1
|
Shi HZ, Wang MW, Huang YS, Liu Z, Li L, Wan LP. A telomere-related gene risk model for predicting prognosis and treatment response in acute myeloid leukemia. Heliyon 2024; 10:e31705. [PMID: 38845982 PMCID: PMC11153201 DOI: 10.1016/j.heliyon.2024.e31705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Acute myeloid leukemia (AML) is a prevalent hematological malignancy among adults. Recent studies suggest that the length of telomeres could significantly affect both the risk of developing AML and the overall survival (OS). Despite the limited focus on the prognostic value of telomere-related genes (TRGs) in AML, our study aims at addressing this gap by compiling a list of TRGs from TelNet, as well as collecting clinical information and TRGs expression data through the Gene Expression Omnibus (GEO) database. The GSE37642 dataset, sourced from GEO and based on the GPL96 platform, was divided into training and validation sets at a 6:4 ratio. Additionally, the GSE71014 dataset (based on the GPL10558 platform), GSE12417 dataset (based on the GPL96 and GPL570 platforms), and another portion of the GSE37642 dataset (based on the GPL570 platform) were designated as external testing sets. Univariate Cox regression analysis identified 96 TRGs significantly associated with OS. Subsequent Lasso-Cox stepwise regression analysis pinpointed eight TRGs (MCPH1, SLC25A6, STK19, PSAT1, KCTD15, DNMT3B, PSMD5, and TAF2) exhibiting robust predictive potential for patient survival. Both univariate and multivariate survival analyses unveiled TRG risk scores and age as independent prognostic variables. To refine the accuracy of survival prognosis, we developed both a nomogram integrating clinical parameters and a predictive risk score model based on TRGs. In subsequent investigations, associations were emphasized not solely regarding the TRG risk score and immune infiltration patterns but also concerning the response to immune-checkpoint inhibitor (ICI) therapy. In summary, the establishment of a telomere-associated genetic risk model offers a valuable tool for prognosticating AML outcomes, thereby facilitating informed treatment decisions.
Collapse
Affiliation(s)
- Hui-Zhong Shi
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, China
| | - Ming-Wei Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China
- Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, China
| | - Yu-Song Huang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhong Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China
- Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, China
| | - Ling Li
- Department of Blood Transfusion, The Third People's Hospital of Chengdu, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Li-Ping Wan
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, China
| |
Collapse
|
2
|
Abel HJ, Oetjen KA, Miller CA, Ramakrishnan SM, Day RB, Helton NM, Fronick CC, Fulton RS, Heath SE, Tarnawsky SP, Nonavinkere Srivatsan S, Duncavage EJ, Schroeder MC, Payton JE, Spencer DH, Walter MJ, Westervelt P, DiPersio JF, Ley TJ, Link DC. Genomic landscape of TP53-mutated myeloid malignancies. Blood Adv 2023; 7:4586-4598. [PMID: 37339484 PMCID: PMC10425686 DOI: 10.1182/bloodadvances.2023010156] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/19/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
TP53-mutated myeloid malignancies are associated with complex cytogenetics and extensive structural variants, which complicates detailed genomic analysis by conventional clinical techniques. We performed whole-genome sequencing (WGS) of 42 acute myeloid leukemia (AML)/myelodysplastic syndromes (MDS) cases with paired normal tissue to better characterize the genomic landscape of TP53-mutated AML/MDS. WGS accurately determines TP53 allele status, a key prognostic factor, resulting in the reclassification of 12% of cases from monoallelic to multihit. Although aneuploidy and chromothripsis are shared with most TP53-mutated cancers, the specific chromosome abnormalities are distinct to each cancer type, suggesting a dependence on the tissue of origin. ETV6 expression is reduced in nearly all cases of TP53-mutated AML/MDS, either through gene deletion or presumed epigenetic silencing. Within the AML cohort, mutations of NF1 are highly enriched, with deletions of 1 copy of NF1 present in 45% of cases and biallelic mutations in 17%. Telomere content is increased in TP53-mutated AMLs compared with other AML subtypes, and abnormal telomeric sequences were detected in the interstitial regions of chromosomes. These data highlight the unique features of TP53-mutated myeloid malignancies, including the high frequency of chromothripsis and structural variation, the frequent involvement of unique genes (including NF1 and ETV6) as cooperating events, and evidence for altered telomere maintenance.
