1
|
Giri B, Gupta VK, Yaffe B, Modi S, Roy P, Sethi V, Lavania SP, Vickers SM, Dudeja V, Banerjee S, Watts J, Saluja A. Pre-clinical evaluation of Minnelide as a therapy for acute myeloid leukemia. J Transl Med 2019; 17:163. [PMID: 31109340 PMCID: PMC6528210 DOI: 10.1186/s12967-019-1901-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/30/2019] [Indexed: 01/22/2023] Open
Abstract
Background There is an urgent need for novel and effective treatment options for acute myeloid leukemia (AML). Triptolide, a diterpenoid tri-epoxide compound isolated from the herb Tripterygium wilfordii and its water-soluble pro-drug-Minnelide have shown promising anti-cancer activity. A recent clinical trial for patients with solid tumors confirmed the safety and efficacy at biologically equivalent doses of 0.2 mg/kg/day and lower. Methods Cell viability of multiple AML cell lines as well as patient apheresis samples were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) based assay. Apoptosis was evaluated by estimating the amount of cleaved caspase. AML cell line (THP1-Luc) was implanted in immunocompromised mice and treated with indicated doses of Minnelide. Leukemic burden before and after treatment was evaluated by imaging in an In Vivo Imaging System (IVIS). Results In the current study, we show that Minnelide, at doses below maximum tolerated dose (MTD) demonstrates leukemic clearance of both primary AML blasts and luciferase expressing THP-1 cells in mice. In vitro, multiple primary AML apheresis samples and AML cell lines (THP-1, KG1, Kasumi-1, HL-60) were sensitive to triptolide mediated cell death and apoptosis in low doses. Treatment with triptolide led to a significant decrease in the colony forming ability of AML cell lines as well as in the expression of stem cell markers. Additionally, it resulted in the cell cycle arrest in the G1/S phase with significant downregulation of c-Myc, a major transcriptional regulator mediating cancer cell growth and stemness. Conclusion Our results suggest that Minnelide, with confirmed safety and activity in the clinic, exerts a potent anti-leukemic effect in multiple models of AML at doses easily achievable in patients. Electronic supplementary material The online version of this article (10.1186/s12967-019-1901-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bhuwan Giri
- Sylvester Comprehensive Cancer Center and DeWitt Daughtry Family Department of Surgery, University of Miami, 460C CRB Research Building, 1140 NW 14th St, Miami, FL, 33136, USA
| | - Vineet K Gupta
- Sylvester Comprehensive Cancer Center and DeWitt Daughtry Family Department of Surgery, University of Miami, 460C CRB Research Building, 1140 NW 14th St, Miami, FL, 33136, USA
| | - Brianna Yaffe
- Sylvester Comprehensive Cancer Center and DeWitt Daughtry Family Department of Surgery, University of Miami, 460C CRB Research Building, 1140 NW 14th St, Miami, FL, 33136, USA
| | - Shrey Modi
- Sylvester Comprehensive Cancer Center and DeWitt Daughtry Family Department of Surgery, University of Miami, 460C CRB Research Building, 1140 NW 14th St, Miami, FL, 33136, USA
| | - Pooja Roy
- Sylvester Comprehensive Cancer Center and DeWitt Daughtry Family Department of Surgery, University of Miami, 460C CRB Research Building, 1140 NW 14th St, Miami, FL, 33136, USA
| | - Vrishketan Sethi
- Sylvester Comprehensive Cancer Center and DeWitt Daughtry Family Department of Surgery, University of Miami, 460C CRB Research Building, 1140 NW 14th St, Miami, FL, 33136, USA
| | - Shweta P Lavania
- Sylvester Comprehensive Cancer Center and DeWitt Daughtry Family Department of Surgery, University of Miami, 460C CRB Research Building, 1140 NW 14th St, Miami, FL, 33136, USA
| | - Selwyn M Vickers
- Sylvester Comprehensive Cancer Center and DeWitt Daughtry Family Department of Surgery, University of Miami, 460C CRB Research Building, 1140 NW 14th St, Miami, FL, 33136, USA
| | - Vikas Dudeja
- Sylvester Comprehensive Cancer Center and DeWitt Daughtry Family Department of Surgery, University of Miami, 460C CRB Research Building, 1140 NW 14th St, Miami, FL, 33136, USA
| | - Sulagna Banerjee
- Sylvester Comprehensive Cancer Center and DeWitt Daughtry Family Department of Surgery, University of Miami, 460C CRB Research Building, 1140 NW 14th St, Miami, FL, 33136, USA
| | - Justin Watts
- Sylvester Comprehensive Cancer Center and DeWitt Daughtry Family Department of Surgery, University of Miami, 460C CRB Research Building, 1140 NW 14th St, Miami, FL, 33136, USA
| | - Ashok Saluja
- Sylvester Comprehensive Cancer Center and DeWitt Daughtry Family Department of Surgery, University of Miami, 460C CRB Research Building, 1140 NW 14th St, Miami, FL, 33136, USA.
