1
|
Richardson NH, Adra N. Novel therapeutics in refractory germ cell tumors. Curr Opin Oncol 2025; 37:267-273. [PMID: 40065678 DOI: 10.1097/cco.0000000000001129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
PURPOSE OF REVIEW Refractory germ cell tumors (GCT), those progressing after known effective salvage therapies, carry a dismal prognosis with minimal treatment options of limited efficacy. This review aims to highlight the advances in understanding refractory GCT and review upcoming and active clinical trials with novel therapeutics in development. RECENT FINDINGS Patients with refractory disease after optimal salvage chemotherapy are rarely cured and should be referred to centers with expertise in GCT. While prior investigational agents have not overcome current limitations of salvage therapy, current and upcoming trials of novel agents including tyrosine kinase inhibitors (TKI), chimeric antigen receptor (CAR) T-cell therapies, bispecific T-cell engagers (BiTE), and antibody-drug conjugates (ADC) are promising avenues of therapy. SUMMARY Outcomes in refractory GCT remain poor. Patients should preferably be evaluated at tertiary care centers with expertise in the management of these patients and access to clinical trials of novel therapeutics. Active research in the understanding of the molecular mechanisms of resistance and targeting of uniquely expressed antigens has broadened the potential therapies in development.
Collapse
Affiliation(s)
- Noah H Richardson
- Division of Hematology & Medical Oncology - Melvin & Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | |
Collapse
|
2
|
Zhan Z, Luo X, Shi J, Chen L, Ye M, Jin X. Mechanisms of cisplatin sensitivity and resistance in testicular germ cell tumors and potential therapeutic agents (Review). Exp Ther Med 2025; 29:82. [PMID: 40084198 PMCID: PMC11904865 DOI: 10.3892/etm.2025.12832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/31/2024] [Indexed: 03/16/2025] Open
Abstract
Testicular germ cell tumors (TGCTs) are the most common tumors in men aged 20-40 years and are primarily treated with cisplatin-based drugs. Although TGCTs are highly sensitive to DNA damage induced by cisplatin and show a hypersensitive apoptotic response, cisplatin resistance still exists. Emerging evidence shows that cisplatin resistance in TGCTs is mainly related to the inhibition of apoptotic pathways such as MDM2/p53, OCT4/NOXA, PDGFR/PI3K/AKT, inhibition of cell cycle checkpoints, increased methylation or neddylation and DNA repair balance. In this review, recent advances regarding the mechanisms of TGCTs' sensitivity and resistance to cisplatin were summarized and potential therapeutic agents for cisplatin-resistant TGCTs were presented, providing a new therapeutic strategy for drug-resistant TGCTs.
Collapse
Affiliation(s)
- Ziqing Zhan
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Xia Luo
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Jiaxin Shi
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Litao Chen
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
3
|
Kucerova L, Fekiacova A, Udvorkova N, Malcharkova P, Blahova V, Jochova S, Kalavska K, Cierna Z, Mego M. Mirvetuximab Soravtansine Induces Potent Cytotoxicity and Bystander Effect in Cisplatin-Resistant Germ Cell Tumor Cells. Cells 2025; 14:287. [PMID: 39996761 PMCID: PMC11853988 DOI: 10.3390/cells14040287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/24/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Patients with treatment-refractory/relapsing germ cell tumors (GCTs) have a dismal prognosis due to a lack of any effective therapy. Moreover, the efficacy of newly approved targeted therapies remains unexplored for cisplatin-resistant GCTs. Previously, it was demonstrated that folate receptor α (FRα) is overexpressed in many tumor types and efficiently targeted by the antibody-drug conjugate (ADC) mirvetuximab soravtansine (MIRV) in cisplatin-resistant cancers. We hypothesized that FRα represents an attractive target for treating treatment-refractory GCTs. We determined the expression of the FOLR1 gene in a broad range of GCT cell lines and tumor xenografts. We tested the antitumor efficacy of MIRV on cisplatin-resistant GCT cells in vitro and explored the ability of MIRV treatment to induce a bystander effect in the direct coculture of FRα-high and FRα-low cells. We found that the FOLR1 gene has significantly higher expression in testicular GCTs (TGCTs) than in normal testicular tissue. FOLR1 is highly expressed in the TCam2, JEG3, JAR, and NOY1 cell lines and their respective cisplatin-resistant variants. MIRV treatment induced apoptosis and a potent antiproliferative effect in cisplatin-resistant GCT cells in adherent and 3D spheroid cultures in vitro. A significant decrease in FRα-low 2102EP_R_NL cells was observed in the presence of FRα-high NOY1_R_SK in the presence of 12.5 nM MIRV, showing a potent bystander effect in the direct coculture. Immunohistochemical analysis confirmed significantly higher Folr1 protein expression in patients with TGCTs postchemotherapy than in chemo-naïve patients, as well as in patients with an unfavorable prognosis. In this study, we present data suggesting that the FOLR1 gene is highly expressed in (T)GCT cells in vitro and in vivo, and anti-FRα-targeting therapies should be investigated as a treatment modality in a subset of patients with TGCTs. Moreover, MIRV induced significant antitumor and bystander effects, thus showing its potential in further preclinical exploration and drug repurposing for a salvage treatment regime in refractory (T)GCT disease.
