontario Pancreas Cancer Study, Mount Sinai Hospital, Toronto, Ontario
| | - Spring Holter
- Ontario Institute for Cancer Research, Toronto, Ontario
| | | | - George Chong
- Molecular Diagnostics Laboratory, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec
| | - Grainne M O'Kane
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto, Ontario
| | - Jennifer J Knox
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto, Ontario
| | | | - Steven Gallinger
- Ontario Institute for Cancer Research, Toronto, Ontario
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto, Ontario
- Ontario Pancreas Cancer Study, Mount Sinai Hospital, Toronto, Ontario
| | | | - William D Foulkes
- Research Institute of the McGill University Health Centre, Montreal, Quebec
- Department of Human Genetics, and
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | | | - George Zogopoulos
- Department of Surgery, McGill University, Montreal, Quebec
- Research Institute of the McGill University Health Centre, Montreal, Quebec
- Rosalind and Morris Goodman Cancer Institute
| |
Collapse
|
20
|
Connor AA, Gallinger S. Pancreatic cancer evolution and heterogeneity: integrating omics and clinical data. Nat Rev Cancer 2022; 22:131-142. [PMID: 34789870 DOI: 10.1038/s41568-021-00418-1] [Citation(s) in RCA: 179] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), already among the deadliest epithelial malignancies, is rising in both incidence and contribution to overall cancer deaths. Decades of research have improved our understanding of PDAC carcinogenesis, including characterizing germline predisposition, the cell of origin, precursor lesions, the sequence of genetic alterations, including simple and structural alterations, transcriptional changes and subtypes, tumour heterogeneity, metastatic progression and the tumour microenvironment. These fundamental advances inform contemporary translational efforts in primary prevention, screening and early detection, multidisciplinary management and survivorship, as prospective clinical trials begin to adopt molecular-based selection criteria to guide targeted therapies. Genomic and transcriptomic data on PDAC were also included in the international pan-cancer analysis of approximately 2,600 cancers, a milestone in cancer research that allows further insight through comparison with other tumour types. Thus, this is an ideal time to review our current knowledge of PDAC evolution and heterogeneity, gained from the study of preclinical models and patient biospecimens, and to propose a model of PDAC evolution that takes into consideration findings from varied sources, with a particular focus on the genomics of human PDAC.
Collapse
Affiliation(s)
- Ashton A Connor
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Steven Gallinger
- Hepatobiliary/Pancreatic Surgical Oncology Program, University Health Network, Toronto, ON, Canada.
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada.
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Hospital Cancer Centre, Toronto, ON, Canada.
- Ontario Pancreas Cancer Study, Mount Sinai Hospital, Toronto, ON, Canada.
| |
Collapse
|
21
|
Kasuga A, Okamoto T, Udagawa S, Mori C, Mie T, Furukawa T, Yamada Y, Takeda T, Matsuyama M, Sasaki T, Ozaka M, Ueki A, Sasahira N. Molecular Features and Clinical Management of Hereditary Pancreatic Cancer Syndromes and Familial Pancreatic Cancer. Int J Mol Sci 2022; 23:1205. [PMID: 35163129 PMCID: PMC8835700 DOI: 10.3390/ijms23031205] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/17/2022] Open
Abstract
Hereditary pancreatic cancers are caused by several inherited genes. Familial pancreatic cancer is defined as pancreatic cancer arising in a patient with at least two first-degree relatives with pancreatic cancer in the absence of an identified genetic cause. Hereditary pancreatic cancer syndromes and familial pancreatic cancers account for about 10% of pancreatic cancer cases. Germline mutations in BRCA1, BRCA2, ATM, PALB2, CDKN2A, STK11, and TP53 and mismatch repair genes (MLH1, MSH2, MSH6, PMS2, and EPCAM) are among the well-known inherited susceptibility genes. Currently available targeted medications include poly (ADP-ribose) polymerase inhibitors (PARP) for cases with mutant BRCA and immune checkpoint inhibitors for cases with mismatch repair deficiency. Loss of heterozygosity of hereditary pancreatic cancer susceptibility genes such as BRCA1/2 plays a key role in carcinogenesis and sensitivity to PARP inhibitors. Signature 3 identified by whole genome sequencing is also associated with homologous recombination deficiency and sensitivity to targeted therapies. In this review, we summarize molecular features and treatments of hereditary pancreatic cancer syndromes and surveillance procedures for unaffected high-risk cases. We also review transgenic murine models to gain a better understanding of carcinogenesis in hereditary pancreatic cancer.
Collapse
Affiliation(s)
- Akiyoshi Kasuga
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Takeshi Okamoto
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Shohei Udagawa
- Department of Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan;
| | - Chinatsu Mori
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Takafumi Mie
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Takaaki Furukawa
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Yuto Yamada
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Tsuyoshi Takeda
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Masato Matsuyama
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Takashi Sasaki
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Masato Ozaka
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| | - Arisa Ueki
- Department of Clinical Genetics, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan;
| | - Naoki Sasahira
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; (T.O.); (C.M.); (T.M.); (T.F.); (Y.Y.); (T.T.); (M.M.); (T.S.); (M.O.); (N.S.)
| |
Collapse
|
22
|
Borrello MT, Martin MB, Pin CL. The unfolded protein response: An emerging therapeutic target for pancreatitis and pancreatic ductal adenocarcinoma. Pancreatology 2022; 22:148-159. [PMID: 34774415 DOI: 10.1016/j.pan.2021.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022]
Abstract
Pancreatitis is a debilitating disease involving inflammation and fibrosis of the exocrine pancreas. Recurrent or chronic forms of pancreatitis are a significant risk factor for pancreatic ductal adenocarcinoma. While genetic factors have been identified for both pathologies, environmental stresses play a large role in their etiology. All cells have adapted mechanisms to handle acute environmental stress that alters energy demands. A common pathway involved in the stress response involves endoplasmic reticulum stress and the unfolded protein response (UPR). While rapidly activated by many external stressors, in the pancreas the UPR plays a fundamental biological role, likely due to the high protein demands in acinar cells. Despite this, increased UPR activity is observed in response to acute injury or following exposure to risk factors associated with pancreatitis and pancreatic cancer. Studies in animal and cell cultures models show the importance of affecting the UPR in the context of both diseases, and inhibitors have been developed for several specific mediators of the UPR. Given the importance of the UPR to normal acinar cell function, efforts to affect the UPR in the context of disease must be able to specifically target pathology vs. physiology. In this review, we highlight the importance of the UPR to normal and pathological conditions of the exocrine pancreas. We discuss recent studies suggesting the UPR may be involved in the initiation and progression of pancreatitis and PDAC, as well as contributing to chemoresistance that occurs in pancreatic cancer. Finally, we discuss the potential of targeting the UPR for treatment.
Collapse
Affiliation(s)
- M Teresa Borrello
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Mickenzie B Martin
- Depts. of Physiology and Pharmacology, Paediatrics, and Oncology, Schulich School of Medicine and Dentistry, The University of Western Ontario, Canada; Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Christopher L Pin
- Depts. of Physiology and Pharmacology, Paediatrics, and Oncology, Schulich School of Medicine and Dentistry, The University of Western Ontario, Canada; Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada.
| |
Collapse
|
23
|
A risk prediction tool for individuals with a family history of breast, ovarian, or pancreatic cancer: BRCAPANCPRO. Br J Cancer 2021; 125:1712-1717. [PMID: 34703010 DOI: 10.1038/s41416-021-01580-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/07/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Identifying families with an underlying inherited cancer predisposition is a major goal of cancer prevention efforts. Mendelian risk models have been developed to better predict the risk associated with a pathogenic variant of developing breast/ovarian cancer (with BRCAPRO) and the risk of developing pancreatic cancer (PANCPRO). Given that pathogenic variants involving BRCA2 and BRCA1 predispose to all three of these cancers, we developed a joint risk model to capture shared susceptibility. METHODS We expanded the existing framework for PANCPRO and BRCAPRO to jointly model risk of pancreatic, breast, and ovarian cancer and validated this new model, BRCAPANCPRO on three data sets each reflecting the common target populations. RESULTS BRCAPANCPRO outperformed the prior BRCAPRO and PANCPRO models and yielded good discrimination for differentiating BRCA1 and BRCA2 carriers from non-carriers (AUCs 0.79, 95% CI: 0.73-0.84 and 0.70, 95% CI: 0.60-0.80) in families seen in high-risk clinics and pancreatic cancer family registries, respectively. In addition, BRCAPANCPRO was reasonably well calibrated for predicting future risk of pancreatic cancer (observed-to-expected (O/E) ratio = 0.81 [0.69, 0.94]). DISCUSSION The BRCAPANCPRO model provides improved risk assessment over our previous risk models, particularly for pedigrees with a co-occurrence of pancreatic cancer and breast and/or ovarian cancer.
