1
|
Popov V, Raycheva G, Graklanov V, Uchikov P, Grudeva-Popova Z. Evaluation of the Effect of Radiosurgery for Target and Non-Target Lesions in Patients with Brain Metastases Using RANO-BM Criteria. Technol Cancer Res Treat 2024; 23:15330338241273324. [PMID: 39196704 PMCID: PMC11363236 DOI: 10.1177/15330338241273324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/09/2024] [Accepted: 07/11/2024] [Indexed: 08/30/2024] Open
Abstract
OBJECTIVES The current therapeutic indications of radiosurgery are constantly expanding. Magnetic resonance imaging (MRI) has an important role in the diagnostic and post-therapeutic period of primary and secondary brain tumor formations. METHODS A total of 66 patients with verified cancer disease and brain metastases were separated into two groups. The first group includes 34 patients with primary non-small cell lung cancer and the second one 32 patients with other types of primary cancer. All of them received high-dose radiotherapy in 1-5 fractions. The number, size, and location of the treated lesions responded to robotic stereotactic radiosurgery criteria. The Response Assessment Criteria for Brain Metastases (RANO-BM) is an international multidisciplinary group of experts who developed acceptable criteria for assessing brain metastases. Before treatment and on the first, third, sixth month after radiosurgery, a MRI and blood tests were performed. RESULTS Treated lesions were separated into four groups depending on the results - complete response, partial response, progressive disease, and stable disease. In both groups of patients, the percentage of complete or partial response had increased in the third and sixth months. CONCLUSION The results give us a reason not to recommend an MRI 1 month after treatment if the patient doesn't have any new neurological symptoms, because there may be a pseudo-progression. MRI results valued by RANO-BM criteria give us a good option to evaluate brain metastases on the third and sixth month after after stereotactic radiosurgery.
Collapse
Affiliation(s)
- Veselin Popov
- Department of Clinical Oncology, Medical University of Plovdiv, Bulgaria
- University Hospital “Sv. Georgi”, Plovdiv, Bulgaria
| | - Gabriela Raycheva
- Department of Clinical Oncology, Medical University of Plovdiv, Bulgaria
- University Hospital “Sv. Georgi”, Plovdiv, Bulgaria
| | - Vasko Graklanov
- First Department of Internal Diseases, Medical University of Plovdiv, Bulgaria
- University Hospital “Sv. Georgi”, Plovdiv, Bulgaria
| | - Petar Uchikov
- Department of Special Surgery, Medical University of Plovdiv, Bulgaria
- University Hospital “Sv. Georgi”, Plovdiv, Bulgaria
| | - Zhanet Grudeva-Popova
- Department of Clinical Oncology, Medical University of Plovdiv, Bulgaria
- University Hospital “Sv. Georgi”, Plovdiv, Bulgaria
| |
Collapse
|
2
|
Wang Z, Liu J, Han J, Yang Z, Wang Q. Analysis of prognostic factors of undifferentiated pleomorphic sarcoma and construction and validation of a prediction nomogram based on SEER database. Eur J Med Res 2022; 27:179. [PMID: 36109828 PMCID: PMC9479354 DOI: 10.1186/s40001-022-00810-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background Undifferentiated pleomorphic sarcoma (UPS) is considered one of the most common types of soft tissue sarcoma (STS). Current studies have shown that the prognosis of UPS is related to some of its clinical characteristics, but no survival prediction model for the overall survival (OS) of UPS patients has been reported. The purpose of this study is to construct and validate a nomogram for predicting OS in UPS patients at 3, 5 years after the diagnosis. Methods According to the inclusion and exclusion criteria, 1079 patients with UPS were screened from the SEER database and randomly divided into the training cohort (n = 755) and the validation cohort (n = 324). Patient demographic and clinicopathological characteristics were first described, and the correlation between the two groups was compared, using the Kaplan–Meier method and Cox regression analysis to determine independent prognostic factors. Based on the identified independent prognostic factors, a nomogram for OS in UPS patients was established using R language. The nomogram’s performance was then validated using multiple indicators, including the area under the receiver operating characteristic curve (AUC), consistency index (C-index), calibration curve, and decision curve analysis (DCA). Results Both the C-index of the OS nomogram in the training cohort and the validation cohort were greater than 0 .75, and both the values of AUC were greater than 0.78. These four values were higher than their corresponding values in the TNM staging system, respectively. The calibration curves of the Nomogram prediction model and the TNM staging system were well fitted with the 45° line. Decision curve analysis showed that both the nomogram model and the TNM staging system had clinical net benefits over a wide range of threshold probabilities, and the nomogram had higher clinical net benefits than the TNM staging system as a whole. Conclusion With good discrimination, accuracy, and clinical practicability, the nomogram can individualize the prediction of 3-year and 5-year OS in patients with UPS, which can provide a reference for clinicians and patients to make better clinical decisions.