Collapse
Affiliation(s)
- Haley J. Abel
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Karolyn A. Oetjen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Christopher A. Miller
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Sai M. Ramakrishnan
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Ryan B. Day
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Nichole M. Helton
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Catrina C. Fronick
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Robert S. Fulton
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Sharon E. Heath
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Stefan P. Tarnawsky
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | - Eric J. Duncavage
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| | - Molly C. Schroeder
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| | - Jacqueline E. Payton
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| | - David H. Spencer
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| | - Matthew J. Walter
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Peter Westervelt
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - John F. DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Timothy J. Ley
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Daniel C. Link
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
3
|
Abel HJ, Oetjen KA, Miller CA, Ramakrishnan SM, Day RB, Helton NM, Fronick CC, Fulton RS, Heath SE, Tarnawsky SP, Srivatsan SN, Duncavage EJ, Schroeder MC, Payton JE, Spencer DH, Walter MJ, Westervelt P, DiPersio JF, Ley TJ, Link DC. Genomic landscape of TP53 -mutated myeloid malignancies. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.10.23284322. [PMID: 36711871 PMCID: PMC9882519 DOI: 10.1101/2023.01.10.23284322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
TP53 -mutated myeloid malignancies are most frequently associated with complex cytogenetics. The presence of complex and extensive structural variants complicates detailed genomic analysis by conventional clinical techniques. We performed whole genome sequencing of 42 AML/MDS cases with paired normal tissue to characterize the genomic landscape of TP53 -mutated myeloid malignancies. The vast majority of cases had multi-hit involvement at the TP53 genetic locus (94%), as well as aneuploidy and chromothripsis. Chromosomal patterns of aneuploidy differed significantly from TP53 -mutated cancers arising in other tissues. Recurrent structural variants affected regions that include ETV6 on chr12p, RUNX1 on chr21, and NF1 on chr17q. Most notably for ETV6 , transcript expression was low in cases of TP53 -mutated myeloid malignancies both with and without structural rearrangements involving chromosome 12p. Telomeric content is increased in TP53 -mutated AML/MDS compared other AML subtypes, and telomeric content was detected adjacent to interstitial regions of chromosomes. The genomic landscape of TP53 -mutated myeloid malignancies reveals recurrent structural variants affecting key hematopoietic transcription factors and telomeric repeats that are generally not detected by panel sequencing or conventional cytogenetic analyses. Key Points WGS comprehensively determines TP53 mutation status, resulting in the reclassification of 12% of cases from mono-allelic to multi-hit Chromothripsis is more frequent than previously appreciated, with a preference for specific chromosomes ETV6 is deleted in 45% of cases, with evidence for epigenetic suppression in non-deleted cases NF1 is mutated in 48% of cases, with multi-hit mutations in 17% of these cases TP53 -mutated AML/MDS is associated with altered telomere content compared with other AMLs.
Collapse
Affiliation(s)
- Haley J. Abel
- Division of Oncology, Department of Medicine, Washington University School of Medicine
| | - Karolyn A. Oetjen
- Division of Oncology, Department of Medicine, Washington University School of Medicine
| | - Christopher A. Miller
- Division of Oncology, Department of Medicine, Washington University School of Medicine
| | - Sai M. Ramakrishnan
- Division of Oncology, Department of Medicine, Washington University School of Medicine
| | - Ryan B. Day
- Division of Oncology, Department of Medicine, Washington University School of Medicine
| | - Nichole M. Helton
- Division of Oncology, Department of Medicine, Washington University School of Medicine
| | | | - Robert S. Fulton
- McDonnell Genome Institute, Washington University School of Medicine
| | - Sharon E. Heath
- Division of Oncology, Department of Medicine, Washington University School of Medicine
| | - Stefan P. Tarnawsky
- Division of Oncology, Department of Medicine, Washington University School of Medicine
| | | | - Eric J. Duncavage
- Department of Pathology & Immunology, Washington University School of Medicine
| | - Molly C. Schroeder
- Department of Pathology & Immunology, Washington University School of Medicine
| | | | - David H. Spencer
- Division of Oncology, Department of Medicine, Washington University School of Medicine
- McDonnell Genome Institute, Washington University School of Medicine
- Department of Pathology & Immunology, Washington University School of Medicine
| | - Matthew J. Walter
- Division of Oncology, Department of Medicine, Washington University School of Medicine
| | - Peter Westervelt
- Division of Oncology, Department of Medicine, Washington University School of Medicine
| | - John F. DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine
| | - Timothy J. Ley
- Division of Oncology, Department of Medicine, Washington University School of Medicine
| | - Daniel C. Link
- Division of Oncology, Department of Medicine, Washington University School of Medicine
| |
Collapse
|
4
|
Geng J, Zhao M, Li Q. Severe immunochemotherapy-induced toxicities in a patient with dyskeratosis congenita and literature review. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2022; 27:1041-1045. [PMID: 36073719 DOI: 10.1080/16078454.2022.2120305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Dyskeratosis congenita (DC) is a rare inherited disease characterized by the triad of reticulate hyperpigmentation, nail dystrophy and oral leukoplakia. DC patients are considered vulnerable to external pressure, such as immunochemotherapy. There are very few cases reporting severe therapy-induced toxicities in patients with DC. METHODS A 27-year-old woman was admitted to our hospital with a 4-month history of pancytopenia and a 7-day history of dyspnea with coughing. She was diagnosed with non-Hodgkin's lymphoma 5 months ago. She received immunochemotherapy due to non-Hodgkin's lymphoma but experienced recurrent fever, oral ulcer, pancytopenia, dyspnea and other symptoms during immunochemotherapy. On admission, she experienced an aggravation of respiratory symptoms, recurrent infections and acute heart failure. RESULTS Laboratory examination confirmed pancytopenia, and chest computed tomography showed interstitial lung disease (ILD). Genetic analysis results confirmed the presence of DC and a TINF2 gene mutation. With continuous supportive and anti-infection treatment, her condition finally stabilized. She was discharged from the hospital after nearly 2 months. DISCUSSION We reviewed similar cases and found common features that could be useful. However, the reported cases are very limited. More cases and studies are needed. CONCLUSION These cases indicate that DC patients seem more vulnerable to therapy toxicities; thus, physicians should be careful when treating these patients with chemotherapy drugs or radiation therapy. Reduced-intensity therapy may be considered.