Collapse
|
24
|
Rah B, Banday MA, Bhat GR, Shah OJ, Jeelani H, Kawoosa F, Yousuf T, Afroze D. Evaluation of biomarkers, genetic mutations, and epigenetic modifications in early diagnosis of pancreatic cancer. World J Gastroenterol 2021; 27:6093-6109. [PMID: 34629822 PMCID: PMC8476336 DOI: 10.3748/wjg.v27.i36.6093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/10/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is one of the deadliest malignancies with an alarming mortality rate. Despite significant advancement in diagnostics and therapeutics, early diagnosis remains elusive causing poor prognosis, marred by mutations and epigenetic modifications in key genes which contribute to disease progression. AIM To evaluate the various biological tumor markers collectively for early diagnosis which could act as prognostic biomarkers and helps in future therapeutics of PC in Kashmir valley. METHODS A total of 50 confirmed PC cases were included in the study to evaluate the levels of carbohydrate antigen 19-9 (CA 19-9), tissue polypeptide specific antigen (TPS), carcinoembryonic antigen (CEA), vascular endothelial growth factor-A (VEGF-A), and epidermal growth factor receptor (EGFR). Mutational analysis was performed to evaluate the mutations in Kirsten rat sarcoma (KRAS), Breast cancer type 2 (BRCA-2), and deleted in pancreatic cancer-4 (DPC-4) genes. However, epigenetic modifications (methylation of CpG islands) were performed in the promoter regions of cyclin-dependent kinase inhibitor 2A (p16; CDKN2A), MutL homolog 1 (hMLH1), and Ras association domain-containing protein 1(RASSF1A) genes. RESULTS We found significantly elevated levels of biological markers CA 19-9 (P ≤ 0.05), TPS (P ≤ 0.05), CEA (P ≤ 0.001), and VEGF (P ≤ 0.001). Molecular genetic analysis revealed that KRAS gene mutation is predominant in codon 12 (16 subjects, P ≤ 0.05), and 13 (12 subjects, P ≤ 0.05). However, we did not find a mutation in DPC-4 (1203G > T) and BRCA-2 (617delT) genes. Furthermore, epigenetic modification revealed that CpG methylation in 21 (P ≤ 0.05) and 4 subjects in the promoter regions of the p16 and hMLH1 gene, respectively. CONCLUSION In conclusion, CA 19-9, TPS, CEA, and VEGF levels were significantly elevated and collectively have potential as diagnostic and prognostic markers in PC. Global data of mutation in the KRAS gene commonly in codon 12 and rare in codon 13 could augment the predisposition towards PC. Additionally, methylation of the p16 gene could also modulate transcription of genes thereby increasing the predisposition and susceptibility towards PC.
Collapse
Affiliation(s)
- Bilal Rah
- Advanced Centre for Human Genetics, Sher-i-Kashmir Institute of Medical Sciences, Srinagar 190011, Jammu and Kashmir, India
| | - Manzoor Ahmad Banday
- Department of Medical Oncology, Sher-i-Kashmir Institute of Medical Sciences, Srinagar 190011, Jammu and Kashmir, India
| | - Gh Rasool Bhat
- Advanced Centre for Human Genetics, Sher-i-Kashmir Institute of Medical Sciences, Srinagar 190011, Jammu and Kashmir, India
| | - Omar J Shah
- Department of Surgical Gastroenterology, Sher-i-Kashmir Institute of Medical Sciences, Srinagar 190011, Jammu and Kashmir, India
| | - Humira Jeelani
- Advanced Centre for Human Genetics, Sher-i-Kashmir Institute of Medical Sciences, Srinagar 190011, Jammu and Kashmir, India
| | - Fizalah Kawoosa
- Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Science, Srinagar 190011, Jammu and Kashmir, India
| | - Tahira Yousuf
- Advanced Centre for Human Genetics, Sher-i-Kashmir Institute of Medical Sciences, Srinagar 190011, Jammu and Kashmir, India
| | - Dil Afroze
- Advanced Centre for Human Genetics, Sher-i-Kashmir Institute of Medical Sciences, Srinagar 190011, Jammu and Kashmir, India
| |
Collapse
|
25
|
Cai J, Chen H, Lu M, Zhang Y, Lu B, You L, Zhang T, Dai M, Zhao Y. Advances in the epidemiology of pancreatic cancer: Trends, risk factors, screening, and prognosis. Cancer Lett 2021; 520:1-11. [PMID: 34216688 DOI: 10.1016/j.canlet.2021.06.027] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/09/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is a malignancy with poor prognosis and high mortality. The recent increase in pancreatic cancer incidence and mortality has resulted in an increased number of studies on its epidemiology. This comprehensive and systematic literature review summarizes the advances in the epidemiology of pancreatic cancer, including its epidemiological trends, risk factors, risk prediction models, screening modalities, and prognosis. The risk factors for pancreatic cancers can be categorized as those related to individual characteristics, lifestyle and environment, and disease status. Several prediction models for pancreatic cancer have been developed in populations with new-onset diabetes or a family history of pancreatic cancer; however, these models require further validation. Despite recent progress in pancreatic cancer screening, the quantity and quality of related studies are also unsatisfactory, especially with respect to the identification of high-risk populations and development of effective screening modality. Apart from the populations with familial genetic risk and those at a high risk of sporadic pancreatic cancer, risk factors such as new-onset diabetes may be a new direction for timely intervention. We hope this work will provide new ideas for further prevention and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Jie Cai
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hongda Chen
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Ming Lu
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Yuhan Zhang
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Bin Lu
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Min Dai
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
26
|
Park MS, Weissman SM, Postula KJV, Williams CS, Mauer CB, O'Neill SM. Utilization of breast cancer risk prediction models by cancer genetic counselors in clinical practice predominantly in the United States. J Genet Couns 2021; 30:1737-1747. [PMID: 34076301 DOI: 10.1002/jgc4.1442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/07/2023]
Abstract
Risk assessment in cancer genetic counseling is essential in identifying individuals at high risk for developing breast cancer to recommend appropriate screening and management options. Historically, many breast cancer risk prediction models were developed to calculate an individual's risk to develop breast cancer or to carry a pathogenic variant in the BRCA1 or BRCA2 genes. However, how or when genetic counselors use these models in clinical settings is currently unknown. We explored genetic counselors' breast cancer risk model usage patterns including frequency of use, reasons for using or not using models, and change in usage since the adoption of multi-gene panel testing. An online survey was developed and sent to members of the National Society of Genetic Counselors; board-certified genetic counselors whose practice included cancer genetic counseling were eligible to participate in the study. The response rate was estimated at 23% (243/1,058), and respondents were predominantly working in the United States. The results showed that 93% of all respondents use at least one breast cancer risk prediction model in their clinical practice. Among the six risk models selected for the study, the Tyrer-Cuzick (IBIS) model was used most frequently (95%), and the BOADICEA model was used least (40%). Determining increased or decreased surveillance and breast MRI eligibility were the two most common reasons for most model usage, while time consumption and difficulty in navigation were the two most common reasons for not using models. This study provides insight into perceived benefits and limitations of risk models in clinical use in the United States, which may be useful information for software developers, genetic counseling program curriculum developers, and currently practicing cancer genetic counselors.