Collapse
|
3
|
Ma X, Li SJ, Liu Y, Zhang T, Xue P, Kang Y, Sun ZJ, Xu Z. Bioengineered nanogels for cancer immunotherapy. Chem Soc Rev 2022; 51:5136-5174. [PMID: 35666131 DOI: 10.1039/d2cs00247g] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent years have witnessed increasingly rapid advances in nanocarrier-based biomedicine aimed at improving treatment paradigms for cancer. Nanogels serve as multipurpose and constructed vectors formed via intramolecular cross-linking to generate drug delivery systems, which is attributed predominantly to their satisfactory biocompatibility, bio-responsiveness, high stability, and low toxicity. Recently, immunotherapy has experienced unprecedented growth and has become the preferred strategy for cancer treatment, and mainly involves the mobilisation of the immune system and an enhanced anti-tumour immunity of the tumour microenvironment. Despite the inspiring success, immunotherapeutic strategies are limited due to the low response rates and immune-related adverse events. Like other nanomedicines, nanogels are comparably limited by lower focal enrichment rates upon introduction into the organism via injection. Because nanogels are three-dimensional cross-linked aqueous materials that exhibit similar properties to natural tissues and are structurally stable, they can comfortably cope with shear forces and serum proteins in the bloodstream, and the longer circulation life increases the chance of nanogel accumulation in the tumour, conferring deep tumour penetration. The large specific surface area can reduce or eliminate off-target effects by introducing stimuli-responsive functional groups, allowing multiple physical and chemical modifications for specific purposes to improve targeting to specific immune cell subpopulations or immune organs, increasing the bioavailability of the drug, and conferring a low immune-related adverse events on nanogel therapies. The slow release upon reaching the tumour site facilitates long-term awakening of the host's immune system, ultimately achieving enhanced therapeutic effects. As an effective candidate for cancer immunotherapy, nanogel-based immunotherapy has been widely used. In this review, we mainly summarize the recent advances of nanogel-based immunotherapy to deliver immunomodulatory small molecule drugs, antibodies, genes and cytokines, to target antigen presenting cells, form cancer vaccines, and enable chimeric antigen receptor (CAR)-T cell therapy. Future challenges as well as expected and feasible prospects for clinical treatment are also highlighted.
Collapse
Affiliation(s)
- Xianbin Ma
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy & Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| | - Shu-Jin Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Yuantong Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Tian Zhang
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy & Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| | - Peng Xue
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy & Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| | - Yuejun Kang
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy & Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Zhigang Xu
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy & Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Vatner R, James CD, Sathiaseelan V, Bondra KM, Kalapurakal JA, Houghton PJ. Radiation therapy and molecular-targeted agents in preclinical testing for immunotherapy, brain tumors, and sarcomas: Opportunities and challenges. Pediatr Blood Cancer 2021; 68 Suppl 2:e28439. [PMID: 32827353 DOI: 10.1002/pbc.28439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/24/2020] [Accepted: 05/07/2020] [Indexed: 01/07/2023]
Abstract
Despite radiation therapy (RT) being an integral part of the treatment of most pediatric cancers and the recent discovery of novel molecular-targeted agents (MTAs) in this era of precision medicine with the potential to improve the therapeutic ratio of modern chemoradiotherapy regimens, there are only a few preclinical trials being conducted to discover novel radiosensitizers and radioprotectors. This has resulted in a paucity of translational clinical trials combining RT and novel MTAs. This report describes the opportunities and challenges of investigating RT together with MTAs in preclinical testing for immunotherapy, brain tumors, and sarcomas in pediatric oncology. We discuss the need for improving the collaboration between radiation oncologists, biologists, and physicists to improve the reliability, reproducibility, and translational potential of RT-based preclinical research. Current translational clinical trials using RT and MTAs for immunotherapy, brain tumors, and sarcomas are described. The technologic advances in experimental RT, availability of novel experimental tumor models, advances in immunology and tumor biology, and the discovery of novel MTAs together hold considerable promise for good quality preclinical and clinical multimodality research to improve the current rates of survival and toxicity in children afflicted with cancer.
Collapse
Affiliation(s)
- Ralph Vatner
- Radiation Oncology, University of Cincinnati and Cincinnati Children's Hospital, Cincinnati, Ohio
| | | | | | - Kathryn M Bondra
- Greehey Children's Cancer Research Institute, University of Texas, San Antonio, Texas
| | | | - Peter J Houghton
- Greehey Children's Cancer Research Institute, University of Texas, San Antonio, Texas
| |
Collapse
|
5
|
Li M, Luo Z, Peng Z, Cai K. Cascade-amplification of therapeutic efficacy: An emerging opportunity in cancer treatment. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1555. [PMID: 31016872 DOI: 10.1002/wnan.1555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/24/2022]
Abstract
Increasing research evidence reveals that cancer is complex disease involving many biological factors, processes and systems, which may severely limit the actual efficacy of conventional monotonic anticancer approaches. To overcome these obstacles in cancer treatment, a new strategy has been proposed by combining multiple synergistic therapeutic modalities accessing different but inherently related targets and acting sequentially. A major benefit of this strategy is that the multi-target mechanism could result in a cascade-amplification effect leading to enhanced anticancer activity. In this review, we provide a critical discussion on the application of cascade-amplification strategy in the treatment of various cancer indications, focusing on the rational combination of therapeutic agents and their mechanisms of action. A concise yet comprehensive analysis on the potential therapeutic benefit of this strategy was also included. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Menghuan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,Department of Biotechnology, School of Life Science, Chongqing University, Chongqing, China
| | - Zhong Luo
- Department of Biotechnology, School of Life Science, Chongqing University, Chongqing, China
| | - Zhihong Peng
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
6
|
Kobiela J, Spychalski P, Marvaso G, Ciardo D, Dell'Acqua V, Kraja F, Błażyńska-Spychalska A, Łachiński AJ, Surgo A, Glynne-Jones R, Jereczek-Fossa BA. Ablative stereotactic radiotherapy for oligometastatic colorectal cancer: Systematic review. Crit Rev Oncol Hematol 2018; 129:91-101. [PMID: 30097241 DOI: 10.1016/j.critrevonc.2018.06.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND SBRT is a novel modality in treatment for oligometastatic colorectal cancer. We aimed to perform a systematic review of results of SBRT in maintaining LC (local control) for CRC liver and lung oligometastases. MATERIALS AND METHODS The review was performed according to PRISMA and PICO guidelines. Database search using keywords: stereotactic, colon, colorectal, cancer, sbrt, sabr returned 457 results. 15 were included in the study. Only cohorts with CRC histology and reported LC were included. RESULTS For liver LC rates ranged from 50% to 100% after 1 year and 32% to 91% after 2 years. BED range 40.5-262.5 Gy (Gray). For lung LC rates ranged from 62% to 92% after 1 one year and from 53% to 92% after 2 years. BED range 51.3-262.5 Gy. CONCLUSIONS SBRT of oligometastatic CRC offers high LC with low morbidity and toxicity. It requires more observational studies and randomized trials but available data on clinical efficacy is promising, however not yet matured.