Collapse
Affiliation(s)
- Jiayi Geng
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, People's Republic of People's Republic of China
| | - Menglin Zhao
- Department of Cardiology, Peking University Third Hospital, Beijing, People's Republic of People's Republic of China
| | - Qiuyu Li
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, People's Republic of People's Republic of China
| |
Collapse
|
5
|
Namburi S, Broxmeyer HE, Hong CS, Whiteside TL, Boyiadzis M. DPP4 + exosomes in AML patients' plasma suppress proliferation of hematopoietic progenitor cells. Leukemia 2021; 35:1925-1932. [PMID: 33139859 PMCID: PMC10165724 DOI: 10.1038/s41375-020-01047-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/07/2020] [Accepted: 09/29/2020] [Indexed: 02/04/2023]
Abstract
Mechanisms by which acute myeloid leukemia (AML) interferes with normal hematopoiesis are under intense investigation. Emerging evidence suggests that exosomes produced by leukemia blasts suppress hematopoiesis. Exosomes isolated from AML patients' plasma at diagnosis significantly and dose-dependently suppressed colony formation of normal hematopoietic progenitor cells (HPC). Levels of HPC suppression mediated by exosomes of AML patients who achieved complete remission (CR) were significantly decreased compared to those observed at AML diagnosis. Exosomes from plasma of patients who had achieved CR but with incomplete cell count recovery (CRi) after chemotherapy suppressed in vitro colony formation as effectively as did exosomes obtained at AML diagnosis. Dipeptidylpeptidase4 (DPP4/CD26), a serine protease that cleaves select penultimate amino acids of various proteins, has been previously implicated in the regulation of hematopoiesis. DPP4 was carried by exosomes from AML plasma or leukemia cell lines. Leukemia exosomes which suppressed HSC colony formation had markedly higher DPP4 functional activity than that detected in the exosomes of normal donors. Pharmacological inhibition of DPP4 activity in AML exosomes reversed the effects of exosome-mediated myelosuppression. Reversing the negative effects of exosomes on AML hematopoiesis, and thus improving cell count recovery, might emerge as a new therapeutic approach to AML.
Collapse
Affiliation(s)
- Swathi Namburi
- University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Hal E Broxmeyer
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chang-Sook Hong
- University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Theresa L Whiteside
- University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Michael Boyiadzis
- University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Nogueira BMD, Machado CB, Montenegro RC, DE Moraes MEA, Moreira-Nunes CA. Telomere Length and Hematological Disorders: A Review. In Vivo 2020; 34:3093-3101. [PMID: 33144412 DOI: 10.21873/invivo.12142] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022]
Abstract
Telomeres compose the end portions of human chromosomes, and their main function is to protect the genome. In hematological disorders, telomeres are shortened, predisposing to genetic instability that may cause DNA damage and chromosomal rearrangements, inducing a poor clinical outcome. Studies from 2010 to 2019 were compiled and experimental studies using samples of patients diagnosed with hematological malignancies that reported the size of the telomeres were described. Abnormal telomere shortening is described in cancer, but in hematological neoplasms, telomeres are still shortened even after telomerase reactivation. In this study, we compared the sizes of telomeres in leukemias, myelodysplastic syndrome and lymphomas, identifying that the smallest telomeres are present in patients at relapse. In conclusion, the experimental and clinical data analyzed in this review demonstrate that excessive telomere shortening is present in major hematological malignancies and its analysis and measurement is a crucial step in determining patient prognosis, predicting disease risk and assisting in the decision for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Beatriz Maria Dias Nogueira
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Caio Bezerra Machado
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Raquel Carvalho Montenegro
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Maria Elisabete Amaral DE Moraes
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Caroline Aquino Moreira-Nunes
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
7
|
Impact of preleukemic mutations and their persistence on hematologic recovery after induction chemotherapy for AML. Blood Adv 2020; 3:2307-2311. [PMID: 31371380 DOI: 10.1182/bloodadvances.2019000306] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/12/2019] [Indexed: 01/20/2023] Open
Abstract
Key Points
DNMT3A R882, TET2, ASXL1, and SRSF2 mutations identified at the time of diagnosis are associated with delayed count recovery. Persistence of preleukemic mutations in remission at high variant allele frequency is associated with delayed count recovery.