Collapse
Affiliation(s)
- Min Seon Park
- Northwestern Medical Group, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine Graduate Program in Genetic Counseling, Chicago, IL, USA
| | | | | | - Carmen S Williams
- Northwestern Medical Group, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine Graduate Program in Genetic Counseling, Chicago, IL, USA
| | | | - Suzanne M O'Neill
- Northwestern University Feinberg School of Medicine Graduate Program in Genetic Counseling, Chicago, IL, USA
| |
Collapse
|
27
|
Khalaf N, El-Serag HB, Abrams HR, Thrift AP. Burden of Pancreatic Cancer: From Epidemiology to Practice. Clin Gastroenterol Hepatol 2021; 19:876-884. [PMID: 32147593 PMCID: PMC8559554 DOI: 10.1016/j.cgh.2020.02.054] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/05/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is the seventh leading cause of cancer-related deaths worldwide with 432,242 related deaths in 2018. Unlike other cancers, the incidence of pancreatic cancer continues to increase, with little improvement in survival rates. We review the epidemiologic features of pancreatic cancer, covering surveillance and early detection in high-risk persons. We summarize data on worldwide incidence and mortality and analyze the 1975-2016 data from 9 registries of the National Cancer Institute's Surveillance, Epidemiology, and End Results study, on the overall burden of pancreatic cancer as well as age-, sex-, and race-specific incidence, survival rates and trends. It is important to increase our knowledge of the worldwide and regional epidemiologic features of and risk factors for pancreatic cancer, to identify new approaches for prevention, surveillance, and treatment.
Collapse
Affiliation(s)
- Natalia Khalaf
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine and Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas.
| | - Hashem B El-Serag
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine and Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - Hannah R Abrams
- Department of Internal Medicine, Baylor College of Medicine, Houston, Texas
| | - Aaron P Thrift
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
28
|
Kartal K, Guan Z, Tang R, Griffin M, Wang Y, Braun D, Klein AP, Hughes KS. Familial pancreatic cancer: who should be considered for genetic testing? Ir J Med Sci 2021; 191:641-650. [PMID: 33733397 DOI: 10.1007/s11845-021-02572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Determining how many female patients who underwent breast imaging meet the eligibility criteria for genetic testing for familial pancreatic cancer (FPC). METHODS A total of 42,904 patients seen at the Newton-Wellesley Hospital between 2007 and 2009 were retrospectively reviewed. The first four categories were based on pancreatic cancer-associated syndromes: (1) hereditary breast and ovarian cancer (HBOC), (2) Lynch syndrome (LS), (3) familial atypical multiple mole melanoma (FAMMM), and (4) family history of FPC (FH-FPC). PancPRO (5) and MelaPRO (6) categories were based on risk scores from Mendelian risk prediction tool. RESULTS Exactly 4445 of 42,904 patients were found to be in at least one of the six risk categories. About 5.7% of patients were classified as being at high risk for HBOC, 2.3% as being at high risk for LS, 0.1% as being at high risk for FAMMM, 0.1% as being at high risk for FH-FPC, 2.7% as being at high risk based on PancPRO, and 0.2% as being at high risk based on MelaPRO. CONCLUSION About 10.4% of the female patients were classified as being at high risk for FPC. This finding emphasizes the importance of applying criteria to the general population, in order to ensure that individuals with high risk are identified early.
Collapse
Affiliation(s)
- Kinyas Kartal
- Division of Surgical Oncology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA. .,Department of General Surgery, Koc University Hospital, Istanbul, Turkey.
| | - Zoe Guan
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Rong Tang
- Division of Surgical Oncology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Molly Griffin
- Division of Surgical Oncology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA.,University of Massachusetts Medical School, Worcester, MA, USA
| | - Yan Wang
- Division of Surgical Oncology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA.,Department of Breast Surgery, Shanghai Cancer Hospital, Fudan University, Shanghai, China
| | - Danielle Braun
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alison P Klein
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institution, Baltimore, MD, USA
| | - Kevin S Hughes
- Division of Surgical Oncology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Reynolds EE, Doubeni CA, Sawhney MS, Kanjee Z. Should This Patient Be Screened for Pancreatic Cancer? : Grand Rounds Discussion From Beth Israel Deaconess Medical Center. Ann Intern Med 2020; 173:914-921. [PMID: 33253616 DOI: 10.7326/m20-6384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Because pancreatic cancer is typically advanced at the time of diagnosis, it has a very low 5-year survival rate and may become the second leading cause of cancer death in the United States. A screening program to find early-stage pancreatic cancer is needed but has been challenging to develop because of the lack of an effective screening test. In 2019, the U.S. Preventive Services Task Force performed an evidence review and updated its guidance, confirming its 2004 "D" recommendation against routine screening for average-risk patients. Here, 2 experts review the updated guideline and recent evidence and discuss whether a patient with a family history of pancreatic cancer should undergo screening.
Collapse
Affiliation(s)
- Eileen E Reynolds
- Beth Israel Deaconess Medical Center, Boston, Massachusetts (E.E.R., M.S.S., Z.K.)
| | | | - Mandeep S Sawhney
- Beth Israel Deaconess Medical Center, Boston, Massachusetts (E.E.R., M.S.S., Z.K.)
| | - Zahir Kanjee
- Beth Israel Deaconess Medical Center, Boston, Massachusetts (E.E.R., M.S.S., Z.K.)
| |
Collapse
|
30
|
Thompson ED, Roberts NJ, Wood LD, Eshleman JR, Goggins MG, Kern SE, Klein AP, Hruban RH. The genetics of ductal adenocarcinoma of the pancreas in the year 2020: dramatic progress, but far to go. Mod Pathol 2020; 33:2544-2563. [PMID: 32704031 PMCID: PMC8375585 DOI: 10.1038/s41379-020-0629-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
The publication of the "Pan-Cancer Atlas" by the Pan-Cancer Analysis of Whole Genomes Consortium, a partnership formed by The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC), provides a wonderful opportunity to reflect on where we stand in our understanding of the genetics of pancreatic cancer, as well as on the opportunities to translate this understanding to patient care. From germline variants that predispose to the development of pancreatic cancer, to somatic mutations that are therapeutically targetable, genetics is now providing hope, where there once was no hope, for those diagnosed with pancreatic cancer.
Collapse
Affiliation(s)
- Elizabeth D Thompson
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas J Roberts
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura D Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James R Eshleman
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael G Goggins
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Scott E Kern
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alison P Klein
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
31
|
Yang Y, Hong C, Liang JW, Gruber S, Parmigiani G, Idos G, Braun D. A likelihood-based approach to assessing frequency of pathogenicity among variants of unknown significance in susceptibility genes. Stat Med 2020; 40:593-606. [PMID: 33120437 DOI: 10.1002/sim.8791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 08/24/2020] [Accepted: 10/12/2020] [Indexed: 11/12/2022]
Abstract
Commercialized multigene panel testing brings unprecedented opportunities to understand germline genetic contributions to hereditary cancers. Most genetic testing companies classify the pathogenicity of variants as pathogenic, benign, or variants of unknown significance (VUSs). The unknown pathogenicity of VUSs poses serious challenges to clinical decision-making. This study aims to assess the frequency of VUSs that are likely pathogenic in disease-susceptibility genes. Using estimates of probands' probability of having a pathogenic mutation (ie, the carrier score) based on a family history probabilistic risk prediction model, we assume the carrier score distribution for probands with VUSs is a mixture of the carrier score distribution for probands with positive results and the carrier score distribution for probands with negative results. Under this mixture model, we propose a likelihood-based approach to assess the frequency of pathogenicity among probands with VUSs, while accounting for the existence of possible pathogenic mutations on genes not tested. We conducted simulations to assess the performance of the approach and show that under various settings, the approach performs well with very little bias in the estimated proportion of VUSs that are likely pathogenic. We also estimate the positive predictive value across the entire range of carrier scores. We apply our approach to the USC-Stanford Hereditary Cancer Panel Testing cohort, and estimate the proportion of probands that have VUSs in BRCA1/2 that are likely pathogenic to be 10.12% [95%CI: 0%, 43.04%]. This approach will enable clinicians to target high-risk patients who have VUSs, allowing for early prevention interventions.