Collapse
Affiliation(s)
- J Kobiela
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdansk, Gdansk, Poland
| | - P Spychalski
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdansk, Gdansk, Poland.
| | - G Marvaso
- Department of Radiotherapy, European Institute of Oncology, Milan, Italy
| | - D Ciardo
- Department of Radiotherapy, European Institute of Oncology, Milan, Italy
| | - V Dell'Acqua
- Department of Radiotherapy, European Institute of Oncology, Milan, Italy
| | - F Kraja
- Department of Oncology, University Hospital Centre "Mother Theresa", Tirana, Albania
| | - A Błażyńska-Spychalska
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdansk, Gdansk, Poland
| | - A J Łachiński
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdansk, Gdansk, Poland
| | - A Surgo
- Department of Radiotherapy, European Institute of Oncology, Milan, Italy
| | - R Glynne-Jones
- Mount Vernon Centre for Cancer Treatment, Northwood, Middlesex, HA6 2RN, UK
| | - B A Jereczek-Fossa
- Department of Radiotherapy, European Institute of Oncology, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Abstract
Immune checkpoint inhibitors are effective in cancer treatment. A pre-existing immune response demonstrated by significant pretreatment tumor lymphocytic infiltration is a pre-requisite for response. Within such infiltrated tumors, referred as "hot", immune checkpoint inhibitors rescue anti-tumor T cells activity. In contrast, "cold" tumors lack lymphocytic infiltration and are refractory to immunotherapy. Preclinical data show that radiotherapy sensitizes refractory tumors to immune checkpoint inhibitors by recruiting anti-tumor T cells. Despite the growing number of clinical studies testing radiation's ability to enhance immunotherapy, clinical evidence that it converts cold tumors into responsive ones remains elusive. Here we review evidence that radiotherapy is not only an occasional enhancer of immunotherapy's effects but a "game changer", and propose a blueprint to test this.
Collapse
Affiliation(s)
- Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, 1300 York Ave, Box 169, New York, NY 10065
| | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research and Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, 1300 York Ave, Box 169, New York, NY 10065
| |
Collapse
|
8
|
Kunos CA, Coleman CN. Current and Future Initiatives for Radiation Oncology at the National Cancer Institute in the Era of Precision Medicine. Int J Radiat Oncol Biol Phys 2018; 102:18-25. [PMID: 29325810 DOI: 10.1016/j.ijrobp.2017.02.225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 02/07/2017] [Accepted: 02/28/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Charles A Kunos
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland.