Collapse
|
8
|
Abstract
Introduction: Neutrophils are the most abundant inflammatory cells in the lungs of patients with chronic lung diseases, especially COPD, yet despite this, patients often experience repeated chest infections. Neutrophil function may be altered in disease, but the reasons are unclear. In chronic disease, sequential pro-inflammatory and pro-repair responses appear distorted. As understanding of neutrophil heterogeneity has expanded, it is suggested that different neutrophil phenotypes may impact on health and disease. Areas covered: In this review, the definition of cellular phenotype, the implication of neutrophil surface markers and functions in chronic lung disease and the complex influences of external, local and genetic factors on these changes are discussed. Literature was accessed up to the 19 July 2019 using: PubMed, US National Library of Medicine National Institutes of Health and the National Centre for Biotechnology Information. Expert opinion: As more is learned about neutrophils, the further we step from the classical view of neutrophils being unrefined killing machines to highly complex and finely tuned cells. Future therapeutics may aim to normalize neutrophil function, but to achieve this, knowledge of phenotypes in humans and how these relate to observed pathology and disease processes is required.
Collapse
Affiliation(s)
- Michael J Hughes
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Elizabeth Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Robert Stockley
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| |
Collapse
|
9
|
Agrusa JE, Bertuch AA, DiNardo CD, Plon SE, Eckstein OS. Severe therapy-related toxicities after treatment for Hodgkin lymphoma due to a pathogenic TERT variant and shortened telomeres. Pediatr Blood Cancer 2019; 66:e27779. [PMID: 31050187 PMCID: PMC7880543 DOI: 10.1002/pbc.27779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/06/2019] [Accepted: 03/26/2019] [Indexed: 02/02/2023]
Abstract
Telomere biology disorders predispose affected individuals to specific malignancies and organ fibrosis in tissues sensitive to telomere length (TL) shortening, especially after exposure to chemotherapy and radiation. We report a case of a 17-year-old female with Hodgkin lymphoma who developed severe chemotherapy-related toxicities. She was subsequently found to have peripheral blood lymphocyte TL < 1st percentile and a pathogenic variant in TERT inherited from her father. This case demonstrates that early genetic evaluation of patients who experience greater than expected therapy-related toxicities may be warranted to help guide further decisions regarding therapy, imaging modalities, and lifelong cancer prevention surveillance.
Collapse
Affiliation(s)
- Jennifer E. Agrusa
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA, Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Houston, Texas, USA
| | - Alison A. Bertuch
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA, Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Houston, Texas, USA, Departments of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Courtney D. DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sharon E. Plon
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA, Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Houston, Texas, USA, Departments of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Olive S. Eckstein
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA, Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
10
|
Warny M, Helby J, Sengeløv H, Nordestgaard BG, Birgens H, Bojesen SE. Bone marrow mononuclear cell telomere length in acute myeloid leukaemia and high-risk myelodysplastic syndrome. Eur J Haematol 2019; 102:218-226. [PMID: 30427547 DOI: 10.1111/ejh.13196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Short telomere length is a known risk factor for developing clonal haematopoietic stem cell disorders, probably due to chromosomal instability. We tested the hypotheses that bone marrow mononuclear cell telomere length change from diagnosis through chemotherapy-induced remission and relapse, and that long telomere length is associated with low risk of relapse and all-cause mortality in patients with acute myeloid leukaemia or high-risk myelodysplastic syndrome. METHODS We measured telomere length in bone marrow mononuclear cells from 233 patients at diagnosis, 112 patients at chemotherapy-induced remission and 58 patients at relapse of disease. RESULTS In patients with acute myeloid leukaemia or high-risk myelodysplastic syndrome, bone marrow mononuclear cell telomere length was similar at diagnosis and relapse, but increased after chemotherapy-induced remission. Furthermore, bone marrow mononuclear cell telomere length was longer in patients with higher age at diagnosis. There was no association between telomere length at diagnosis, remission or relapse and all-cause mortality, nor did we find any association between telomere length at diagnosis or remission and risk of relapse. CONCLUSION In patients with acute myeloid leukaemia or high-risk myelodysplastic syndrome, bone marrow mononuclear cell telomere length increased from diagnosis to remission. Furthermore, telomere length paradoxically was longer at higher age at diagnosis, even after adjusting for known risk factors of disease severity. Finally, we did not detect any prognostic information in telomere length.