Collapse
MESH Headings
- Humans
- Cisplatin/pharmacology
- Neoplasms, Germ Cell and Embryonal/drug therapy
- Neoplasms, Germ Cell and Embryonal/pathology
- Neoplasms, Germ Cell and Embryonal/genetics
- Neoplasms, Germ Cell and Embryonal/metabolism
- Drug Resistance, Neoplasm/drug effects
- Bystander Effect/drug effects
- Cell Line, Tumor
- Animals
- Immunoconjugates/pharmacology
- Immunoconjugates/therapeutic use
- Folate Receptor 1/metabolism
- Folate Receptor 1/genetics
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Maytansine/analogs & derivatives
- Maytansine/pharmacology
- Maytansine/therapeutic use
- Testicular Neoplasms/drug therapy
- Testicular Neoplasms/pathology
- Testicular Neoplasms/genetics
- Testicular Neoplasms/metabolism
- Male
- Mice
- Xenograft Model Antitumor Assays
- Apoptosis/drug effects
- Mice, Nude
Collapse
Affiliation(s)
- Lucia Kucerova
- Translational Research Unit, 2nd Oncology Clinic of the Medical Faculty, Comenius University, and the National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia; (A.F.); (N.U.); (P.M.); (V.B.); (K.K.); (M.M.)
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia;
| | - Adriana Fekiacova
- Translational Research Unit, 2nd Oncology Clinic of the Medical Faculty, Comenius University, and the National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia; (A.F.); (N.U.); (P.M.); (V.B.); (K.K.); (M.M.)
- Department of Genetics, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia
| | - Natalia Udvorkova
- Translational Research Unit, 2nd Oncology Clinic of the Medical Faculty, Comenius University, and the National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia; (A.F.); (N.U.); (P.M.); (V.B.); (K.K.); (M.M.)
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia;
- Medical Faculty, Comenius University, 813 72 Bratislava, Slovakia
| | - Pavlina Malcharkova
- Translational Research Unit, 2nd Oncology Clinic of the Medical Faculty, Comenius University, and the National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia; (A.F.); (N.U.); (P.M.); (V.B.); (K.K.); (M.M.)
| | - Viktoria Blahova
- Translational Research Unit, 2nd Oncology Clinic of the Medical Faculty, Comenius University, and the National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia; (A.F.); (N.U.); (P.M.); (V.B.); (K.K.); (M.M.)
| | - Silvia Jochova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia;
| | - Katarina Kalavska
- Translational Research Unit, 2nd Oncology Clinic of the Medical Faculty, Comenius University, and the National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia; (A.F.); (N.U.); (P.M.); (V.B.); (K.K.); (M.M.)
| | - Zuzana Cierna
- Department of Pathology, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
- Department of Pathology, Faculty of Health Care and Social Work, University Hospital, 917 75 Trnava, Slovakia
| | - Michal Mego
- Translational Research Unit, 2nd Oncology Clinic of the Medical Faculty, Comenius University, and the National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia; (A.F.); (N.U.); (P.M.); (V.B.); (K.K.); (M.M.)
| |
Collapse
|
4
|
Yeo KK, Gell J, Dhall G, Lau C. Intracranial germ cell tumors: advancement in genomic diagnostics and the need for novel therapeutics. Front Oncol 2025; 15:1513258. [PMID: 39959669 PMCID: PMC11825776 DOI: 10.3389/fonc.2025.1513258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/15/2025] [Indexed: 02/18/2025] Open
Abstract
Introduction The outcomes for patients with intracranial germ cell tumors (GCT) has improved over the past few decades. However, there remains a lack of a consensus on a standard diagnostic and treatment approach of these tumors. The diagnostic work-up of intracranial GCT remains variable, and the treatment for patients with recurrent disease remains challenging. Methods We review the current approach in the diagnosis and treatment of intracranial GCT. Given the heterogeneity of these tumors, we highlight the challenges and controversy with these conventional approaches. Results We discuss the advancements in the understanding of the underlying genetic changes in intracranial GCT and the utility of novel molecular techniques in the diagnosis and classification of intracranial germ cell tumors as well as development of potential novel therapeutics. Discussion Development of liquid biopsy platforms for diagnosis and management of malignancies is a rapidly growing field. Current approach utilizing traditional tumor markers have significant limitations. In this review, we will discuss profiling of intracranial GCTs for genetic and epigenetic signatures, which are emerging as promising biomarkers to assist in the diagnosis and management of intracranial GCTs. Various studies have shown that activating mutations in MAPK pathway are common alterations in intracranial GCTs, with KIT expression seen in most germinomas. Development of targeted therapeutics against KIT has led to the prospect of targeted therapy in germinoma. Other treatment modalities being considered for clinical development include immunotherapy and the use of immune checkpoint inhibitors, especially in NGGCT. In this review, we will discuss the potential novel therapeutics and the clinical trials that are currently under development.
Collapse
Affiliation(s)
- Kee Kiat Yeo
- Department of Pediatric Oncology, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Joanna Gell
- Center for Cancer and Blood Disorders, Connecticut Children’s Medical Center, Hartford, CT, United States
- The Jackson Laboratory for Genomic Medicine, Framingham, CT, United States
- Department of Pediatrics, University of Connecticut School of Medicine, Framington, CT, United States
| | - Girish Dhall
- Alabama Center for Childhood Cancer and Blood Disorders at Children’s of Alabama, Birmingham, AL, United States
- Department of Pediatrics, Marnix E. Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ching Lau
- Center for Cancer and Blood Disorders, Connecticut Children’s Medical Center, Hartford, CT, United States
- The Jackson Laboratory for Genomic Medicine, Framingham, CT, United States
- Department of Pediatrics, University of Connecticut School of Medicine, Framington, CT, United States
| |
Collapse
|
5
|
Udvorková N, Fekiačová A, Majtánová K, Mego M, Kučerová L. Antibody-drug conjugates as a novel therapeutic modality to treat recurrent refractory germ cell tumors. Am J Physiol Cell Physiol 2024; 327:C362-C371. [PMID: 38912730 DOI: 10.1152/ajpcell.00200.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
This review provides a rationale for using the Food and Drug Administration (FDA)-approved antibody-drug conjugates (ADCs) for implementing as therapy in recurrent refractory germ cell tumors similar to their position in the treatment of other types of chemoresistant solid tumors. Germ cell tumors (GCTs) originate from germ cells; they most frequently develop in ovaries or in the testes, while being the most common type of malignancy in young men. GCTs are very sensitive to cisplatin-based chemotherapy, but therapeutic resistance occurs in a considerable number of cases, which is associated with disease recurrence and poor patient prognosis. ADCs are a novel type of targeted antitumor agents that combine tumor antigen-specific monoclonal antibodies with chemically linked chemotherapeutic drugs (payload) exerting a cytotoxic effect. Several FDA-approved ADCs use as targeting moieties the antigens that are also detected in the GCTs, offering a benefit of this type of targeted therapy even for patients with relapsed/refractory testicular GCTs (rrTGCT) unresponsive to standard chemotherapy.