Collapse
Affiliation(s)
- Yunqi Yang
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, USA
| | - Christine Hong
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jane W Liang
- City of Hope National Medical Cente, Duarte, California, USA.,Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Stephen Gruber
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Giovanni Parmigiani
- City of Hope National Medical Cente, Duarte, California, USA.,Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Gregory Idos
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Danielle Braun
- City of Hope National Medical Cente, Duarte, California, USA.,Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Capurso G, Paiella S, Carrara S, Butturini G, Secchettin E, Frulloni L, Zerbi A, Falconi M. Italian registry of families at risk of pancreatic cancer: AISP Familial Pancreatic Cancer Study Group. Dig Liver Dis 2020; 52:1126-1130. [PMID: 32819857 DOI: 10.1016/j.dld.2020.07.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer is one of the main causes of cancer-related death worldwide, with a survival rate around 9%. In Italy 13,500 new cases of pancreatic cancer occurred in 2019. It is estimated that at least 5% have a hereditary background. Surveillance is advisable for healthy individuals with specific genetic syndromes with or without family history of pancreatic cancer or members of families with multiple cases of pancreatic cancer, irrespective of genetic syndromes. In 2010 the Italian Association for the Study of the Pancreas (AISP) defined criteria to include individuals in such surveillance programs with the first-round results published in 2019. In order to include other categories at high-risk and increase the diagnostic yield of surveillance, these criteria have recently been modified. The present position paper presents the updated criteria of the Italian Registry of Families at Risk of Pancreatic Cancer (IRFARPC) with their diagnostic yield calculation. Also, AISP priority projects concerning: (a) increasing awareness of citizens and primary care physicians through a dedicated App; (b) increasing access to germline testing to personalize surveillance; (c) measuring psychological impact of surveillance; (d) investigating the role of risk-modifiers and (e) evaluating the cost-effectiveness and ability to save lives of the program are briefly presented.
Collapse
Affiliation(s)
- Gabriele Capurso
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, Vita-Salute San Raffaele University, Via Olgettina 60, Milan 20132, Italy.
| | - Salvatore Paiella
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona, Italy
| | - Silvia Carrara
- Digestive Endoscopy Unit(,) Division of Gastroenterology, Humanitas Research Hospital, IRCCS, Rozzano, MI, Italy
| | | | - Erica Secchettin
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona, Italy
| | - Luca Frulloni
- Gastroenterology and Digestive Endoscopy Unit, The Pancreas Institute, Department of Medicine, G.B. Rossi University Hospital, Verona, Italy
| | - Alessandro Zerbi
- Pancreatic Surgery, Humanitas Clinical and Research Center-IRCCS, Rozzano MI, Italy; Humanitas University, Department of Biomedical Sciences, Pieve Emanuele MI, Italy
| | - Massimo Falconi
- Pancreatic Surgery Unit, Vita-Salute University, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, Università. Vita-Salute, Milan, Italy
| |
Collapse
|
33
|
Gao F, Pan X, Dodd-Eaton EB, Recio CV, Montierth MD, Bojadzieva J, Mai PL, Zelley K, Johnson VE, Braun D, Nichols KE, Garber JE, Savage SA, Strong LC, Wang W. A pedigree-based prediction model identifies carriers of deleterious de novo mutations in families with Li-Fraumeni syndrome. Genome Res 2020; 30:1170-1180. [PMID: 32817165 PMCID: PMC7462073 DOI: 10.1101/gr.249599.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 06/25/2020] [Indexed: 01/14/2023]
Abstract
De novo mutations (DNMs) are increasingly recognized as rare disease causal factors. Identifying DNM carriers will allow researchers to study the likely distinct molecular mechanisms of DNMs. We developed Famdenovo to predict DNM status (DNM or familial mutation [FM]) of deleterious autosomal dominant germline mutations for any syndrome. We introduce Famdenovo.TP53 for Li-Fraumeni syndrome (LFS) and analyze 324 LFS family pedigrees from four US cohorts: a validation set of 186 pedigrees and a discovery set of 138 pedigrees. The concordance index for Famdenovo.TP53 prediction was 0.95 (95% CI: [0.92, 0.98]). Forty individuals (95% CI: [30, 50]) were predicted as DNM carriers, increasing the total number from 42 to 82. We compared clinical and biological features of FM versus DNM carriers: (1) cancer and mutation spectra along with parental ages were similarly distributed; (2) ascertainment criteria like early-onset breast cancer (age 20-35 yr) provides a condition for an unbiased estimate of the DNM rate: 48% (23 DNMs vs. 25 FMs); and (3) hotspot mutation R248W was not observed in DNMs, although it was as prevalent as hotspot mutation R248Q in FMs. Furthermore, we introduce Famdenovo.BRCA for hereditary breast and ovarian cancer syndrome and apply it to a small set of family data from the Cancer Genetics Network. In summary, we introduce a novel statistical approach to systematically evaluate deleterious DNMs in inherited cancer syndromes. Our approach may serve as a foundation for future studies evaluating how new deleterious mutations can be established in the germline, such as those in TP53.
Collapse
Affiliation(s)
- Fan Gao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Department of Statistics, Rice University, Houston, Texas 77005, USA
| | - Xuedong Pan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Department of Statistics, Texas A&M University, College Station, Texas 77843, USA
| | - Elissa B Dodd-Eaton
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Carlos Vera Recio
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Matthew D Montierth
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jasmina Bojadzieva
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Phuong L Mai
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Kristin Zelley
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Valen E Johnson
- Department of Statistics, Texas A&M University, College Station, Texas 77843, USA
| | - Danielle Braun
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Kim E Nichols
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Judy E Garber
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Louise C Strong
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Wenyi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
34
|
Llach J, Carballal S, Moreira L. Familial Pancreatic Cancer: Current Perspectives. Cancer Manag Res 2020; 12:743-758. [PMID: 32099470 PMCID: PMC6999545 DOI: 10.2147/cmar.s172421] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/15/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer (PC) is a highly lethal disease, mostly incurable when detected. Thus, despite advances in PC treatments, only around 7% of patients survive 5-years after diagnosis. This morbid outcome is secondary to multifactorial reasons, such as late-stage diagnosis, rapid progression and minimal response to chemotherapy. Based on these factors, it is of special relevance to identify PC high-risk individuals in order to establish preventive and early detection measures. Although most PC are sporadic, approximately 10% cases have a familial basis. No main causative gene of PC has been identified but several known germline pathogenic mutations are related with an increased risk of this tumor. These inherited cancer syndromes represent 3% of all PC. On the other hand, in 7% of cases of PC, there is a strong family history without a causative germline mutation, a situation known as familial pancreatic cancer (FPC). In recent years, there is increasing evidence supporting the benefit of genetic germline analysis in PC patients, and periodic pancreatic screening in PC high-risk patients (mainly those with a lifetime risk greater than 5%), although there is no general agreement in the group of patients and individuals to study and screen. In the present review, we expose an update in the field of hereditary and FPC, with the aim of describing the current strategies and implications in genetic counseling, surveillance and therapeutic interventions.