Collapse
Affiliation(s)
- Marie Warny
- Department of Haematology, Herlev and Gentofte hospital, Copenhagen University Hospital, Herlev, Denmark.,Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Jens Helby
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Henrik Sengeløv
- Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.,Department of Haematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Henrik Birgens
- Department of Haematology, Herlev and Gentofte hospital, Copenhagen University Hospital, Herlev, Denmark.,Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Stig E Bojesen
- Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
11
|
Løhmann DJA, Asdahl PH, Abrahamsson J, Ha SY, Jónsson ÓG, Kaspers GJL, Koskenvuo M, Lausen B, De Moerloose B, Palle J, Zeller B, Hasle H. Associations between neutrophil recovery time, infections and relapse in pediatric acute myeloid leukemia. Pediatr Blood Cancer 2018; 65:e27231. [PMID: 29781563 DOI: 10.1002/pbc.27231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/27/2018] [Accepted: 04/12/2018] [Indexed: 11/08/2022]
Abstract
BACKGROUND Children with acute myeloid leukemia (AML) treated similarly show different toxicity and leukemic responses. We investigated associations between neutrophil recovery time after the first induction course, infection and relapse in children treated according to NOPHO-AML 2004 and DB AML-01. PROCEDURE Newly diagnosed patients with AML with bone marrow blast <5% between day 15 after the start of the treatment and the start of second induction course, and in complete remission after the second induction course were included (n = 279). Neutrophil recovery time was defined as the time from the start of the course to the last day with absolute neutrophil count <0.5 × 109 /l. Linear and Cox regressions were used to investigate associations. RESULTS Neutrophil recovery time after the first induction course was positively associated with neutrophil recovery time after the remaining courses, and longer neutrophil recovery time (≥25 days) was associated with increased risk of grade 3-4 infections (hazard ratio 1.4, 95% confidence interval [CI], 1.1-1.8). Longer neutrophil recovery time after the first induction (>30 days) was associated with the increased risk of relapse (5-year cumulative incidence: 48% vs. 42%, hazard ratio 1.7, 95% CI, 1.1-2.6) for cases not treated with hematopoietic stem cell transplantation in first complete remission. CONCLUSION Longer neutrophil recovery time after the first induction course was associated with grade 3-4 infections and relapse. If confirmed, this knowledge could be incorporated into risk stratification strategies in pediatric AML.
Collapse
Affiliation(s)
- Ditte J A Løhmann
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Peter H Asdahl
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Jonas Abrahamsson
- Institution for Clinical Sciences, Department of Pediatrics, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Shau-Yin Ha
- Department of Pediatrics, Queen Mary Hospital and Hong Kong Pediatric Hematology and Oncology Study Group (HKPHOSG), Hong Kong, China
| | - Ólafur G Jónsson
- Department of Pediatrics, Landspitali University Hospital, Reykjavik, Iceland
| | - Gertjan J L Kaspers
- Department of Pediatrics, VU University Medical Center Amsterdam, and Dutch Childhood Oncology Group, The Hague, The Netherlands
| | - Minna Koskenvuo
- Division of Hematology-Oncology and Stem Cell Transplantation, Children's Hospital, University of Helsinki, Helsinki, Finland
| | - Birgitte Lausen
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Josefine Palle
- Department of Woman´s and Children´s Health, Uppsala University, Uppsala, Sweden
| | - Bernward Zeller
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Henrik Hasle
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
12
|
Gadalla SM, Wang T, Loftus D, Friedman L, Dagnall C, Haagenson M, Spellman SR, Buturovic L, Blauwkamp M, Shelton J, Fleischhauer K, Hsu KC, Verneris MR, Krstajic D, Hicks B, Jones K, Lee SJ, Savage SA. No association between donor telomere length and outcomes after allogeneic unrelated hematopoietic cell transplant in patients with acute leukemia. Bone Marrow Transplant 2018; 53:383-391. [PMID: 29269807 PMCID: PMC5898974 DOI: 10.1038/s41409-017-0029-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 07/27/2017] [Accepted: 07/29/2017] [Indexed: 11/09/2022]
Abstract
Recent studies suggest improved survival in patients with severe aplastic anemia receiving hematopoietic cell transplant (HCT) from unrelated donors with longer telomeres. Here, we tested whether this effect is generalizable to patients with acute leukemia. From the Center for International Blood and Marrow Transplant Research (CIBMTR®) database, we identified 1097 patients who received 8/8 HLA-matched unrelated HCT for acute myeloid leukemia (AML) or acute lymphocytic leukemia (ALL) between 2004 and 2012 with myeloablative conditioning, and had pre-HCT blood sample from the donor in CIBMTR repository. The median age at HCT for recipients was 40 years (range ≤1-68), and 32 years for donors (range = 18-61). We used qPCR for relative telomere length (RTL) measurement, and Cox proportional hazard models for statistical analyses. In a discovery cohort of 300 patients, longer donor RTL (>25th percentile) was associated with reduced risks of relapse (HR = 0.62, p = 0.05) and acute graft-versus-host disease II-IV (HR = 0.68, p = 0.05), and possibly with a higher probability of neutrophil engraftment (HR = 1.3, p = 0.06). However, these results did not replicate in two validation cohorts of 297 and 488 recipients. There was one exception; a higher probability of neutrophil engraftment was observed in one validation cohort (HR = 1.24, p = 0.05). In a combined analysis of the three cohorts, no statistically significant associations (all p > 0.1) were found between donor RTL and any outcomes.