Collapse
Affiliation(s)
- Natália Udvorková
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
- Cancer Research Institute, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Adriana Fekiačová
- Cancer Research Institute, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Kristína Majtánová
- Cancer Research Institute, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Translational Research Unit, National Cancer Institute and the 2nd Oncology Clinic of Medical Faculty, Comenius University, Bratislava, Slovakia
| | - Michal Mego
- Translational Research Unit, National Cancer Institute and the 2nd Oncology Clinic of Medical Faculty, Comenius University, Bratislava, Slovakia
| | - Lucia Kučerová
- Cancer Research Institute, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Translational Research Unit, National Cancer Institute and the 2nd Oncology Clinic of Medical Faculty, Comenius University, Bratislava, Slovakia
| |
Collapse
|
6
|
Kilic I, Acosta AM, Idrees MT. Evolution of Testicular Germ Cell Tumors in the Molecular Era With Histogenetic Implications. Adv Anat Pathol 2024; 31:206-214. [PMID: 38525515 DOI: 10.1097/pap.0000000000000438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The current WHO classification of testicular germ cell tumors is based on the pathogenesis of the tumors driven by different genomic events. The germ cell neoplasia in situ is the precursor lesion for all malignant germ cell tumors. The current understanding of pathogenesis is that the developmental and environmental factors with the erasure of parental genomic imprinting lead to the development of abnormal gonocytes that settle in the "spermatogonial Niche" in seminiferous tubules. The abnormal primordial germ cells in the seminiferous tubules give rise to pre-GCNIS cells under the influence of TPSY and OCT4 genes. The whole genome duplication events give rise to germ cell neoplasia in situ, which further acquires alterations in 12p along with NRAS and KRAS mutations to produce seminoma. A subset of seminomas acquires KIT mutation and does not differentiate further. The remaining KIT-stable seminomas differentiate to nonseminomatous GCTs after obtaining recurrent chromosomal losses, epigenetic modification, and posttranscriptional regulation by multiple genes. Nonseminomatous germ cell tumors also develop directly from differentiated germ cell neoplasia in situ. TP53 pathway with downstream drivers may give rise to somatic-type malignancies of GCT. The GCTs are remarkably sensitive to cisplatin-based combination chemotherapy; however, resistance to cisplatin develops in up to 8% of tumors and appears to be driven by TP53/MDM2 gene mutations. Serum and Plasma miRNAs show promise in diagnosing, managing, and following up on these tumors. The mechanisms underlying the development of most tumors have been elucidated; however, additional studies are required to pinpoint the events directing specific characteristics. Advances in identifying specific molecular markers have been seen recently and may be adopted as gold standards in the future.
Collapse
Affiliation(s)
- Irem Kilic
- Department of Pathology, Indiana University, Indianapolis, IN
| | | | | |
Collapse
|
7
|
Satake D, Natsumeda M, Satomi K, Tada M, Sato T, Okubo N, Kawabe K, Takahashi H, Tsukamoto Y, Okada M, Sano M, Iwabuchi H, Shibata N, Imamura M, Imai C, Takami H, Ichimura K, Nishikawa R, Umezu H, Kakita A, Oishi M. Successful Multimodal Treatment of Intracranial Growing Teratoma Syndrome with Malignant Features. Curr Oncol 2024; 31:1831-1838. [PMID: 38668041 PMCID: PMC11049495 DOI: 10.3390/curroncol31040138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Molecular analysis of the growing teratoma syndrome has not been extensively studied. Here, we report a 14-year-old boy with a growing mass during treatment for a mixed germ cell tumor of the pineal region. Tumor markers were negative; thus, growing teratoma syndrome was suspected. A radical resection via the occipital transtentorial approach was performed, and histopathological examination revealed a teratoma with malignant features. Methylation classifier analysis confirmed the diagnosis of teratoma, and DMRT1 loss and 12p gain were identified by copy number variation analysis, potentially elucidating the cause of growth and malignant transformation of the teratoma. The patient remains in remission after intense chemoradiation treatment as a high-risk germ cell tumor.
Collapse
Affiliation(s)
- Daiken Satake
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; (D.S.); (T.S.); (N.O.); (K.K.); (H.T.); (Y.T.); (M.O.); (M.S.); (M.O.)
| | - Manabu Natsumeda
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; (D.S.); (T.S.); (N.O.); (K.K.); (H.T.); (Y.T.); (M.O.); (M.S.); (M.O.)