Collapse
Affiliation(s)
- Joan Llach
- Departmento de Gastroenterología, Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d' Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universidad de Barcelona, Barcelona, Spain
| | - Sabela Carballal
- Departmento de Gastroenterología, Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d' Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universidad de Barcelona, Barcelona, Spain
| | - Leticia Moreira
- Departmento de Gastroenterología, Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d' Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universidad de Barcelona, Barcelona, Spain
| |
Collapse
|
35
|
Abstract
Pancreatic cancer (PC) is an increasingly common disease worldwide. Having a better understanding of worldwide and regional epidemiologic features and risk factors of PC is essential to identify new approaches for prevention, early diagnosis, surveillance, and treatment. In this article, we review the epidemiologic features and risk factors for PC and discuss opportunities and challenges of PC future treatment.
Collapse
Affiliation(s)
- Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jinxin Tao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
36
|
Blyuss O, Zaikin A, Cherepanova V, Munblit D, Kiseleva EM, Prytomanova OM, Duffy SW, Crnogorac-Jurcevic T. Development of PancRISK, a urine biomarker-based risk score for stratified screening of pancreatic cancer patients. Br J Cancer 2019; 122:692-696. [PMID: 31857725 PMCID: PMC7054390 DOI: 10.1038/s41416-019-0694-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
Background An accurate and simple risk prediction model that would facilitate earlier detection of pancreatic adenocarcinoma (PDAC) is not available at present. In this study, we compare different algorithms of risk prediction in order to select the best one for constructing a biomarker-based risk score, PancRISK. Methods Three hundred and seventy-nine patients with available measurements of three urine biomarkers, (LYVE1, REG1B and TFF1) using retrospectively collected samples, as well as creatinine and age, were randomly split into training and validation sets, following stratification into cases (PDAC) and controls (healthy patients). Several machine learning algorithms were used, and their performance characteristics were compared. The latter included AUC (area under ROC curve) and sensitivity at clinically relevant specificity. Results None of the algorithms significantly outperformed all others. A logistic regression model, the easiest to interpret, was incorporated into a PancRISK score and subsequently evaluated on the whole data set. The PancRISK performance could be even further improved when CA19-9, commonly used PDAC biomarker, is added to the model. Conclusion PancRISK score enables easy interpretation of the biomarker panel data and is currently being tested to confirm that it can be used for stratification of patients at risk of developing pancreatic cancer completely non-invasively, using urine samples.
Collapse
Affiliation(s)
- Oleg Blyuss
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK. .,School of Physics, Astronomy and Mathematics, University of Hertfordshire, Hatfield, UK. .,Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child Health, Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Alexey Zaikin
- Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child Health, Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Mathematics and Institute for Women's Health, University College London, London, UK.,Department of Applied Mathematics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Valeriia Cherepanova
- Department of Mathematics and Institute for Women's Health, University College London, London, UK
| | - Daniel Munblit
- Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child Health, Sechenov First Moscow State Medical University, Moscow, Russia.,Inflammation, Repair and Development Section, National Heart & Lung Institute, Imperial College London, London, UK
| | | | | | - Stephen W Duffy
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | | |
Collapse
|
37
|
Dwarte T, McKay S, Johns A, Tucker K, Spigelman AD, Williams D, Stoita A. Genetic counselling and personalised risk assessment in the Australian pancreatic cancer screening program. Hered Cancer Clin Pract 2019; 17:30. [PMID: 31666883 PMCID: PMC6813120 DOI: 10.1186/s13053-019-0129-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
Background Pancreatic cancer (PC) is an aggressive disease with a dismal 5-year survival rate. Surveillance of high-risk individuals is hoped to improve survival outcomes by detection of precursor lesions or early-stage malignancy. Methods Since 2011, a national high-risk cohort recruited through St Vincent’s Hospital, Sydney, has undergone prospective PC screening incorporating annual endoscopic ultrasound, formal genetic counselling and mutation analysis as appropriate. PancPRO, a Bayesian PC risk assessment model, was used to estimate 5-year and lifetime PC risks for familial pancreatic cancer (FPC) participants and this was compared to their perceived chance of pancreatic and other cancers. Genetic counselling guidelines were developed to improve consistency. Follow-up questionnaires were used to assess the role of genetic counselling and testing. Results We describe the Australian PC screening program design and recruitment strategy and the results of the first 102 individuals who have completed at least one-year of follow-up. Seventy-nine participants met the FPC criteria (≥ two first-degree relatives affected), 22 individuals had both a BRCA2 pathogenic variant and a close relative with PC and one had a clinical diagnosis of Peutz-Jeghers syndrome. Participants reported a high perceived chance of developing PC regardless of their genetic testing status. PancPRO reported FPC participants’ mean 5-year and lifetime PC risks as 1.81% (range 0.2–3.2%) and 10.17% (range 2.4–14.4%), respectively. Participants’ perceived PC chance did not correlate with their PancPRO 5-year (r = − 0.17, p = 0.128) and lifetime PC risks (r = 0.19, p = 0.091). Two-thirds felt that current genetic testing would help them, and 91% of tested participants were glad to have undergone genetic testing. Overall, 79% of participants found genetic counselling to be helpful, and 88% reported they would recommend counselling to their relatives. Conclusions Participants reported multiple benefits of genetic counselling and testing but continue to seek greater clarification about their individual PC risk. Extension of PancPRO is required to enable personalised PC risk assessment for all high-risk sub-groups. More detailed discussion of PC risk for BRCA2 pathogenic variant carriers, providing a written summary in all cases and a plan for genetics review were identified as areas for improvement.
Collapse
Affiliation(s)
- Tanya Dwarte
- 1Australian Pancreatic Cancer Genome Initiative, Garvan Institute of Medical Research, Darlinghurst, NSW Australia.,2Hereditary Cancer Centre, Prince of Wales Hospital, Randwick, NSW Australia
| | - Skye McKay
- 1Australian Pancreatic Cancer Genome Initiative, Garvan Institute of Medical Research, Darlinghurst, NSW Australia
| | - Amber Johns
- 1Australian Pancreatic Cancer Genome Initiative, Garvan Institute of Medical Research, Darlinghurst, NSW Australia
| | - Katherine Tucker
- 2Hereditary Cancer Centre, Prince of Wales Hospital, Randwick, NSW Australia.,3University of New South Wales, Prince of Wales Clinical School, Sydney, NSW Australia
| | - Allan D Spigelman
- 5Cancer Genetics Unit, The Kinghorn Cancer Centre, St Vincent's Hospital, Darlinghurst, NSW Australia.,6St Vincent's Clinical School, University of New South Wales, Sydney, NSW Australia
| | - David Williams
- 4Department of Gastroenterology, St Vincent's Hospital, Darlinghurst, NSW Australia
| | - Alina Stoita
- 4Department of Gastroenterology, St Vincent's Hospital, Darlinghurst, NSW Australia
| |
Collapse
|
38
|
Ma H, Guo X, Ping Y, Wang B, Yang Y, Zhang Z, Zhou J. PPCD: Privacy-preserving clinical decision with cloud support. PLoS One 2019; 14:e0217349. [PMID: 31141561 PMCID: PMC6541381 DOI: 10.1371/journal.pone.0217349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 05/09/2019] [Indexed: 11/18/2022] Open
Abstract
With the prosperity of machine learning and cloud computing, meaningful information can be mined from mass electronic medical data which help physicians make proper disease diagnosis for patients. However, using medical data and disease information of patients frequently raise privacy concerns. In this paper, based on single-layer perceptron, we propose a scheme of privacy-preserving clinical decision with cloud support (PPCD), which securely conducts disease model training and prediction for the patient. Each party learns nothing about the other's private information. In PPCD, a lightweight secure multiplication is presented and introduced to improve the model training. Security analysis and experimental results on real data confirm the high accuracy of disease prediction achieved by the proposed PPCD without the risk of privacy disclosure.