Collapse
Affiliation(s)
- Shahinaz M Gadalla
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| | - Tao Wang
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | - Casey Dagnall
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michael Haagenson
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | | | | | | | | | | | | | | | - Belynda Hicks
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kristine Jones
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Stephanie J Lee
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sharon A Savage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
13
|
Scheurer ME, Lupo PJ, Schüz J, Spector LG, Wiemels JL, Aplenc R, Gramatges MM, Schiffman JD, Pombo-de-Oliveira MS, Yang JJ, Heck JE, Metayer C, Orjuela-Grimm MA, Bona K, Aristizabal P, Austin MT, Rabin KR, Russell HV, Poplack DG. An overview of disparities in childhood cancer: Report on the Inaugural Symposium on Childhood Cancer Health Disparities, Houston, Texas, 2016. Pediatr Hematol Oncol 2018; 35:95-110. [PMID: 29737912 PMCID: PMC6685736 DOI: 10.1080/08880018.2018.1464088] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Inaugural Symposium on Childhood Cancer Health Disparities was held in Houston, Texas, on November 2, 2016. The symposium was attended by 109 scientists and clinicians from diverse disciplinary backgrounds with interests in pediatric cancer disparities and focused on reviewing our current knowledge of disparities in cancer risk and outcomes for select childhood cancers. Following a full day of topical sessions, everyone participated in a brainstorming session to develop a working strategy for the continued expansion of research in this area. This meeting was designed to serve as a springboard for examination of childhood cancer disparities from a more unified and systematic approach and to enhance awareness of this area of need.
Collapse
Affiliation(s)
- Michael E Scheurer
- a Section of Hematology-Oncology, Department of Pediatrics , Baylor College of Medicine , Houston , TX , USA
- b Cancer and Hematology Centers , Texas Children's Hospital , Houston , TX , USA
| | - Philip J Lupo
- a Section of Hematology-Oncology, Department of Pediatrics , Baylor College of Medicine , Houston , TX , USA
- b Cancer and Hematology Centers , Texas Children's Hospital , Houston , TX , USA
| | - Joachim Schüz
- c Section of Environment and Radiation , International Agency for Research on Cancer , Lyon , France
| | - Logan G Spector
- d Division of Epidemiology and Clinical Research, Department of Pediatrics , University of Minnesota , Minneapolis , MN , USA
| | - Joseph L Wiemels
- e Department of Preventative Medicine , University of Southern California , Los Angeles , CA , USA
| | - Richard Aplenc
- f Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - M Monica Gramatges
- a Section of Hematology-Oncology, Department of Pediatrics , Baylor College of Medicine , Houston , TX , USA
- b Cancer and Hematology Centers , Texas Children's Hospital , Houston , TX , USA
| | - Joshua D Schiffman
- g Department of Pediatrics and Department of Oncological Sciences , Huntsman Cancer Institute, University of Utah , Salt Lake City , UT , USA
| | - Maria S Pombo-de-Oliveira
- h Programa de Hematologia-Oncologia Pediátrico , Instituto Nacional de Câncer , Rio de Janeiro , Brazil
| | - Jun J Yang
- i Department of Pharmaceutical Sciences , St Jude Children's Research Hospital , Memphis , TN , USA
| | - Julia E Heck
- j Department of Epidemiology , University of California Los Angeles , Los Angeles , CA , USA
| | - Catherine Metayer
- k Department of Epidemiology , University of California Berkeley , Berkeley , CA , USA
| | - Manuela A Orjuela-Grimm
- l Departments of Epidemiology and Pediatrics (Oncology) , Columbia University , New York , NY , USA
| | - Kira Bona
- m Department of Pediatrics , Harvard University , Boston , MA , USA
- n Department of Pediatric Oncology , Dana-Farber Cancer Institute , Boston , MA , USA
| | - Paula Aristizabal
- o Department of Pediatrics , University of California San Diego , San Diego , CA , USA
- p Rady Children's Hospital , San Diego , CA , USA
| | - Mary T Austin
- q Department of Pediatric Surgery , The University of Texas Health Science Center at Houston , Houston , TX , USA
- r Departments of Surgical Oncology and Pediatrics Patient Care , MD Anderson Cancer Center , Houston , TX , USA
| | - Karen R Rabin
- a Section of Hematology-Oncology, Department of Pediatrics , Baylor College of Medicine , Houston , TX , USA
- b Cancer and Hematology Centers , Texas Children's Hospital , Houston , TX , USA
| | - Heidi V Russell
- a Section of Hematology-Oncology, Department of Pediatrics , Baylor College of Medicine , Houston , TX , USA
- b Cancer and Hematology Centers , Texas Children's Hospital , Houston , TX , USA
| | - David G Poplack
- a Section of Hematology-Oncology, Department of Pediatrics , Baylor College of Medicine , Houston , TX , USA
- b Cancer and Hematology Centers , Texas Children's Hospital , Houston , TX , USA
| |
Collapse
|
14
|
Abstract