| | - C Norman Coleman
- Radiation Research Program, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
9
|
Gangeh MJ, Hashim A, Giles A, Sannachi L, Czarnota GJ. Computer aided prognosis for cell death categorization and prediction in vivo using quantitative ultrasound and machine learning techniques. Med Phys 2017; 43:6439. [PMID: 27908167 DOI: 10.1118/1.4967265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
PURPOSE At present, a one-size-fits-all approach is typically used for cancer therapy in patients. This is mainly because there is no current imaging-based clinical standard for the early assessment and monitoring of cancer treatment response. Here, the authors have developed, for the first time, a complete computer-aided-prognosis (CAP) system based on multiparametric quantitative ultrasound (QUS) spectroscopy methods in association with texture descriptors and advanced machine learning techniques. This system was used to noninvasively categorize and predict cell death levels in fibrosarcoma mouse tumors treated using ultrasound-stimulated microbubbles as novel endothelial-cell radiosensitizers. METHODS Sarcoma xenograft tumor-bearing mice were treated using ultrasound-stimulated microbubbles, alone or in combination with x-ray radiation therapy, as a new antivascular treatment. Therapy effects were assessed at 2-3, 24, and 72 h after treatment using a high-frequency ultrasound. Two-dimensional spectral parametric maps were generated using the power spectra of the raw radiofrequency echo signal. Subsequently, the distances between "pretreatment" and "post-treatment" scans were computed as an indication of treatment efficacy, using a kernel-based metric on textural features extracted from 2D parametric maps. A supervised learning paradigm was used to either categorize cell death levels as low, medium, or high using a classifier, or to "continuously" predict the levels of cell death using a regressor. RESULTS The developed CAP system performed at a high level for the classification of cell death levels. The area under curve of the receiver operating characteristic was 0.87 for the classification of cell death levels to both low/medium and medium/high levels. Moreover, the prediction of cell death levels using the proposed CAP system achieved a good correlation (r = 0.68, p < 0.001) with histological cell death levels as the ground truth. A statistical test of significance between individual treatment groups with the corresponding control group demonstrated that the predicted levels indicated the same significant changes in cell death as those indicated by the ground-truth levels. CONCLUSIONS The technology developed in this study addresses a gap in the current standard of care by introducing a quality control step that generates potentially actionable metrics needed to enhance treatment decision-making. The study establishes a noninvasive framework for quantifying levels of cancer treatment response developed preclinically in tumors using QUS imaging in conjunction with machine learning techniques. The framework can potentially facilitate the detection of refractory responses in patients to a certain cancer treatment early on in the course of therapy to enable switching to more efficacious treatments.
Collapse
Affiliation(s)
- M J Gangeh
- Departments of Medical Biophysics, and Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9, Canada and Departments of Radiation Oncology, and Imaging Research - Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | - A Hashim
- Imaging Research and Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | - A Giles
- Imaging Research and Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | - L Sannachi
- Departments of Medical Biophysics, and Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9, Canada and Departments of Radiation Oncology, and Imaging Research - Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | - G J Czarnota
- Departments of Medical Biophysics, and Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9, Canada and Departments of Radiation Oncology, and Imaging Research - Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| |
Collapse
|
10
|
Ahmed MM, Narendra A, Prasanna P, Coleman CN, Krishnan S. Current Insights in Radiation Combination Therapies: Influence of Omics and Novel Targeted Agents in Defining New Concepts in Radiation Biology and Clinical Radiation Oncology. Semin Radiat Oncol 2016; 26:251-3. [DOI: 10.1016/j.semradonc.2016.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Larrier NA, Czito BG, Kirsch DG. Radiation Therapy for Soft Tissue Sarcoma: Indications and Controversies for Neoadjuvant Therapy, Adjuvant Therapy, Intraoperative Radiation Therapy, and Brachytherapy. Surg Oncol Clin N Am 2016; 25:841-60. [PMID: 27591502 DOI: 10.1016/j.soc.2016.05.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Soft tissue sarcomas are rare mesenchymal cancers that pose a treatment challenge. Although small superficial soft tissue sarcomas can be managed by surgery alone, adjuvant radiotherapy in addition to limb-sparing surgery substantially increases local control of extremity sarcomas. Compared with postoperative radiotherapy, preoperative radiotherapy doubles the risk of a wound complication, but decreases the risk for late effects, which are generally irreversible. For retroperitoneal sarcomas, intraoperative radiotherapy can be used to safely escalate the radiation dose to the tumor bed. Patients with newly diagnosed sarcoma should be evaluated before surgery by a multidisciplinary team that includes a radiation oncologist.
Collapse
Affiliation(s)
- Nicole A Larrier
- Department of Radiation Oncology, Duke University Medical Center, 450 Research Drive, Durham, NC 27708, USA
| | - Brian G Czito
- Department of Radiation Oncology, Duke University Medical Center, 450 Research Drive, Durham, NC 27708, USA
| | - David G Kirsch
- Department of Radiation Oncology, Duke University Medical Center, 450 Research Drive, Durham, NC 27708, USA; Department of Pharmacology & Cancer Biology, Duke University Medical Center, 450 Research Drive, Durham, NC 27708, USA.
| |
Collapse
|
12
|
Abstract
Tumours contain multiple different cell populations, including cells derived from the bone marrow as well as cancer-associated fibroblasts and various stromal populations including the vasculature. The microenvironment of the tumour cells plays a significant role in the response of the tumour to radiation treatment. Low levels of oxygen (hypoxia) caused by the poorly organized vasculature in tumours have long been known to affect radiation response; however, other aspects of the microenvironment may also play important roles. This article reviews some of the old literature concerning tumour response to irradiation and relates this to current concepts about the role of the tumour microenvironment in tumour response to radiation treatment. Included in the discussion are the role of cancer stem cells, radiation damage to the vasculature and the potential for radiation to enhance immune activity against tumour cells. Radiation treatment can cause a significant influx of bone marrow-derived cell populations into both normal tissues and tumours. Potential roles of such cells may include enhancing vascular recovery as well as modulating immune reactivity.