| |
Collapse
|
2
|
Toth LN, Green D, Peterson J, Deharvengt SJ, de Abreu FB, Loo EY. Variant allele frequencies do not correlate well with myeloblast counts in a clinically validated gene sequencing panel for routine acute myeloid leukemia workup. Leuk Lymphoma 2019; 60:2415-2422. [DOI: 10.1080/10428194.2019.1587757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Laura N. Toth
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center One Medical Center Drive, Lebanon, NH, USA
| | - Donald Green
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center One Medical Center Drive, Lebanon, NH, USA
| | - Jason Peterson
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center One Medical Center Drive, Lebanon, NH, USA
| | - Sophie J. Deharvengt
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center One Medical Center Drive, Lebanon, NH, USA
| | - Francine B. de Abreu
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center One Medical Center Drive, Lebanon, NH, USA
| | - Eric Y. Loo
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center One Medical Center Drive, Lebanon, NH, USA
| |
Collapse
|
3
|
Kurata M, Rathe SK, Bailey NJ, Aumann NK, Jones JM, Veldhuijzen GW, Moriarity BS, Largaespada DA. Using genome-wide CRISPR library screening with library resistant DCK to find new sources of Ara-C drug resistance in AML. Sci Rep 2016; 6:36199. [PMID: 27808171 PMCID: PMC5093682 DOI: 10.1038/srep36199] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/11/2016] [Indexed: 12/25/2022] Open
Abstract
Acute myeloid leukemia (AML) can display de novo or acquired resistance to cytosine arabinoside (Ara-C), a primary component of induction chemotherapy. To identify genes capable of independently imposing Ara-C resistance, we applied a genome-wide CRISPR library to human U937 cells and exposed to them to Ara-C. Interestingly, all drug resistant clones contained guide RNAs for DCK. To avoid DCK gene modification, gRNA resistant DCK cDNA was created by the introduction of silent mutations. The CRISPR screening was repeated using the gRNA resistant DCK, and loss of SLC29A was identified as also being capable of conveying Ara-C drug resistance. To determine if loss of Dck results in increased sensitivity to other drugs, we conducted a screen of 446 FDA approved drugs using two Dck-defective BXH-2 derived murine AML cell lines and their Ara-C sensitive parental lines. Both cell lines showed an increase in sensitivity to prednisolone. Guide RNA resistant cDNA rescue was a legitimate strategy and multiple DCK or SLC29A deficient human cell clones were established with one clone becoming prednisolone sensitive. Dck-defective leukemic cells may become prednisolone sensitive indicating prednisolone may be an effective adjuvant therapy in some cases of DCK-negative AML.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Line
- Clone Cells
- Clustered Regularly Interspaced Short Palindromic Repeats/genetics
- Cytarabine/pharmacology
- Cytarabine/therapeutic use
- DNA, Complementary/genetics
- Deoxycytidine Kinase/genetics
- Dexamethasone/pharmacology
- Drug Resistance, Neoplasm/genetics
- Equilibrative Nucleoside Transporter 1/genetics
- Gene Library
- Genetic Loci
- Genetic Testing
- Genome, Human
- Glucocorticoids/pharmacology
- Humans
- Inhibitory Concentration 50
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/genetics
- Mice
- Mutation/genetics
- Prednisolone/pharmacology
- RNA, Guide, CRISPR-Cas Systems/genetics
- Receptors, Glucocorticoid/metabolism
- Reproducibility of Results
- U937 Cells
Collapse
Affiliation(s)
- Morito Kurata
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Susan K. Rathe
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | | | - Natalie K. Aumann
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Justine M. Jones
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | | | - Branden S. Moriarity
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - David A. Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Brain Tumor Program, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
4
|
Abraham A, Varatharajan S, Karathedath S, Philip C, Lakshmi KM, Jayavelu AK, Mohanan E, Janet NB, Srivastava VM, Shaji RV, Zhang W, Abraham A, Viswabandya A, George B, Chandy M, Srivastava A, Mathews V, Balasubramanian P. RNA expression of genes involved in cytarabine metabolism and transport predicts cytarabine response in acute myeloid leukemia. Pharmacogenomics 2015; 16:877-90. [PMID: 26083014 DOI: 10.2217/pgs.15.44] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Variation in terms of outcome and toxic side effects of treatment exists among acute myeloid leukemia (AML) patients on chemotherapy with cytarabine (Ara-C) and daunorubicin (Dnr). Candidate Ara-C metabolizing gene expression in primary AML cells is proposed to account for this variation. METHODS Ex vivo Ara-C sensitivity was determined in primary AML samples using MTT assay. mRNA expression of candidate Ara-C metabolizing genes were evaluated by RQPCR analysis. Global