- Advanced Treatment of Neurological Diseases Branch, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Kaishi Satomi
- Department of Pathology, Kyorin University Faculty of Medicine, Tokyo 181-8611, Japan;
| | - Mari Tada
- Department of Pathology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; (M.T.); (A.K.)
| | - Taro Sato
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; (D.S.); (T.S.); (N.O.); (K.K.); (H.T.); (Y.T.); (M.O.); (M.S.); (M.O.)
| | - Noritaka Okubo
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; (D.S.); (T.S.); (N.O.); (K.K.); (H.T.); (Y.T.); (M.O.); (M.S.); (M.O.)
| | - Keita Kawabe
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; (D.S.); (T.S.); (N.O.); (K.K.); (H.T.); (Y.T.); (M.O.); (M.S.); (M.O.)
| | - Haruhiko Takahashi
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; (D.S.); (T.S.); (N.O.); (K.K.); (H.T.); (Y.T.); (M.O.); (M.S.); (M.O.)
| | - Yoshihiro Tsukamoto
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; (D.S.); (T.S.); (N.O.); (K.K.); (H.T.); (Y.T.); (M.O.); (M.S.); (M.O.)
| | - Masayasu Okada
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; (D.S.); (T.S.); (N.O.); (K.K.); (H.T.); (Y.T.); (M.O.); (M.S.); (M.O.)
| | - Masakazu Sano
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; (D.S.); (T.S.); (N.O.); (K.K.); (H.T.); (Y.T.); (M.O.); (M.S.); (M.O.)
| | - Haruko Iwabuchi
- Department of Pediatrics, Niigata University Medical and Dental Hospital, Niigata 951-8520, Japan; (H.I.); (N.S.); (C.I.)
| | - Nao Shibata
- Department of Pediatrics, Niigata University Medical and Dental Hospital, Niigata 951-8520, Japan; (H.I.); (N.S.); (C.I.)
| | - Masaru Imamura
- Department of Pediatrics, Niigata University Medical and Dental Hospital, Niigata 951-8520, Japan; (H.I.); (N.S.); (C.I.)
| | - Chihaya Imai
- Department of Pediatrics, Niigata University Medical and Dental Hospital, Niigata 951-8520, Japan; (H.I.); (N.S.); (C.I.)
- Department of Pediatrics, Toyama University, Toyama 930-0194, Japan
| | - Hirokazu Takami
- Department of Neurosurgery, The University of Tokyo Hospital, Tokyo 113-8655, Japan;
| | - Koichi Ichimura
- Department of Brain Disease Translational Research, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
| | - Ryo Nishikawa
- Department of Neurosurgery/Neuro-Oncology, Saitama Medical University International Medical Center, Saitama 350-1298, Japan;
| | - Hajime Umezu
- Division of Pathology, Niigata University Medical and Dental Hospital, Niigata University, Niigata 951-8520, Japan;
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; (M.T.); (A.K.)
| | - Makoto Oishi
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; (D.S.); (T.S.); (N.O.); (K.K.); (H.T.); (Y.T.); (M.O.); (M.S.); (M.O.)
| |
Collapse
|
8
|
Urbini M, Bleve S, Schepisi G, Menna C, Gurioli G, Gianni C, De Giorgi U. Biomarkers for Salvage Therapy in Testicular Germ Cell Tumors. Int J Mol Sci 2023; 24:16872. [PMID: 38069192 PMCID: PMC10706346 DOI: 10.3390/ijms242316872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
The outcome of metastatic testicular germ cell tumor patients has been dramatically improved by cisplatin-based chemotherapy combinations. However, up to 30% of patients with advanced disease relapse after first-line therapy and require salvage regimens, which include treatments with conventional-dose chemotherapy or high-dose chemotherapy with autologous stem cell transplantation. For these patients, prognosis estimation represents an essential step in the choice of medical treatment but still remains a complex challenge. The available histological, clinical, and biochemical parameters attempt to define the prognosis, but they do not reflect the tumor's molecular and pathological features and do not predict who will exhibit resistance to the several treatments. Molecular selection of patients and validated biomarkers are highly needed in order to improve current risk stratification and identify novel therapeutic approaches for patients with recurrent disease. Biomolecular biomarkers, including microRNAs, gene expression profiles, and immune-related biomarkers are currently under investigation in testicular germ cell tumors and could potentially hold a prominent place in the future treatment selection and prognostication of these tumors. The aim of this review is to summarize current scientific data regarding prognostic and predictive biomarkers for salvage therapy in testicular germ cell tumors.
Collapse
Affiliation(s)
- Milena Urbini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Sara Bleve
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (G.S.); (C.M.); (C.G.); (U.D.G.)
| | - Giuseppe Schepisi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (G.S.); (C.M.); (C.G.); (U.D.G.)
| | - Cecilia Menna
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (G.S.); (C.M.); (C.G.); (U.D.G.)
| | - Giorgia Gurioli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Caterina Gianni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (G.S.); (C.M.); (C.G.); (U.D.G.)
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (G.S.); (C.M.); (C.G.); (U.D.G.)