Collapse
Affiliation(s)
- Hui Ma
- School of Information Engineering, Xuchang University, Xuchang, Henan, China
| | - Xuyang Guo
- No.1 Middle School of Zhengzhou, Zhengzhou, Henan, China
| | - Yuan Ping
- School of Information Engineering, Xuchang University, Xuchang, Henan, China
- Information Technology Research Base of Civil Aviation Administration of China, Civil Aviation University of China, Tianjin, China
- * E-mail: (YP); (BW)
| | - Baocang Wang
- School of Information Engineering, Xuchang University, Xuchang, Henan, China
- State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an, China
- * E-mail: (YP); (BW)
| | - Yuehua Yang
- School of Information Engineering, Xuchang University, Xuchang, Henan, China
| | - Zhili Zhang
- School of Information Engineering, Xuchang University, Xuchang, Henan, China
| | - Jingxian Zhou
- Information Technology Research Base of Civil Aviation Administration of China, Civil Aviation University of China, Tianjin, China
| |
Collapse
|
39
|
Primary and Secondary Prevention of Pancreatic Cancer. CURR EPIDEMIOL REP 2019. [DOI: 10.1007/s40471-019-00189-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Muhammad W, Hart GR, Nartowt B, Farrell JJ, Johung K, Liang Y, Deng J. Pancreatic Cancer Prediction Through an Artificial Neural Network. Front Artif Intell 2019; 2:2. [PMID: 33733091 PMCID: PMC7861334 DOI: 10.3389/frai.2019.00002] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022] Open
Abstract
Early detection of pancreatic cancer is challenging because cancer-specific symptoms occur only at an advanced stage, and a reliable screening tool to identify high-risk patients is lacking. To address this challenge, an artificial neural network (ANN) was developed, trained, and tested using the health data of 800,114 respondents captured in the National Health Interview Survey (NHIS) and Pancreatic, Lung, Colorectal, and Ovarian cancer (PLCO) datasets, together containing 898 patients diagnosed with pancreatic cancer. Prediction of pancreatic cancer risk was assessed at an individual level by incorporating 18 features into the neural network. The established ANN model achieved a sensitivity of 87.3 and 80.7%, a specificity of 80.8 and 80.7%, and an area under the receiver operating characteristic curve of 0.86 and 0.85 for the training and testing cohorts, respectively. These results indicate that our ANN can be used to predict pancreatic cancer risk with high discriminatory power and may provide a novel approach to identify patients at higher risk for pancreatic cancer who may benefit from more tailored screening and intervention.
Collapse
Affiliation(s)
- Wazir Muhammad
- Department of Therapeutic Radiology, School of Medicine, Yale University, New Haven, CT, United States
| | - Gregory R. Hart
- Department of Therapeutic Radiology, School of Medicine, Yale University, New Haven, CT, United States
| | - Bradley Nartowt
- Department of Therapeutic Radiology, School of Medicine, Yale University, New Haven, CT, United States
| | - James J. Farrell
- Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Kimberly Johung
- Department of Therapeutic Radiology, School of Medicine, Yale University, New Haven, CT, United States
| | - Ying Liang
- Department of Therapeutic Radiology, School of Medicine, Yale University, New Haven, CT, United States
| | - Jun Deng
- Department of Therapeutic Radiology, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
41
|
Idachaba S, Dada O, Abimbola O, Olayinka O, Uma A, Olunu E, Fakoya AOJ. A Review of Pancreatic Cancer: Epidemiology, Genetics, Screening, and Management. Open Access Maced J Med Sci 2019; 7:663-671. [PMID: 30894932 PMCID: PMC6420955 DOI: 10.3889/oamjms.2019.104] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer ranks among the causes of cancer-related deaths. The average size of pancreatic cancer during diagnosis is about 31 mm and has not changed significantly over the past 30 years. Poor early diagnosis of a tumour has been attributed to the late-presenting symptoms. Over the years, improvement in the diagnosis of pancreatic cancer has been observed, and this can be linked to advancement in imaging techniques as well as the increasing knowledge of cancer history and genetics. Magnetic Resonance Imaging, Endoscopic Ultrasound, and Computer Topography are the approved imaging modalities utilised in the diagnosing of pancreatic cancer. Over the years, the management of patients with pancreatic cancer has seen remarkable improvement as reliable techniques can now be harnessed and implemented in determining the resectability of cancer. However, only about 10% of pancreatic adenocarcinomas are resectable at the time of diagnosis and will highly benefit from a microscopic margin-negative surgical resection. Overall, the failure of early tumour identification will result in considerable morbidity and mortality.
Collapse
Affiliation(s)
| | - Oluwafemi Dada
- All Saints University, School of Medicine, Roseau, Dominica
| | | | | | - Akunnaya Uma
- All Saints University, School of Medicine, Roseau, Dominica
| | - Esther Olunu
- All Saints University, School of Medicine, Roseau, Dominica
| | | |
Collapse
|
42
|
Pang Y, Holmes MV, Chen Z, Kartsonaki C. A review of lifestyle, metabolic risk factors, and blood-based biomarkers for early diagnosis of pancreatic ductal adenocarcinoma. J Gastroenterol Hepatol 2019; 34:330-345. [PMID: 30550622 PMCID: PMC6378598 DOI: 10.1111/jgh.14576] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/09/2018] [Accepted: 12/12/2018] [Indexed: 12/28/2022]
Abstract
We aimed to review the epidemiologic literature examining lifestyle and metabolic risk factors, and blood-based biomarkers including multi-omics (genomics, proteomics, and metabolomics) and to discuss how these predictive markers can inform early diagnosis of pancreatic ductal adenocarcinoma (PDAC). A search of the PubMed database was conducted in June 2018 to review epidemiologic studies of (i) lifestyle and metabolic risk factors for PDAC, genome-wide association studies, and risk prediction models incorporating these factors and (ii) blood-based biomarkers for PDAC (conventional diagnostic markers, metabolomics, and proteomics). Prospective cohort studies have reported at least 20 possible risk factors for PDAC, including smoking, heavy alcohol drinking, adiposity, diabetes, and pancreatitis, but the relative risks and population attributable fractions of individual risk factors are small (mostly < 10%). High-throughput technologies have continued to yield promising genetic, metabolic, and protein biomarkers in addition to conventional biomarkers such as carbohydrate antigen 19-9. Nonetheless, most studies have utilized a hospital-based case-control design, and the diagnostic accuracy is low in studies that collected pre-diagnostic samples. Risk prediction models incorporating lifestyle and metabolic factors as well as other clinical parameters have shown good discrimination and calibration. Combination of traditional risk factors, genomics, and blood-based biomarkers can help identify high-risk populations and inform clinical decisions. Multi-omics investigations can provide valuable insights into disease etiology, but prospective cohort studies that collect pre-diagnostic samples and validation in independent studies are warranted.