gene expression profiling was carried out for identifying differentially expressed genes between exvivo Ara-C sensitive and resistant samples. RESULTS Wide interindividual variations in ex vivo Ara-C cytotoxicity were observed among samples from patients with AML and were stratified into sensitive, intermediately sensitive and resistant, based on IC50 values obtained by MTT assay. RNA expression of deoxycytidine kinase (DCK), human equilibrative nucleoside transporter-1 (ENT1) and ribonucleotide reductase M1 (RRM1) were significantly higher and cytidine deaminase (CDA) was significantly lower in ex vivo Ara-C sensitive samples. Higher DCK and RRM1 expression in AML patient's blast correlated with better DFS. Ara-C resistance index (RI), a mathematically derived quotient was proposed based on candidate gene expression pattern. Ara-C ex vivo sensitive samples were found to have significantly lower RI compared with resistant as well as samples from patients presenting with relapse. Patients with low RI supposedly highly sensitive to Ara-C were found to have higher incidence of induction death (p = 0.002; RR: 4.35 [95% CI: 1.69-11.22]). Global gene expression profiling undertaken to find out additional contributors of Ara-C resistance identified many apoptosis as well as metabolic pathway genes to be differentially expressed between Ara-C resistant and sensitive samples. CONCLUSION This study highlights the importance of evaluating expression of candidate Ara-C metabolizing genes in predicting ex vivo drug response as well as treatment outcome. RI could be a predictor of ex vivo Ara-C response irrespective of cytogenetic and molecular risk groups and a potential biomarker for AML treatment outcome and toxicity. Original submitted 22 December 2014; Revision submitted 9 April 2015.
Collapse
Affiliation(s)
- Ajay Abraham
- Department of Haematology, Christian Medical College, Vellore, India
| | | | | | - Chepsy Philip
- Department of Haematology, Christian Medical College, Vellore, India
| | - Kavitha M Lakshmi
- Department of Haematology, Christian Medical College, Vellore, India
| | | | | | - Nancy Beryl Janet
- Department of Haematology, Christian Medical College, Vellore, India
| | | | | | - Wei Zhang
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Aby Abraham
- Department of Haematology, Christian Medical College, Vellore, India
| | - Auro Viswabandya
- Department of Haematology, Christian Medical College, Vellore, India
| | - Biju George
- Department of Haematology, Christian Medical College, Vellore, India
| | - Mammen Chandy
- Department of Haematology, Christian Medical College, Vellore, India
| | - Alok Srivastava
- Department of Haematology, Christian Medical College, Vellore, India
| | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| | | |
Collapse
|
5
|
Zhao Q, Shi X, Xie Y, Huang J, Shia B, Ma S. Combining multidimensional genomic measurements for predicting cancer prognosis: observations from TCGA. Brief Bioinform 2014; 16:291-303. [PMID: 24632304 DOI: 10.1093/bib/bbu003] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
With accumulating research on the interconnections among different types of genomic regulations, researchers have found that multidimensional genomic studies outperform one-dimensional studies in multiple aspects. Among many sources of multidimensional genomic data, The Cancer Genome Atlas (TCGA) provides the public with comprehensive profiling data on >30 cancer types, making it an ideal test bed for conducting and comparing different analyses. In this article, the analysis goal is to apply several existing methods and associate multidimensional genomic measurements with cancer outcomes in particular prognosis, with special focus on the predictive power of genomic signatures. We exploit clinical data and four types of genomic measurement including mRNA gene expression, DNA methylation, microRNA and copy number alterations for breast invasive carcinoma, glioblastoma multiforme, acute myeloid leukemia and lung squamous cell carcinoma collected by TCGA. To accommodate the high dimensionality, we extract important features using Principal Component Analysis, Partial Least Squares and Least Absolute Shrinkage and Selection Operator (Lasso), which are representative of dimension reduction and variable selection techniques and have been extensively adopted, and fit Cox survival models with combined important features. We calibrate the predictive power of each type of genomic measurement for the prognosis of four cancer types and find that the results vary across cancers. Our analysis also suggests that for most of the cancers in our study and the adopted methods, there is no substantial improvement in prediction when adding other genomic measurement after gene expression and clinical covariates have been included in the model. This is consistent with the findings that molecular features measured at the transcription level affect clinical outcomes more directly than those measured at the DNA/epigenetic level.