| |
Collapse
|
9
|
Takami H, Satomi K, Fukuoka K, Nakamura T, Tanaka S, Mukasa A, Saito N, Suzuki T, Yanagisawa T, Sugiyama K, Kanamori M, Kumabe T, Tominaga T, Tamura K, Maehara T, Nonaka M, Asai A, Yokogami K, Takeshima H, Iuchi T, Kobayashi K, Yoshimoto K, Sakai K, Nakazato Y, Matsutani M, Nagane M, Nishikawa R, Ichimura K. Distinct patterns of copy number alterations may predict poor outcome in central nervous system germ cell tumors. Sci Rep 2023; 13:15760. [PMID: 37735187 PMCID: PMC10514291 DOI: 10.1038/s41598-023-42842-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
We have previously reported that 12p gain may predict the presence of malignant components and poor prognosis for CNS germ cell tumor (GCT). Recently, 3p25.3 gain was identified as an independent predictor of poor prognosis for testicular GCT. Eighty-one CNS GCTs were analyzed. Copy number was calculated using methylation arrays. Five cases (6.2%) showed 3p25.3 gain, but only among the 40 non-germinomatous GCTs (NGGCTs) (5/40, 12.5%; p = 0.03). Among NGGCTs, those with a yolk sac tumor component showed a significantly higher frequency of 3p25.3 gain (18.2%) than those without (1.5%; p = 0.048). NGGCTs with gain showed significantly shorter progression-free survival (PFS) than those without (p = 0.047). The 3p25.3 gain and 12p gain were independent from each other. The combination of 3p25.3 gain and/or 12p gain was more frequent among NGGCTs with malignant components (69%) than among those without (29%; p = 0.02). Germinomas containing a higher number of copy number alterations showed shorter PFS than those with fewer (p = 0.03). Taken together, a finding of 3p25.3 gain may be a copy number alteration specific to NGGCTs and in combination with 12p gain could serve as a marker of negative prognosis or treatment resistance. Germinoma with frequent chromosomal instability may constitute an unfavorable subgroup.
Collapse
Affiliation(s)
- Hirokazu Takami
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Kaishi Satomi
- Department of Pathology, Kyorin University Faculty of Medicine, 6-20-2, Shinkawa, Mitaka City, Tokyo, 181-8611, Japan
| | - Kohei Fukuoka
- Departments of Hematology/Oncology, Saitama Children's Medical Center, 1-2, Shintoshin, Chuo-ku, Saitama City, Saitama, 330-8777, Japan
| | - Taishi Nakamura
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama City, Kanagawa, 236-0004, Japan
| | - Shota Tanaka
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Akitake Mukasa
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tomonari Suzuki
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, 1397-1, Yamane, Hidaka City, Saitama, 350-1298, Japan
| | - Takaaki Yanagisawa
- Department of Neurosurgery, Jikei University, 3-25-8, Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Kazuhiko Sugiyama
- Department of Clinical Oncology and Neuro-Oncology Program, Faculty of Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Masayuki Kanamori
- Department of Neurosurgery, Tohoku University School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai City, Miyagi, 980-8574, Japan
| | - Toshihiro Kumabe
- Department of Neurosurgery, Tohoku University School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai City, Miyagi, 980-8574, Japan
- Department of Neurosurgery, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai City, Miyagi, 980-8574, Japan
| | - Kaoru Tamura
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-0034, Japan
| | - Taketoshi Maehara
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-0034, Japan
| | - Masahiro Nonaka
- Department of Neurosurgery, Kansai Medical University Hospital, 2-3-1, Shinmachi, Hirakata City, Osaka, 573-1191, Japan
| | - Akio Asai
- Department of Neurosurgery, Kansai Medical University Hospital, 2-3-1, Shinmachi, Hirakata City, Osaka, 573-1191, Japan
| | - Kiyotaka Yokogami
- Department of Neurosurgery, University of Miyazaki Faculty of Medicine, 5200, Kihara, Kiyotakecho, Miyazaki, 889-1692, Japan
| | - Hideo Takeshima
- Department of Neurosurgery, University of Miyazaki Faculty of Medicine, 5200, Kihara, Kiyotakecho, Miyazaki, 889-1692, Japan
| | - Toshihiko Iuchi
- Department of Neurosurgery, Chiba Cancer Center, 666-2, Nitona-cho, Chuo-ku, Chiba, 260-0801, Japan
| | - Keiichi Kobayashi
- Department of Neurosurgery, Kyorin University Faculty of Medicine, 6-20-2, Shinkawa, Mitaka City, Tokyo, 181-8611, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Kyusyu University Hospital, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Keiichi Sakai
- Shinshu Ueda Medical Center, 1-27-21, Midorigaoka, Ueda City, Nagano, 386-8610, Japan
| | - Yoichi Nakazato
- Department of Pathology, Hidaka Hospital, 886, Nakaomachi, Takasaki City, Gunma, 370-0001, Japan
| | - Masao Matsutani
- Gotanda Rehabilitation Hospital, 8-20, Nishi-gotanda, Shinagawa-ku, Tokyo, 141-0031, Japan
| | - Motoo Nagane
- Department of Neurosurgery, Kyorin University Faculty of Medicine, 6-20-2, Shinkawa, Mitaka City, Tokyo, 181-8611, Japan
| | - Ryo Nishikawa
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, 1397-1, Yamane, Hidaka City, Saitama, 350-1298, Japan
| | - Koichi Ichimura
- Department of Brain Disease Translational Research, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
10
|
Bhuta R, Shah R, Gell JJ, Poynter JN, Bagrodia A, Dicken BJ, Pashankar F, Frazier AL, Shaikh F. Children's Oncology Group's 2023 blueprint for research: Germ cell tumors. Pediatr Blood Cancer 2023; 70 Suppl 6:e30562. [PMID: 37449938 PMCID: PMC10529374 DOI: 10.1002/pbc.30562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Extracranial germ cell tumors (GCT) are a biologically diverse group of tumors occurring in children, adolescents, and young adults. The majority of patients have excellent outcomes, but treatment-related toxicities impact their quality of survivorship. A subset of patients succumbs to the disease. Current unmet needs include clarifying which patients can be safely observed after initial surgical resection, refinement of risk stratification to reduce chemotherapy burden in patients with standard-risk disease, and intensify therapy for patients with poor-risk disease. Furthermore, enhancing strategies for detection of minimal residual disease and early detection of relapse, particularly in serum tumor marker-negative histologies, is critical. Improving the understanding of the developmental and molecular origins of GCTs may facilitate discovery of novel targets. Future efforts should be directed toward assessing novel therapies in a biology-driven, biomarker-defined, histology-specific, risk-stratified patient population. Fragmentation of care between subspecialists restricts the unified study of these rare tumors. It is imperative that trials be conducted in collaboration with national and international cooperative groups, with harmonized data and biospecimen collection. Key priorities for the Children's Oncology Group (COG) GCT Committee include (a) better understanding the biology of GCTs, with a focus on molecular targets and mechanisms of treatment resistance; (b) strategic development of pediatric and young adult clinical trials; (c) understanding late effects of therapy and identifying individuals most at risk; and (d) prioritizing diversity, equity, and inclusion to reduce cancer health disparities and studying the impacts of social determinants of health on outcomes.