Collapse
Affiliation(s)
- Richard P Hill
- 1 Ontario Cancer Institute, Princess Margaret Cancer Centre, Toronto, ON, Canada.,2 Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Coleman CN, Higgins GS, Brown JM, Baumann M, Kirsch DG, Willers H, Prasanna PGS, Dewhirst MW, Bernhard EJ, Ahmed MM. Improving the Predictive Value of Preclinical Studies in Support of Radiotherapy Clinical Trials. Clin Cancer Res 2016; 22:3138-47. [PMID: 27154913 PMCID: PMC4930691 DOI: 10.1158/1078-0432.ccr-16-0069] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/21/2016] [Indexed: 01/16/2023]
Abstract
There is an urgent need to improve reproducibility and translatability of preclinical data to fully exploit opportunities for molecular therapeutics involving radiation and radiochemotherapy. For in vitro research, the clonogenic assay remains the current state-of-the-art of preclinical assays, whereas newer moderate and high-throughput assays offer the potential for rapid initial screening. Studies of radiation response modification by molecularly targeted agents can be improved using more physiologic 3D culture models. Elucidating effects on the cancer stem cells (CSC, and CSC-like) and developing biomarkers for defining targets and measuring responses are also important. In vivo studies are necessary to confirm in vitro findings, further define mechanism of action, and address immunomodulation and treatment-induced modification of the microenvironment. Newer in vivo models include genetically engineered and patient-derived xenograft mouse models and spontaneously occurring cancers in domesticated animals. Selection of appropriate endpoints is important for in vivo studies; for example, regrowth delay measures bulk tumor killing, whereas local tumor control assesses effects on CSCs. The reliability of individual assays requires standardization of procedures and cross-laboratory validation. Radiation modifiers must be tested as part of clinical standard of care, which includes radiochemotherapy for most tumors. Radiation models are compatible with but also differ from those used for drug screening. Furthermore, the mechanism of a drug as a chemotherapeutic agent may be different from its interaction with radiation and/or radiochemotherapy. This provides an opportunity to expand the use of molecular-targeted agents. Clin Cancer Res; 22(13); 3138-47. ©2016 AACR.
Collapse
Affiliation(s)
- C Norman Coleman
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute (NCI), NIH, Bethesda, Maryland.
| | - Geoff S Higgins
- Cancer Research UK/Medical Research Council, Oxford Institute for Radiation Oncology, University of Oxford, United Kingdom
| | - J Martin Brown
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Michael Baumann
- OncoRay National Center for Radiation Research, Technische Universität Dresden/Helmholtz-Zenrtum Dresden-Rossendorf, Dresden, Germany and German Cancer Consortium, Dresden/German Cancer Research Center (DKFZ)
| | - David G Kirsch
- Departments of Radiation Oncology and Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Pataje G S Prasanna
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute (NCI), NIH, Bethesda, Maryland
| | - Mark W Dewhirst
- Departments of Radiation Oncology, Pathology and Biomedical Engineering, Duke University, Durham, North Carolina
| | - Eric J Bernhard
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute (NCI), NIH, Bethesda, Maryland
| | - Mansoor M Ahmed
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute (NCI), NIH, Bethesda, Maryland
| |
Collapse
|
14
|
Borras JM, Lievens Y, Barton M, Corral J, Ferlay J, Bray F, Grau C. How many new cancer patients in Europe will require radiotherapy by 2025? An ESTRO-HERO analysis. Radiother Oncol 2016; 119:5-11. [PMID: 26922487 DOI: 10.1016/j.radonc.2016.02.016] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND The objective of this HERO study was to assess the number of new cancer patients that will require at least one course of radiotherapy by 2025. METHODS European cancer incidence data by tumor site and country for 2012 and 2025 was extracted from the GLOBOCAN database. The projection of the number of new cases took into account demographic factors (age and size of the population). Population based stages at diagnosis were taken from four European countries. Incidence and stage data were introduced in the Australian Collaboration for Cancer Outcomes Research and Evaluation (CCORE) model. RESULTS Among the different tumor sites, the highest expected relative increase by 2025 in treatment courses was prostate cancer (24%) while lymphoma (13%), head and neck (12%) and breast cancer (10%) were below the average. Based on the projected cancer distributions in 2025, a 16% expected increase in the number of radiotherapy treatment courses was estimated. This increase varied across European countries from less than 5% to more than 30%. CONCLUSION With the already existing disparity in radiotherapy resources in mind, the data provided here should act as a leverage point to raise awareness among European health policy makers of the need for investment in radiotherapy.
Collapse
Affiliation(s)
| | - Yolande Lievens
- Radiation Oncology Department, Ghent University Hospital, Ghent, Belgium
| | - Michael Barton
- CCORE Ingham Institute for Applied Medical Research, University of South New Wales, Australia
| | - Julieta Corral
- Catalan Cancer Strategy, Department of Health, Generalitat de Catalunya, Barcelona, Spain
| | - Jacques Ferlay
- Section of Cancer Surveillance, International Agency for Research on Cancer (IARC), Lyon, France
| | - Freddie Bray
- Section of Cancer Surveillance, International Agency for Research on Cancer (IARC), Lyon, France
| | - Cai Grau
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
15
|
Baumann M, Krause M, Overgaard J, Debus J, Bentzen SM, Daartz J, Richter C, Zips D, Bortfeld T. Radiation oncology in the era of precision medicine. Nat Rev Cancer 2016; 16:234-49. [PMID: 27009394 DOI: 10.1038/nrc.2016.18] [Citation(s) in RCA: 556] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Technological advances and clinical research over the past few decades have given radiation oncologists the capability to personalize treatments for accurate delivery of radiation dose based on clinical parameters and anatomical information. Eradication of gross and microscopic tumours with preservation of health-related quality of life can be achieved in many patients. Two major strategies, acting synergistically, will enable further widening of the therapeutic window of radiation oncology in the era of precision medicine: technology-driven improvement of treatment conformity, including advanced image guidance and particle therapy, and novel biological concepts for personalized treatment, including biomarker-guided prescription, combined treatment modalities and adaptation of treatment during its course.