Collapse
|
6
|
Abraham A, Karathedath S, Varatharajan S, Markose P, Chendamarai E, Jayavelu AK, George B, Srivastava A, Mathews V, Balasubramanian P. ABCB6 RNA expression in leukemias--expression is low in acute promyelocytic leukemia and FLT3-ITD-positive acute myeloid leukemia. Ann Hematol 2013; 93:509-12. [PMID: 23793916 DOI: 10.1007/s00277-013-1821-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/10/2013] [Indexed: 01/29/2023]
Affiliation(s)
- Ajay Abraham
- Department of Haematology, Christian Medical College, Vellore, 632004, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abraham A, Varatharajan S, Abbas S, Zhang W, Shaji RV, Ahmed R, Abraham A, George B, Srivastava A, Chandy M, Mathews V, Balasubramanian P. Cytidine deaminase genetic variants influence RNA expression and cytarabine cytotoxicity in acute myeloid leukemia. Pharmacogenomics 2012; 13:269-82. [DOI: 10.2217/pgs.11.149] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: Cytidine deaminase (CDA) irreversibly deaminates cytarabine (Ara-C), a key component of acute myeloid leukemia (AML) induction and consolidation therapy. CDA overexpression results in Ara-C resistance, while decreased expression is associated with toxicity. We evaluated factors influencing variation in CDA mRNA expression in adult AML patients and normal controls, and how they contributed to Ara-C cytotoxicity in AML cells. Materials & methods: CDA mRNA expression in 100 de novo AML patients and 36 normal controls were determined using quantitative reverse-transcriptase PCR. Genetic variants in the CDA gene were screened by direct sequencing. IC50 of Ara-C was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Results: CDA RNA expression as well as Ara-C IC50 showed wide variation in AML samples and normal controls. Fourteen sequence variants were identified, three of which (-33delC, intron 2 TCAT repeat and the 3´untranslated region 816delC variants) showed significant association with RNA expression and the nonsynonymous coding variant 79A>C was associated with Ara-C cytotoxicity. Conclusion: CDA genetic variants explain the variation in RNA expression and may be candidates for individualizing Ara-C therapy. Original submitted 8 July 2011; Revision submitted 10 October 2011
Collapse
Affiliation(s)
- Ajay Abraham
- Christian Medical College, Vellore 632004, India
| | | | - Salar Abbas
- Christian Medical College, Vellore 632004, India
| | - Wei Zhang
- Department of Pediatrics, Institute of Human Genetics, Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Rayaz Ahmed
- Christian Medical College, Vellore 632004, India
| | - Aby Abraham
- Christian Medical College, Vellore 632004, India
| | - Biju George
- Christian Medical College, Vellore 632004, India
| | | | | | | | | |
Collapse
|
8
|
Kristensen T, Møller MB, Friis L, Bergmann OJ, Preiss B. NPM1 mutation is a stable marker for minimal residual disease monitoring in acute myeloid leukaemia patients with increased sensitivity compared to WT1 expression. Eur J Haematol 2011; 87:400-8. [PMID: 21707751 DOI: 10.1111/j.1600-0609.2011.01673.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutation in the NPM1 gene occurs in 60% of acute myeloid leukaemia (AML) patients with normal karyotype. NPM1 mutation is potentially a superior minimal residual disease (MRD) marker compared to WT1 gene overexpression by being specific to the malignant clone, although experimental evidence published so far includes very limited numbers of relapsed cases. Also, the stability of the NPM1 mutation has been questioned by reports of the mutation being lost at relapse. In the present study we compared NPM1 mutation and WT1 overexpression as MRD markers in 20 cases of relapsed AML. The 20 patients experienced a total of 28 morphological relapses. Karyotypic evolution was detected in 56% of relapses. All relapses were accompanied by high levels of NPM1 mutation, along with high WT1 mRNA levels, thus demonstrating complete stability of both markers during relapse. Detectable NPM1 mutation following a period of morphological remission was accompanied by a morphological relapse in all cases. In contrast, WT1 expression was detected in 33% of the NPM1 mutation negative samples. This background WT1 expression produced by non-leukaemia cells was highly variable, both between and within patients, and limited the de facto sensitivity of the WT1 expression analysis. The present study therefore provides important experimental evidence demonstrating that NPM1 mutation is superior to WT1 overexpression as marker of MRD in NPM1-mutated AML, even in the presence of extensive karyotypic evolution.
Collapse
Affiliation(s)
- Thomas Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | | | | | | | | |
Collapse
|