Collapse
Affiliation(s)
- Roma Bhuta
- Division of Pediatric Hematology-Oncology, Hasbro Children’s Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Rachana Shah
- Division of Hematology-Oncology, Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Joanna J. Gell
- The Center for Cancer and Blood Disorders, Connecticut Children’s Medical Center, Hartford, CT, USA
- Department of Pediatrics, University of Connecticut Medical School, Farmington, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jenny N. Poynter
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Aditya Bagrodia
- Department of Urology, University of California San Diego, San Diego, CA, USA
| | - Bryan J. Dicken
- Department of Surgery, University of Alberta, Stollery Children’s Hospital, Edmonton, Alberta, Canada
| | - Farzana Pashankar
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - A Lindsay Frazier
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Furqan Shaikh
- Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Grubliauskaite M, van der Perk MEM, Bos AME, Meijer AJM, Gudleviciene Z, van den Heuvel-Eibrink MM, Rascon J. Minimal Infiltrative Disease Identification in Cryopreserved Ovarian Tissue of Girls with Cancer for Future Use: A Systematic Review. Cancers (Basel) 2023; 15:4199. [PMID: 37686475 PMCID: PMC10486797 DOI: 10.3390/cancers15174199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Ovarian tissue cryopreservation and transplantation are the only available fertility techniques for prepubertal girls with cancer. Though autotransplantation carries a risk of reintroducing malignant cells, it can be avoided by identifying minimal infiltrative disease (MID) within ovarian tissue. METHODS A broad search for peer-reviewed articles in the PubMed database was conducted in accordance with PRISMA guidelines up to March 2023. Search terms included 'minimal residual disease', 'cryopreservation', 'ovarian', 'cancer' and synonyms. RESULTS Out of 542 identified records, 17 were included. Ovarian tissues of at least 115 girls were evaluated and categorized as: hematological malignancies (n = 56; 48.7%), solid tumors (n = 42; 36.5%) and tumors of the central nervous system (n = 17; 14.8%). In ovarian tissue of 25 patients (21.7%), MID was detected using RT-qPCR, FISH or multicolor flow cytometry: 16 of them (64%) being ALL (IgH rearrangements with/without TRG, BCL-ABL1, EA2-PBX1, TEL-AML1 fusion transcripts), 3 (12%) Ewing sarcoma (EWS-FLI1 fusion transcript, EWSR1 rearrangements), 3 (12%) CML (BCR-ABL1 fusion transcript, FLT3) and 3 (12%) AML (leukemia-associated immunophenotypes, BCR-ABL1 fusion transcript) patients. CONCLUSION While the majority of malignancies were found to have a low risk of containing malignant cells in ovarian tissue, further studies are needed to ensure safe implementation of future fertility restoration in clinical practice.
Collapse
Affiliation(s)
- Monika Grubliauskaite
- Center for Pediatric Oncology and Hematology, Vilnius University Hospital Santaros Klinikos, Santariskiu Str. 4, LT-08406 Vilnius, Lithuania
- Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
- Department of Biobank, National Cancer Institute, Santariskiu Str. 1, LT-08406 Vilnius, Lithuania
| | | | - Annelies M. E. Bos
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Department of Reproductive Medicine, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | | | - Zivile Gudleviciene
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21/27, LT-03101 Vilnius, Lithuania
| | - Marry M. van den Heuvel-Eibrink
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Division of Child Health, UMCU-Wilhelmina Children’s Hospital, 3584 EA Utrecht, The Netherlands
| | - Jelena Rascon
- Center for Pediatric Oncology and Hematology, Vilnius University Hospital Santaros Klinikos, Santariskiu Str. 4, LT-08406 Vilnius, Lithuania
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21/27, LT-03101 Vilnius, Lithuania
| |
Collapse
|
12
|
Xu L, Pierce JL, Sanchez A, Chen KS, Shukla AA, Fustino NJ, Stuart SH, Bagrodia A, Xiao X, Guo L, Krailo MD, Shaikh F, Billmire DF, Pashankar F, Bestrashniy J, Oosterhuis JW, Gillis AJM, Xie Y, Teot L, Mora J, Poynter JN, Rakheja D, Looijenga LHJ, Draper BW, Frazier AL, Amatruda JF. Integrated genomic analysis reveals aberrations in WNT signaling in germ cell tumors of childhood and adolescence. Nat Commun 2023; 14:2636. [PMID: 37149691 PMCID: PMC10164134 DOI: 10.1038/s41467-023-38378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 04/26/2023] [Indexed: 05/08/2023] Open
Abstract
Germ cell tumors (GCTs) are neoplasms of the testis, ovary and extragonadal sites that occur in infants, children, adolescents and adults. Post-pubertal (type II) malignant GCTs may present as seminoma, non-seminoma or mixed histologies. In contrast, pre-pubertal (type I) GCTs are limited to (benign) teratoma and (malignant) yolk sac tumor (YST). Epidemiologic and molecular data have shown that pre- and post-pubertal GCTs arise by distinct mechanisms. Dedicated studies of the genomic landscape of type I and II GCT in children and adolescents are lacking. Here we present an integrated genomic analysis of extracranial GCTs across the age spectrum from 0-24 years. Activation of the WNT pathway by somatic mutation, copy-number alteration, and differential promoter methylation is a prominent feature of GCTs in children, adolescents and young adults, and is associated with poor clinical outcomes. Significantly, we find that small molecule WNT inhibitors can suppress GCT cells both in vitro and in vivo. These results highlight the importance of WNT pathway signaling in GCTs across all ages and provide a foundation for future efforts to develop targeted therapies for these cancers.