Collapse
Affiliation(s)
- Michael Baumann
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden
- OncoRay - National Center for Radiation Research in Oncology (NCRO), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf, Fetscherstrasse 74, 01307 Dresden
- National Center for Tumor Diseases (NCT), Fetscherstrasse 74, 01307 Dresden
- German Cancer Consortium (DKTK) Dresden, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Oncology, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Mechthild Krause
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden
- OncoRay - National Center for Radiation Research in Oncology (NCRO), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf, Fetscherstrasse 74, 01307 Dresden
- National Center for Tumor Diseases (NCT), Fetscherstrasse 74, 01307 Dresden
- German Cancer Consortium (DKTK) Dresden, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Oncology, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, Denmark
| | - Jürgen Debus
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120 Heidelberg
- Heidelberg Ion Therapy Center (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Im Neuenheimer Feld 400, 69120 Heidelberg
- German Cancer Consortium (DKTK) Heidelberg, Germany
| | - Søren M Bentzen
- Department of Epidemiology and Public Health and Greenebaum Cancer Center, University of Maryland School of Medicine, 22 S Greene Street S9a03, Baltimore, Maryland 21201, USA
| | - Juliane Daartz
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital and Harvard Medical School, 1000 Blossom Street Cox 362, Boston, Massachusetts 02114, USA
| | - Christian Richter
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden
- OncoRay - National Center for Radiation Research in Oncology (NCRO), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf, Fetscherstrasse 74, 01307 Dresden
- National Center for Tumor Diseases (NCT), Fetscherstrasse 74, 01307 Dresden
- German Cancer Consortium (DKTK) Dresden, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Daniel Zips
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Consortium Tübingen, Postfach 2669, 72016 Tübingen
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Tübingen, Eberhard Karls Universität Tübingen, Hoppe-Seyler-Strasse 3, 72016 Tübingen, Germany
| | - Thomas Bortfeld
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital and Harvard Medical School, 1000 Blossom Street Cox 362, Boston, Massachusetts 02114, USA
| |
Collapse
|
16
|
Dueland S, Ree AH, Grøholt KK, Saelen MG, Folkvord S, Hole KH, Seierstad T, Larsen SG, Giercksky KE, Wiig JN, Boye K, Flatmark K. Oxaliplatin-containing Preoperative Therapy in Locally Advanced Rectal Cancer: Local Response, Toxicity and Long-term Outcome. Clin Oncol (R Coll Radiol) 2016; 28:532-9. [PMID: 26888115 DOI: 10.1016/j.clon.2016.01.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/28/2015] [Accepted: 01/05/2016] [Indexed: 01/01/2023]
Abstract
AIMS This non-randomised study was undertaken to examine oxaliplatin as possibly an intensifying component of sequential neoadjuvant therapy in locally advanced rectal cancer for improved local and metastatic outcome. MATERIALS AND METHODS Ninety-seven patients (57 T2-3 cases, 40 T4 cases) received two cycles of the Nordic FLOX regimen (oxaliplatin 85 mg/m(2) day 1 and bolus 5-fluorouracil 500 mg/m(2) and folinic acid 100 mg days 1 and 2) before long-course chemoradiotherapy with concomitant oxaliplatin and capecitabine, followed by pelvic surgery. Treatment toxicity, local tumour response and long-term outcome were recorded. RESULTS Good histologic tumour regression was obtained in 72% of patients. Implementing protocol-specific dose adjustments, tolerance was acceptable and 95% of patients received the total prescribed radiation dose. Estimated 5 year progression-free and overall survival were 61% and 83%, respectively. T4 stage was associated with an inferior local response rate, which again was highly associated with impaired long-term outcome. CONCLUSIONS In this cohort of rectal cancer patients dominated by T4 and advanced T3 cases given sequential oxaliplatin-containing preoperative therapy with acceptable toxicity, high tumour response rates and overall survival were obtained, consistent with both local and systemic effects. However, tumour response and long-term outcome remained inferior for a significant number of T4 cases, suggesting that the T4 entity is biologically heterogeneous with subgroups of patients eligible for further individualisation of therapy.