Collapse
Affiliation(s)
- Yuanjie Pang
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Michael V Holmes
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
- Medical Research Council Population Health Research Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
- National Institute for Health Research Oxford Biomedical Research CentreOxford University HospitalOxfordUK
| | - Zhengming Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
- Medical Research Council Population Health Research Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Christiana Kartsonaki
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
- Medical Research Council Population Health Research Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| |
Collapse
|
43
|
Ohmoto A, Yachida S, Morizane C. Genomic Features and Clinical Management of Patients with Hereditary Pancreatic Cancer Syndromes and Familial Pancreatic Cancer. Int J Mol Sci 2019; 20:E561. [PMID: 30699894 PMCID: PMC6387417 DOI: 10.3390/ijms20030561] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most devastating malignancies; it has a 5-year survival rate of only 9%, and novel treatment strategies are urgently needed. While most PC cases occur sporadically, PC associated with hereditary syndromes or familial PC (FPC; defined as an individual having two or more first-degree relatives diagnosed with PC) accounts for about 10% of cases. Hereditary cancer syndromes associated with increased risk for PC include Peutz-Jeghers syndrome, hereditary pancreatitis, familial atypical multiple mole melanoma, familial adenomatous polyposis, Lynch syndrome and hereditary breast and ovarian cancer syndrome. Next-generation sequencing of FPC patients has uncovered new susceptibility genes such as PALB2 and ATM, which participate in homologous recombination repair, and further investigations are in progress. Previous studies have demonstrated that some sporadic cases that do not fulfil FPC criteria also harbor similar mutations, and so genomic testing based on family history might overlook some susceptibility gene carriers. There are no established screening procedures for high-risk unaffected cases, and it is not clear whether surveillance programs would have clinical benefits. In terms of treatment, poly (ADP-ribose) polymerase inhibitors for BRCA-mutated cases or immune checkpoint inhibitors for mismatch repair deficient cases are promising, and clinical trials of these agents are underway.
Collapse
Affiliation(s)
- Akihiro Ohmoto
- Laboratory of Clinical Genomics, National Cancer Center Research Institute, Tokyo 1040045, Japan.
| | - Shinichi Yachida
- Laboratory of Clinical Genomics, National Cancer Center Research Institute, Tokyo 1040045, Japan.
- Department of Cancer Genome Informatics, Graduate School of Medicine/Faculty of Medicine, Osaka University, Osaka 5650871, Japan.
| | - Chigusa Morizane
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo 1040045, Japan.
| |
Collapse
|
44
|
Abstract
Selective screening for pancreatic cancer (PC) has been proposed. We describe the establishment of a comprehensive multidisciplinary screening program using 3.0 T MRI. Criteria for screening included the presence of PC in: ≥ 2 first degree relatives (FDR), 1 FDR and 1 s degree relative (SDR), ≥ 3 any degree relatives (ADR), or any known hereditary cancer syndrome with increased PC risk. Imaging with 3.0 T MRI was performed routinely and endoscopic ultrasound was used selectively. Screening was completed in 75 patients (pts). Hereditary cancer syndromes were present in 42 (56%) of the 75 pts: BRCA2 (18), ATM (8), BRCA1 (6), CDKN2A (4), PALB2 (3), Lynch (2), and Peutz-Jeghers (1). A family history of PC was present in ≥ 2 FDR in 12 (16%) pts, 1 FDR and 1 SDR in 5 (7) pts, and ≥ 3 ADR in 16 (21%) pts. Of the 65 pts who received screening MRI, 28 (43%) pts had pancreatic cystic lesions identified, including 1 (1%) patient in whom a cholangiocarcinoma was diagnosed as well. No patient underwent surgical resection. Using a 3.0 T MRI to screen patients at high risk for developing PC identified radiographic abnormalities in 43% of patients, which were stable on subsequent surveillance. Specific guidelines for the frequency of surveillance and indications for surgery remain areas of active investigation as the global experience with high risk screening continues to mature.
Collapse
|
45
|
Sheel ARG, Harrison S, Sarantitis I, Nicholson JA, Hanna T, Grocock C, Raraty M, Ramesh J, Farooq A, Costello E, Jackson R, Chapman M, Smith A, Carter R, Mckay C, Hamady Z, Aithal GP, Mountford R, Ghaneh P, Hammel P, Lerch MM, Halloran C, Pereira SP, Greenhalf W. Identification of Cystic Lesions by Secondary Screening of Familial Pancreatic Cancer (FPC) Kindreds Is Not Associated with the Stratified Risk of Cancer. Am J Gastroenterol 2019; 114:155-164. [PMID: 30353057 DOI: 10.1038/s41395-018-0395-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Intraductal papillary mucinous neoplasms (IPMNs) are associated with risk of pancreatic ductal adenocarcinoma (PDAC). It is unclear if an IPMN in individuals at high risk of PDAC should be considered as a positive screening result or as an incidental finding. Stratified familial pancreatic cancer (FPC) populations were used to determine if IPMN risk is linked to familial risk of PDAC. METHODS This is a cohort study of 321 individuals from 258 kindreds suspected of being FPC and undergoing secondary screening for PDAC through the European Registry of Hereditary Pancreatitis and Familial Pancreatic Cancer (EUROPAC). Computerised tomography, endoscopic ultrasound of the pancreas and magnetic resonance imaging were used. The risk of being a carrier of a dominant mutation predisposing to pancreatic cancer was stratified into three even categories (low, medium and high) based on: Mendelian probability, the number of PDAC cases and the number of people at risk in a kindred. RESULTS There was a median (interquartile range (IQR)) follow-up of 2 (0-5) years and a median (IQR) number of investigations per participant of 4 (2-6). One PDAC, two low-grade neuroendocrine tumours and 41 cystic lesions were identified, including 23 IPMN (22 branch-duct (BD)). The PDAC case occurred in the top 10% of risk, and the BD-IPMN cases were evenly distributed amongst risk categories: low (6/107), medium (10/107) and high (6/107) (P = 0.63). CONCLUSIONS The risk of finding BD-IPMN was independent of genetic predisposition and so they should be managed according to guidelines for incidental finding of IPMN.
Collapse
Affiliation(s)
- A R G Sheel
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GA, UK
| | - S Harrison
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GA, UK
| | - I Sarantitis
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GA, UK
| | - J A Nicholson
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GA, UK
| | - T Hanna
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GA, UK
| | - C Grocock
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GA, UK
| | - M Raraty
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GA, UK
| | - J Ramesh
- Department of Gastroenterology, The Royal Liverpool University Hospital, London, UK
| | - A Farooq
- Department of Radiology, The Royal Liverpool University Hospital, London, UK
| | - E Costello
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GA, UK
| | - R Jackson
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GA, UK
| | - M Chapman
- Institute for Liver & Digestive Health, University College London, London, UK
| | - A Smith
- Department of Pancreatico-Biliary Surgery, Leeds Teaching Hospital Trust, Leeds, UK
| | - R Carter
- West of Scotland Pancreatic unit, Glasgow Royal Infirmary, Glasgow, UK
| | - C Mckay
- West of Scotland Pancreatic unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Z Hamady
- Department of Hepatobiliary and Pancreatic Diseases, University Hospital Southampton, Southampton, UK
| | - G P Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, NG7 2UH, UK
| | - R Mountford
- Mersey Regional Molecular Genetics Laboratory, Liverpool Women's Hospital, Liverpool, UK
| | - P Ghaneh
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GA, UK
| | - P Hammel
- Service de Gastroentérologie-Pancréatologie, Pôle des Maladies de l'Appareil Digestif, Hôpital Beaujon, 92118, Clichy Cedex, France
| | - M M Lerch
- Department of Medicine A, University Medicine Greifswald, Sauerbruch-Strasse, 17475, Greifswald, Germany
| | - C Halloran
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GA, UK
| | - S P Pereira
- Institute for Liver & Digestive Health, University College London, London, UK
| | - W Greenhalf
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GA, UK
| |
Collapse
|
46
|
Corral JE, Mareth KF, Riegert-Johnson DL, Das A, Wallace MB. Diagnostic Yield From Screening Asymptomatic Individuals at High Risk for Pancreatic Cancer: A Meta-analysis of Cohort Studies. Clin Gastroenterol Hepatol 2019; 17:41-53. [PMID: 29775792 DOI: 10.1016/j.cgh.2018.04.065] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/24/2018] [Accepted: 04/29/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS There have been few studies of abdominal imaging screening of individuals at high risk for pancreatic cancer (based on family history or genetic variants). We performed a meta-analysis of prospective cohort studies to determine the diagnostic yield and outcomes of abdominal imaging screening for asymptomatic individuals at high risk. METHODS Through a systematic review of multiple electronic databases and conference proceedings through July 2017, we identified prospective cohort studies (>20 patients) of asymptomatic adults determined to be at high-risk of pancreatic cancer (lifetime risk >5%, including specific genetic-associated conditions) who were screened by endoscopic ultrasound (EUS) and/or magnetic resonance imaging (MRI) to detect pancreatic lesions. Our primary outcome was identification of high-risk pancreatic lesions (high-grade pancreatic intraepithelial neoplasia, high-grade dysplasia, or adenocarcinoma) at initial screening, and overall incidence during follow up. Summary estimates were reported as incidence rates per 100 patient-years. RESULTS We identified 19 studies comprising 7085 individuals at high risk for pancreatic cancer; of these, 1660 patients were evaluated by EUS and/or MRI. Fifty-nine high-risk lesions were identified (43 adenocarcinomas: 28 during the initial exam and 15 during follow-up surveillance) and 257 patients underwent pancreatic surgery. Based on our meta-analysis, the overall diagnostic yield screening for high-risk pancreatic lesions was 0.74 (95% CI, 0.33-1.14), with moderate heterogeneity among studies. The number needed to screen to identify 1 patient with a high-risk lesion was 135 (95% CI, 88-303). The diagnostic yield was similar for patients with different genetic features that increased risk, and whether patients were screened by EUS or MRI. CONCLUSIONS Based on meta-analysis, 135 patients at high-risk for pancreatic cancer must be screened to identify 1 patient with a high-risk pancreatic lesion. Further studies are needed to determine whether screening reduces mortality and is cost effectiveness for individuals at high-risk of pancreatic cancer.