Collapse
Affiliation(s)
- Lin Xu
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Population & Data Sciences, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Joshua L Pierce
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Angelica Sanchez
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kenneth S Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Abhay A Shukla
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nicholas J Fustino
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Blank Children's Hospital, Des Moines, IA, USA
| | - Sarai H Stuart
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aditya Bagrodia
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Urology, University of California San Diego, San Diego, CA, USA
| | - Xue Xiao
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Population & Data Sciences, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Population & Data Sciences, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mark D Krailo
- Department of Preventative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
- Children's Oncology Group, Monrovia, CA, USA
| | - Furqan Shaikh
- The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | | | - Farzana Pashankar
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | | | | | - Ad J M Gillis
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Yang Xie
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Population & Data Sciences, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lisa Teot
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Jaume Mora
- Sant Joan de Déu Barcelona Children's Hospital, Barcelona, Spain
| | - Jenny N Poynter
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Dinesh Rakheja
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Bruce W Draper
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA, USA
| | - A Lindsay Frazier
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - James F Amatruda
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA.
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, CA, USA.
- Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Cuevas-Estrada B, Montalvo-Casimiro M, Munguia-Garza P, Ríos-Rodríguez JA, González-Barrios R, Herrera LA. Breaking the Mold: Epigenetics and Genomics Approaches Addressing Novel Treatments and Chemoresponse in TGCT Patients. Int J Mol Sci 2023; 24:ijms24097873. [PMID: 37175579 PMCID: PMC10178517 DOI: 10.3390/ijms24097873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Testicular germ-cell tumors (TGCT) have been widely recognized for their outstanding survival rates, commonly attributed to their high sensitivity to cisplatin-based therapies. Despite this, a subset of patients develops cisplatin resistance, for whom additional therapeutic options are unsuccessful, and ~20% of them will die from disease progression at an early age. Several efforts have been made trying to find the molecular bases of cisplatin resistance. However, this phenomenon is still not fully understood, which has limited the development of efficient biomarkers and precision medicine approaches as an alternative that could improve the clinical outcomes of these patients. With the aim of providing an integrative landscape, we review the most recent genomic and epigenomic features attributed to chemoresponse in TGCT patients, highlighting how we can seek to combat cisplatin resistance through the same mechanisms by which TGCTs are particularly hypersensitive to therapy. In this regard, we explore ongoing treatment directions for resistant TGCT and novel targets to guide future clinical trials. Through our exploration of recent findings, we conclude that epidrugs are promising treatments that could help to restore cisplatin sensitivity in resistant tumors, shedding light on potential avenues for better prognosis for the benefit of the patients.
Collapse
Affiliation(s)
- Berenice Cuevas-Estrada
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
| | - Michel Montalvo-Casimiro
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
| | - Paulina Munguia-Garza
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
| | - Juan Alberto Ríos-Rodríguez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico
| |
Collapse
|
14
|
Li M, Hou Y, Zhang Z, Zhang B, Huang T, Sun A, Shao G, Lin Q. Structure, activity and function of the lysine methyltransferase SETD5. Front Endocrinol (Lausanne) 2023; 14:1089527. [PMID: 36875494 PMCID: PMC9982096 DOI: 10.3389/fendo.2023.1089527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
SET domain-containing 5 (SETD5) is an uncharacterized member of the protein lysine methyltransferase family and is best known for its transcription machinery by methylating histone H3 on lysine 36 (H3K36). These well-characterized functions of SETD5 are transcription regulation, euchromatin formation, and RNA elongation and splicing. SETD5 is frequently mutated and hyperactive in both human neurodevelopmental disorders and cancer, and could be down-regulated by degradation through the ubiquitin-proteasome pathway, but the biochemical mechanisms underlying such dysregulation are rarely understood. Herein, we provide an update on the particularities of SETD5 enzymatic activity and substrate specificity concerning its biological importance, as well as its molecular and cellular impact on normal physiology and disease, with potential therapeutic options.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qiong Lin
- *Correspondence: Genbao Shao, ; Qiong Lin,
| |
Collapse
|
15
|
Takami H, Ichimura K. Biomarkers for risk-based treatment modifications for CNS germ cell tumors: Updates on biological underpinnings, clinical trials, and future directions. Front Oncol 2022; 12:982608. [PMID: 36132131 PMCID: PMC9483213 DOI: 10.3389/fonc.2022.982608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/15/2022] [Indexed: 12/05/2022] Open
Abstract
CNS germ cell tumors (GCTs) preferentially occur in pediatric and adolescent patients. GCTs are located predominantly in the neurohypophysis and the pineal gland. Histopathologically, GCTs are broadly classified into germinomas and non-germinomatous GCTs (NGGCTs). In general, germinoma responds well to chemotherapy and radiation therapy, with a 10-year overall survival (OS) rate of approximately 90%. In contrast, NGGCTs have a less favorable prognosis, with a five-year OS of approximately 70%. Germinomas are typically treated with platinum-based chemotherapy and whole-ventricular radiation therapy, while mature teratomas can be surgically cured. Other NGGCTs require intensive chemotherapy with radiation therapy, including whole brain or craniospinal irradiation, depending on the dissemination status and protocols. Long-term treatment-related sequelae, including secondary neoplasms and cerebrovascular events, have been well recognized. These late effects have a tremendous impact in later life, especially since patients are mostly affected in childhood or young adults. Intending to minimize the treatment burden on patients, the identification of biomarkers for treatment stratification and evaluation of treatment response is of critical importance. Recently, tumor cell content in germinomas has been shown to be closely related to prognosis, suggesting that cases with low tumor cell content may be safely treated with a less intensive regimen. Among the copy number alterations, the 12p gain is the most prominent and has been shown to be a negative prognostic factor in NGGCTs. MicroRNA clusters (mir-371-373) were also revealed to be a hallmark of GCTs, demonstrating the potential for the application of liquid biopsy in the diagnosis and detection of recurrence. Recurrent mutations have been detected in the MAPK or PI3K pathways, most typically in KIT and MTOR and low genome-wide methylation has been demonstrated in germinoma; this most likely reflects the cell-of-origin primordial germ cells for this tumor type. These alterations can also be leveraged for liquid biopsies of cell-free DNA and may potentially be targeted for treatment in the future. Advancements in basic research will be translated into clinical practice and can directly impact patient management. Additional understanding of the biology and pathogenesis of GCTs will lead to the development of better-stratified clinical trials, ultimately resulting in improved treatment outcomes and a reduction in long-term treatment-related adverse effects.