Collapse
Affiliation(s)
- S Dueland
- Department of Oncology, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway.
| | - A H Ree
- Department of Oncology, Akershus University Hospital, Akershus, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - K K Grøholt
- Department of Pathology, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| | - M G Saelen
- Department of Tumour Biology, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| | - S Folkvord
- Department of Tumour Biology, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| | - K H Hole
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Radiology & Nuclear Medicine, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| | - T Seierstad
- Department of Radiology & Nuclear Medicine, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| | - S G Larsen
- Department of Gastroenterological Surgery, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| | - K E Giercksky
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Gastroenterological Surgery, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| | - J N Wiig
- Department of Gastroenterological Surgery, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| | - K Boye
- Department of Tumour Biology, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway; Department of Oncology, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| | - K Flatmark
- Department of Gastroenterological Surgery, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway; Department of Tumour Biology, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Stone HB, Bernhard EJ, Coleman CN, Deye J, Capala J, Mitchell JB, Brown JM. Preclinical Data on Efficacy of 10 Drug-Radiation Combinations: Evaluations, Concerns, and Recommendations. Transl Oncol 2016; 9:46-56. [PMID: 26947881 PMCID: PMC4800059 DOI: 10.1016/j.tranon.2016.01.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Clinical testing of new therapeutic interventions requires comprehensive, high-quality preclinical data. Concerns regarding quality of preclinical data have been raised in recent reports. This report examines the data on the interaction of 10 drugs with radiation and provides recommendations for improving the quality, reproducibility, and utility of future studies. The drugs were AZD6244, bortezomib, 17-DMAG, erlotinib, gefitinib, lapatinib, oxaliplatin/Lipoxal, sunitinib (Pfizer, Corporate headquarters, New York, NY), thalidomide, and vorinostat. METHODS In vitro and in vivo data were tabulated from 125 published papers, including methods, radiation and drug doses, schedules of administration, assays, measures of interaction, presentation and interpretation of data, dosimetry, and conclusions. RESULTS In many instances, the studies contained inadequate or unclear information that would hamper efforts to replicate or intercompare the studies, and that weakened the evidence for designing and conducting clinical trials. The published reports on these drugs showed mixed results on enhancement of radiation response, except for sunitinib, which was ineffective. CONCLUSIONS There is a need for improved experimental design, execution, and reporting of preclinical testing of agents that are candidates for clinical use in combination with radiation. A checklist is provided for authors and reviewers to ensure that preclinical studies of drug-radiation combinations meet standards of design, execution, and interpretation, and report necessary information to ensure high quality and reproducibility of studies. Improved design, execution, common measures of enhancement, and consistent interpretation of preclinical studies of drug-radiation interactions will provide rational guidance for prioritizing drugs for clinical radiotherapy trials and for the design of such trials.
Collapse
Affiliation(s)
- Helen B Stone
- Radiation Research Program, National Cancer Institute, 9609 Medical Center Dr, Rockville, 20850, MSC 9727
| | - Eric J Bernhard
- Radiation Research Program, National Cancer Institute, 9609 Medical Center Dr, Rockville, 20850, MSC 9727.
| | - C Norman Coleman
- Radiation Research Program, National Cancer Institute, 9609 Medical Center Dr, Rockville, 20850, MSC 9727
| | - James Deye
- Radiation Research Program, National Cancer Institute, 9609 Medical Center Dr, Rockville, 20850, MSC 9727
| | - Jacek Capala
- Radiation Research Program, National Cancer Institute, 9609 Medical Center Dr, Rockville, 20850, MSC 9727
| | - James B Mitchell
- Radiation Biology Branch, National Cancer Institute, MSC 1002, 10 Center Dr, Bethesda, MD, 20892
| | - J Martin Brown
- Stanford University, Radiation and Cancer Biology, CCSR-S Rm 1255, 269 Campus Dr, Stanford, CA, 94305
| |
Collapse
|
18
|
Scaife JE, Barnett GC, Noble DJ, Jena R, Thomas SJ, West CML, Burnet NG. Exploiting biological and physical determinants of radiotherapy toxicity to individualize treatment. Br J Radiol 2015; 88:20150172. [PMID: 26084351 PMCID: PMC4628540 DOI: 10.1259/bjr.20150172] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/07/2015] [Accepted: 05/21/2015] [Indexed: 12/16/2022] Open
Abstract
The recent advances in radiation delivery can improve tumour control probability (TCP) and reduce treatment-related toxicity. The use of intensity-modulated radiotherapy (IMRT) in particular can reduce normal tissue toxicity, an objective in its own right, and can allow safe dose escalation in selected cases. Ideally, IMRT should be combined with image guidance to verify the position of the target, since patients, target and organs at risk can move day to day. Daily image guidance scans can be used to identify the position of normal tissue structures and potentially to compute the daily delivered dose. Fundamentally, it is still the tolerance of the normal tissues that limits radiotherapy (RT) dose and therefore tumour control. However, the dose-response relationships for both tumour and normal tissues are relatively steep, meaning that small dose differences can translate into clinically relevant improvements. Differences exist between individuals in the severity of toxicity experienced for a given dose of RT. Some of this difference may be the result of differences between the planned dose and the accumulated dose (DA). However, some may be owing to intrinsic differences in radiosensitivity of the normal tissues between individuals. This field has been developing rapidly, with the demonstration of definite associations between genetic polymorphisms and variation in toxicity recently described. It might be possible to identify more resistant patients who would be suitable for dose escalation, as well as more sensitive patients for whom toxicity could be reduced or avoided. Daily differences in delivered dose have been investigated within the VoxTox research programme, using the rectum as an example organ at risk. In patients with prostate cancer receiving curative RT, considerable daily variation in rectal position and dose can be demonstrated, although the median position matches the planning scan well. Overall, in 10 patients, the mean difference between planned and accumulated rectal equivalent uniform doses was -2.7 Gy (5%), and a dose reduction was seen in 7 of the 10 cases. If dose escalation was performed to take rectal dose back to the planned level, this should increase the mean TCP (as biochemical progression-free survival) by 5%. Combining radiogenomics with individual estimates of DA might identify almost half of patients undergoing radical RT who might benefit from either dose escalation, suggesting improved tumour cure or reduced toxicity or both.