The importance of telomere length to human health, aging, and cancer continues to be underappreciated. This review examines some basics of telomere biology and relates how telomere function, telomerase activity, and mutations in TERC or TERT are involved in bone marrow failure, leukemias, and other cancers. Given the challenge to obtain accurate data on telomerase activity and telomere length in specific cell types, the situation in acute myeloid leukemia (AML) remains puzzling. In most cancers, telomerase levels are increased after cells have encountered a "telomere crisis," which is typically associated with poor prognosis. Cells emerging from "telomere crisis" have defective DNA damage responses, resulting, for example, from loss of p53. Such cells often express elevated telomerase levels as a result of point mutations in the TERT promoter or amplification of the TERT gene. While telomeres in AML blasts are typically shorter than expected for normal leukocytes, most AML cells do not show evidence of having gone through a "telomere crisis." In chronic myeloid leukemia (CML), the difference between the telomere length in nonmalignant T cells and malignant blasts from the same patient was found to correlate with the remaining duration of the chronic phase. This observation supports that a mitotic clock is ticking in CML stem cells and that disease progression in CML heralds the onset of a "telomere crisis." The presence of very short telomeres in tumor cells was found to predict disease progression in chronic lymphocytic leukemia, myeloma, and various solid tumors. In view of these findings longitudinal studies of telomere length in AML appear worthwhile.
Collapse
|
15
|
Kishtagari A, Watts J. Biological and clinical implications of telomere dysfunction in myeloid malignancies. Ther Adv Hematol 2017; 8:317-326. [PMID: 29093807 DOI: 10.1177/2040620717731549] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/24/2017] [Indexed: 12/12/2022] Open
Abstract
Telomeres at the ends of linear chromosomes protect the genome. Telomeres shorten with each round of cell division, placing a finite limit on cell growth. Telomere attrition is associated with cell senescence and apoptosis. Telomerase, a specialized ribonucleoprotein complex, maintains telomeres homeostasis through repeat addition of telomere sequences to the 3' telomeric overhang. Telomere biology is closely related to cancer and normal aging. Upregulation of telomerase or activation of the alternative pathway of telomere lengthening is a hallmark of cancer cells, making telomerase an attractive target for cancer therapeutics. In this review, we will discuss telomere biology and the prognostic implications of telomere length in acute myeloid leukemia, and review exciting new investigational approaches using telomerase inhibitors in acute myeloid leukemia and other myeloid malignancies.
Collapse
Affiliation(s)
- Ashwin Kishtagari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - Justin Watts
- Division of Hematology, Department of Medicine, University of Miami, Miller School of Medicine, Sylvester Comprehensive Cancer Center, 1475 NW 12th Avenue, Miami, FL 33136-1002, USA
| |
Collapse
|
16
|
Kjeldsen E. Characterization of an acquired jumping translocation involving 3q13.31-qter in a patient with de novo acute monocytic leukemia. Exp Mol Pathol 2017. [PMID: 28625614 DOI: 10.1016/j.yexmp.2017.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We studied an adult with de novo acute monocytic leukemia and a dismal outcome where her leukemic cells harbored an acquired rare jumping translocation (JT). We used oligo-based array CGH (oaCGH) analysis, fluorescence in situ hybridization (FISH), and 24-color karyotyping to enhance the characterization of the JT. G-banding detected a JT involving the 3q13.3-qter chromosomal segment and the recipient chromosomal regions 17p, 8q, and 15q. Each clone with JT was associated with trisomy 8. oaCGH analysis revealed an additional submicroscopic deletion in 3q13.31 as well as small subtelomeric duplications on several chromosomes. Locus-specific FISH with BAC-based probes from the 3q13.31-q13.32 region showed great heterogeneity. Telomere FISH revealed significantly reduced telomeric content in the aberrant cells with JT compared with cytogenetically normal cells at diagnosis and in normal cells at complete remission. A literature search revealed two previous de novo AML-M5 cases of JT involving the 3q13.3-qter chromosomal segment and concomitant trisomy 8. In addition, a case with an unbalanced der(Y)t(Y;3)(q12;q13.31) and additional trisomy 8 was previously reported in a patient with de novo AML-M5. All of these cases had a dismal outcome. In the present case, and in the der(Y)t(Y;3) case, a concurrent submicroscopic deletion at 3q13.31 was observed affecting the TUSC7 gene. Duplication of 3q13.31-qter might be a non-random chromosomal abnormality with concomitant submicroscopic deletion at 3q13.31 occurring in rare cases of acute monocytic leukemia, being associated with adverse prognosis. The impact of shortened telomeres in forming the JT is reviewed.