Collapse
Affiliation(s)
- Hirokazu Takami
- Department of Neurosurgery, The University of Tokyo Hospital, Tokyo, Japan
- *Correspondence: Hirokazu Takami,
| | - Koichi Ichimura
- Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Mego M, Svetlovska D, Angelis V D, Kalavska K, Lesko P, Makovník M, Obertova J, Orszaghova Z, Palacka P, Rečková M, Rejlekova K, Z SM, Mardiak J, Chovanec M. Phase II study of Disulfiram and Cisplatin in Refractory Germ Cell Tumors. The GCT-SK-006 phase II trial. Invest New Drugs 2022; 40:1080-1086. [PMID: 35763178 DOI: 10.1007/s10637-022-01271-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Multiple relapsed/refractory germ cell tumor (GCT) patients have extremely poor prognosis. Cisplatin resistant testicular GCTs overexpress aldehyde-dehydrogenase (ALDH) isoforms and inhibition of ALDH activity by disulfiram is associated with reconstitution of cisplatin sensitivity in vitro as well as in animal model. This study aimed to determine the efficacy and toxicity of ALDH inhibitor disulfiram in combination with cisplatin in patients with multiple relapsed/refractory GCTs. METHODS Disulfiram was administered at a dose of 400 mg daily until progression or unacceptable toxicity, cisplatin was administered at dose 50 mg/m2 day 1 and 2, every 3 weeks. Twelve evaluable patients had to be enrolled into the first cohort, and if 0 of 12 patients had treatment response, the study was to be terminated. The results of the first stage of the trial are presented in this report. RESULTS Twelve patients with multiple relapsed/refractory GCTs were enrolled in the phase II study from May 2019 to September 2021. Median number of treatment cycles was 2 (range 1-6). None of patients achieved objective response to treatment, therefore the study was terminated in first stage. Median progression-free survival was 1.4 months, 95% CI (0.7-1.5 months), and median overall survival was 2.9 months 95% CI (1.5-4.7 months). Disease stabilization for at least 3 months was observed in 2 (16.7%) patients. Treatment was well tolerated, however, 5 (41.7%) of patients experienced grade 3/4 fatigue, 4 (33.3%) thrombocytopenia, 3 (25.0%) anemia, while 2 (16.7%) experienced neutropenia, nausea and infection. CONCLUSIONS This study failed to achieve its primary endpoint and our data suggest limited efficacy of disulfiram in restoring sensitivity to cisplatin in multiple relapsed/refractory GCTs.
Collapse
Affiliation(s)
- M Mego
- Translational Research Unit, Faculty of Medicine, Comenius University, National Cancer Institute, Bratislava, Slovakia. .,2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10, Bratislava, Slovakia. .,National Cancer Institute, Bratislava, Slovakia.
| | - D Svetlovska
- Translational Research Unit, Faculty of Medicine, Comenius University, National Cancer Institute, Bratislava, Slovakia.,National Cancer Institute, Bratislava, Slovakia
| | | | - K Kalavska
- Translational Research Unit, Faculty of Medicine, Comenius University, National Cancer Institute, Bratislava, Slovakia.,National Cancer Institute, Bratislava, Slovakia
| | - P Lesko
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10, Bratislava, Slovakia
| | - M Makovník
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10, Bratislava, Slovakia
| | - J Obertova
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10, Bratislava, Slovakia.,National Cancer Institute, Bratislava, Slovakia
| | - Z Orszaghova
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10, Bratislava, Slovakia
| | - P Palacka
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10, Bratislava, Slovakia.,National Cancer Institute, Bratislava, Slovakia
| | - M Rečková
- National Cancer Institute, Bratislava, Slovakia
| | - K Rejlekova
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10, Bratislava, Slovakia.,National Cancer Institute, Bratislava, Slovakia
| | | | - J Mardiak
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10, Bratislava, Slovakia.,National Cancer Institute, Bratislava, Slovakia
| | - M Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10, Bratislava, Slovakia.,National Cancer Institute, Bratislava, Slovakia
| |
Collapse
|