Collapse
Affiliation(s)
- J E Scaife
- University of Cambridge Department of Oncology, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge, UK
- Cancer Research UK VoxTox Research Group, University of Cambridge Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
| | - G C Barnett
- Cancer Research UK VoxTox Research Group, University of Cambridge Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
- Oncology Centre, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - D J Noble
- Oncology Centre, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - R Jena
- University of Cambridge Department of Oncology, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge, UK
- Cancer Research UK VoxTox Research Group, University of Cambridge Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
| | - S J Thomas
- Cancer Research UK VoxTox Research Group, University of Cambridge Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
- Medical Physics Department, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - C M L West
- Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - N G Burnet
- University of Cambridge Department of Oncology, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge, UK
- Cancer Research UK VoxTox Research Group, University of Cambridge Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
19
|
Ree AH, Redalen KR. Personalized radiotherapy: concepts, biomarkers and trial design. Br J Radiol 2015; 88:20150009. [PMID: 25989697 DOI: 10.1259/bjr.20150009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the past decade, and pointing onwards to the immediate future, clinical radiotherapy has undergone considerable developments, essentially including technological advances to sculpt radiation delivery, the demonstration of the benefit of adding concomitant cytotoxic agents to radiotherapy for a range of tumour types and, intriguingly, the increasing integration of targeted therapeutics for biological optimization of radiation effects. Recent molecular and imaging insights into radiobiology will provide a unique opportunity for rational patient treatment, enabling the parallel design of next-generation trials that formally examine the therapeutic outcome of adding targeted drugs to radiation, together with the critically important assessment of radiation volume and dose-limiting treatment toxicities. In considering the use of systemic agents with presumed radiosensitizing activity, this may also include the identification of molecular, metabolic and imaging markers of treatment response and tolerability, and will need particular attention on patient eligibility. In addition to providing an overview of clinical biomarker studies relevant for personalized radiotherapy, this communication will highlight principles in addressing clinical evaluation of combined-modality-targeted therapeutics and radiation. The increasing number of translational studies that bridge large-scale omics sciences with quality-assured phenomics end points-given the imperative development of open-source data repositories to allow investigators the access to the complex data sets-will enable radiation oncology to continue to position itself with the highest level of evidence within existing clinical practice.
Collapse
Affiliation(s)
- A H Ree
- 1 Department of Oncology, Akershus University Hospital, Lørenskog, Norway.,2 Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - K R Redalen
- 1 Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
20
|
Ree AH, Flatmark K, Saelen MG, Folkvord S, Dueland S, Geisler J, Redalen KR. Tumor phosphatidylinositol 3-kinase signaling in therapy resistance and metastatic dissemination of rectal cancer: opportunities for signaling-adapted therapies. Crit Rev Oncol Hematol 2015; 95:114-24. [PMID: 25624177 DOI: 10.1016/j.critrevonc.2015.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/18/2014] [Accepted: 01/06/2015] [Indexed: 02/06/2023] Open
Abstract
Locally advanced rectal cancer (LARC) comprises heterogeneous tumors with predominant hypoxic components, a hallmark of the tumor microenvironment and determinant of resistance to cytotoxic therapies, local recurrence, and metastatic progression. A rational integration of molecularly targeted agents in established combined-modality treatment regimens may improve local and systemic disease control, but will require a clear definition of functional biomarkers for patient stratification. In a prospective study of LARC patients given neoadjuvant chemotherapy and radiation, we applied a kinase substrate array technology to analyze the patients' tumor biopsies sampled at the time of diagnosis, and observed that receptor tyrosine kinase activities integrated by high phosphatidylinositol 3-kinase signaling were correlated both with poor tumor response to the neoadjuvant treatment and adverse progression-free survival. Conceptually, the specific tumor signature of phosphatidylinositol 3-kinase signaling activity may point to actionable therapy targets in LARC patients with unfavorable disease features. Clinical trial registration number NCT00278694.
Collapse
Affiliation(s)
- Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, P.O. Box 1000, 1478 Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, P.O. Box 1171 Blindern, 0318 Oslo, Norway.
| | - Kjersti Flatmark
- Department of Tumor Biology, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, P.O. Box 1171 Blindern, 0318 Oslo, Norway; Department of Gastroenterological Surgery, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway.
| | - Marie Grøn Saelen
- Department of Tumor Biology, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway.
| | - Sigurd Folkvord
- Department of Tumor Biology, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway.
| | - Svein Dueland
- Department of Oncology, Oslo University Hospital, P.O. Box 4956 Nydalen, 0424 Oslo, Norway.
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital, P.O. Box 1000, 1478 Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, P.O. Box 1171 Blindern, 0318 Oslo, Norway.
| | - Kathrine Røe Redalen
- Department of Oncology, Akershus University Hospital, P.O. Box 1000, 1478 Lørenskog, Norway; Department of Clinical Molecular Biology, Akershus University Hospital, P.O. Box 1000, 1478 Lørenskog, Norway.
| |
Collapse
|