Collapse
MESH Headings
- Aged
- Chromosome Deletion
- Chromosome Duplication
- Chromosomes, Human, Pair 3/genetics
- Chromosomes, Human, Pair 8/genetics
- Cloning, Molecular
- Comparative Genomic Hybridization
- DNA Copy Number Variations
- Female
- Humans
- In Situ Hybridization, Fluorescence
- Karyotyping
- Leukemia, Monocytic, Acute/diagnosis
- Leukemia, Monocytic, Acute/genetics
- Prognosis
- Translocation, Genetic
- Trisomy/genetics
Collapse
Affiliation(s)
- Eigil Kjeldsen
- Cancercytogenetic Section, Hemodiagnostic Laboratory, Department of Hematology, Center for Cancer and Inflammation, Aarhus University Hospital, Tage Hansens Gade 2, Ent. 4A, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
17
|
Wang Y, Wang T, Dagnall C, Haagenson M, Spellman SR, Hicks B, Jones K, Lee SJ, Savage SA, Gadalla SM. Relative Telomere Length before Hematopoietic Cell Transplantation and Outcome after Unrelated Donor Hematopoietic Cell Transplantation for Acute Leukemia. Biol Blood Marrow Transplant 2017; 23:1054-1058. [PMID: 28389255 DOI: 10.1016/j.bbmt.2017.03.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/25/2017] [Indexed: 10/19/2022]
Abstract
Telomeres are tandem nucleotide repeats and a protein complex located at the end of the chromosomes maintaining genomic stability. Their potential as a predictive biomarker for outcomes after allogeneic hematopoietic cell transplant (HCT) in hematologic malignancies is still unclear. From the Center for International Blood and Marrow Transplant Research we randomly selected 536 acute leukemia patients from those who underwent myeloablative 8/8 HLA-matched unrelated donor HCT between 2005 and 2012 and who had an available pre-HCT blood sample in the repository. Relative telomere length (RTL) was measured by real-time quantitative PCR. We used Kaplan-Meier and competing risk estimators to calculate survival probability and cumulative incidence, respectively, across patient RTL tertiles. Cox proportional hazard regression was used for adjusted analyses. The study included 396 acute myeloid leukemia (AML) and 140 acute lymphoblastic leukemia (ALL) patients. Median age at HCT was 41 years (range, .5 to 66), and median follow-up for survivors was 5.1 years (range, .4 to 8.3). Significant inverse correlations between age and RTL were observed in patients with AML (r = -.44, P < .0001) and ALL (r = -.48, P < .0001). Patients with ALL had longer RTL than those with AML (.48 versus .43, respectively); the difference was not statistically significant after adjusting for patient age (P = .96). Pre-HCT RTL in acute leukemia patients was not statistically significantly associated with overall survival (HR for longest RTL compared with shortest, .91; 95% CI, .65 to 1.28), disease-free survival (HR, .90; 95% CI, .64 to 1.25), transplant-related mortality (HR, .97; 95% CI, .60 to 1.59), incidence of relapse (HR, .89; 95% CI, .56 to 1.40), neutrophil engraftment (HR, 1.06; 95% CI, .85 to 1.32), or grades II to IV acute graft-versus-host disease (HR, 1.11; 95% CI, .81 to 1.53), grades III-IV acute graft-versus-host disease (HR, .92; 95% CI, .54 to 1.59), and chronic graft-versus-host disease (HR, 1.10; 95% CI, .81 to 1.50). In this study, recipient pre-HCT RTL had no prognostic role in post-transplant outcomes in acute leukemia patients.
Collapse
Affiliation(s)
- Youjin Wang
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Tao Wang
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, Wisconsin; Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Casey Dagnall
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland; Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Michael Haagenson
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Belynda Hicks
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland; Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Kristine Jones
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland; Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Stephanie J Lee
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Shahinaz M Gadalla
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|