Collapse
Affiliation(s)
- Juan E Corral
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida
| | - Karl F Mareth
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida
| | | | - Ananya Das
- Center for Digestive Health, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Michael B Wallace
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida.
| |
Collapse
|
47
|
Gordon ES, Babu D, Laney DA. The future is now: Technology's impact on the practice of genetic counseling. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018. [DOI: 10.1002/ajmg.c.31599] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Dawn A. Laney
- Department of Human GeneticsEmory School of MedicineDecatur Georgia
| |
Collapse
|
48
|
Felsenstein M, Hruban RH, Wood LD. New Developments in the Molecular Mechanisms of Pancreatic Tumorigenesis. Adv Anat Pathol 2018; 25:131-142. [PMID: 28914620 DOI: 10.1097/pap.0000000000000172] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pancreatic cancer is an aggressive disease with a dismal prognosis in dire need of novel diagnostic and therapeutic approaches. The past decade has witnessed an explosion of data on the genetic alterations that occur in pancreatic cancer, as comprehensive next-generation sequencing analyses have been performed on samples from large cohorts of patients. These studies have defined the genomic landscape of this disease and identified novel candidates whose mutations contribute to pancreatic tumorigenesis. They have also clarified the genetic alterations that underlie multistep tumorigenesis in precursor lesions and provided insights into clonal evolution in pancreatic neoplasia. In addition to these important insights into pancreatic cancer biology, these large scale genomic studies have also provided a foundation for the development of novel early detection strategies and targeted therapies. In this review, we discuss the results of these comprehensive sequencing studies of pancreatic neoplasms, with a particular focus on how their results will impact the clinical care of patients with pancreatic cancer.
Collapse
|
49
|
Utility of Endoscopic Ultrasonography Screening for Small Pancreatic Cancer and Proposal for a New Scoring System for Screening. Pancreas 2018; 47:257-264. [PMID: 29329161 DOI: 10.1097/mpa.0000000000000988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES This study aimed to evaluate the utility of endoscopic ultrasonography screening for small pancreatic cancer (PC) and propose a new simple scoring system for selecting individuals who should be screened. METHODS Risk factors or symptoms related to PC were tentatively divided into high- and low-grade risk groups based mainly on reported relative risk values. Numbers of risk factors were designated as risk scores. Endoscopic ultrasonography screening was performed for 632 individuals. We analyzed scores for PC detection prospectively, and risk factors and scores of PC patients retrospectively. RESULTS We detected 10 small malignant pancreatic neoplasms (size ≤20 mm; 8 PCs; 9 Tis or T1) and 14 advanced PCs. All small PCs and 95.5% of PCs were found in individuals with low-grade risk scores of at least 3 points (P) or high-grade risk scores of at least 1P. Both average risk scores were significantly higher in patients with small PCs (P ≤ 0.04). Cutoffs for low- and high-grade risk scores implying the presence of small PC and all PC were 3P and 1P, respectively. When subjects having one or both cutoff scores were screened, sensitivity and specificity were 100% and 64.4% for small PCs and 95.5% and 64.4% for all PCs. CONCLUSION Endoscopic ultrasonography screening combining new scoring is effective for detecting small PC.
Collapse
|
50
|
Moutinho-Ribeiro P, Macedo G, Melo SA. Pancreatic Cancer Diagnosis and Management: Has the Time Come to Prick the Bubble? Front Endocrinol (Lausanne) 2018; 9:779. [PMID: 30671023 PMCID: PMC6331408 DOI: 10.3389/fendo.2018.00779] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/11/2018] [Indexed: 02/01/2023] Open
Abstract
Pancreatic cancer (PC) is associated with poor prognosis and very dismal survival rates. The most effective possibility of cure is tumor resection, which is only possible in about 15% of patients diagnosed at early stages of disease progression. Recent whole-genome sequencing studies pointed genetic alterations in 12 core signaling pathways in PC. These observations hint at the possibility that the initial mutation in PC might appear nearly 20 years before any symptoms occur, suggesting that a large window of opportunity may exist for early detection. Biomarkers with the potential to identify pre-neoplastic disease or very early stages of cancer are of great promise to improve patient survival. The concept of liquid biopsy refers to a minimally invasive sampling and analysis of liquid biomarkers that can be isolated from body fluids, primarily blood, urine and saliva. A myriad of circulating molecules may be useful as tumor markers, including cell-free DNA (cfDNA), cell-free RNA (cfRNA), circulating tumor cells (CTC), circulating tumor proteins, and extracellular vesicles, more specifically exosomes. In this review, we discuss with more detail the potential role of exosomes in several aspects related to PC, from initiation to tumor progression and its applicability in early detection and treatment. Exosomes are small circulating extracellular vesicles of 50-150 nm in diameter released from the plasma membrane by almost all cells and exhibit some advantages over other biomarkers. Exosomes are central players of intercellular communication and they have been implicated in a series of biological process, including tumorigenesis, migration and metastasis. Several exosomal microRNAs and proteins have been observed to distinguish PC from benign pancreatic diseases and healthy controls. Besides their possible role in diagnosis, understanding exosomes functions in cancer has clarified the importance of microenvironment in PC progression as well as its influence in proliferation, metastasis and resistance to chemotherapy. Increasing knowledge on cancer exosomes provides valuable insights on new therapeutic targets and can potentially open new strategies to treat this disease. Continuous research is needed to ascertain the reliability of using exosomes and their content as potential biomarkers, so that, hopefully, in the near future, they will provide the opportunity for early diagnosis, treatment intervention and increase survival of PC patients.
Collapse
Affiliation(s)
- Pedro Moutinho-Ribeiro
- Department of Gastroenterology, Centro Hospitalar São João, Porto, Portugal
- Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Guilherme Macedo
- Department of Gastroenterology, Centro Hospitalar São João, Porto, Portugal
- Faculty of Medicine of the University of Porto, Porto, Portugal
- *Correspondence: Guilherme Macedo
| | - Sónia A. Melo
- Faculty of Medicine of the University of Porto, Porto, Portugal
- Institute for Research Innovation in Health (i3S), Porto, Portugal
- Institute of Pathology and Molecular Immunology of the University of Porto, Porto, Portugal
- Sónia A. Melo
| |
Collapse
|