1
|
Gorodezki D, Chiang J, Viaene AN, Sievers P, Schmid S, Holzer U, Paulsen F, Schuhmann MU, Witt O, Schittenhelm J, Ebinger M. A multi-institutional series of a novel, recurrent TRIM24::MET fusion-driven infant-type hemispheric glioma reveals significant clinico-pathological heterogeneity. Acta Neuropathol Commun 2024; 12:101. [PMID: 38902810 PMCID: PMC11191198 DOI: 10.1186/s40478-024-01817-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
Within the past decade, incremental integration of molecular characteristics into the classification of central nervous system neoplasms increasingly facilitated precise diagnosis and advanced stratification, beyond potentially providing the foundation for advanced targeted therapies. We report a series of three cases of infant-type hemispheric glioma (IHG) involving three infants diagnosed with neuroepithelial tumors of the cerebral hemispheres harboring a novel, recurrent TRIM24::MET fusion. Histopathology showed glial tumors with either low-grade or high-grade characteristics, while molecular characterization found an additional homozygous CDKN2A/B deletion in two cases. Two patients showed leptomeningeal dissemination, while multiple supra- and infratentorial tumor manifestations were found in one case. Following subtotal resection (two cases) and biopsy (one case), treatment intensity of adjuvant chemotherapy regimens did not reflect in the progression patterns within the reported cases. Two patients showed progression after first-line treatment, of which one patient died not responding to tyrosine kinase inhibitor cabozantinib. As the detection of a recurrent TRIM24::MET fusion expands the spectrum of renowned driving fusion genes in IHG, this comparative illustration may indicate a distinct clinico-pathological heterogeneity of tumors bearing this driver alteration. Upfront clinical trials of IHG promoting further characterization and the implementation of individualized therapies involving receptor tyrosine kinase inhibition are required.
Collapse
Affiliation(s)
- David Gorodezki
- Department of Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany.
| | - Jason Chiang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Angela N Viaene
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Philipp Sievers
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Simone Schmid
- Department of Neuropathology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ursula Holzer
- Department of Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Frank Paulsen
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Martin U Schuhmann
- Section of Pediatric Neurosurgery, Department of Neurosurgery, University Hospital Tübingen, Tübingen, Germany
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology, University Hospital Tübingen, Tübingen, Germany
| | - Martin Ebinger
- Department of Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Chapman N, Greenwald J, Suddock J, Xu D, Markowitz A, Humphrey M, Cotter JA, Krieger MD, Hawes D, Ji J. Clinical, pathologic, and genomic characteristics of two pediatric glioneuronal tumors with a CLIP2::MET fusion. Acta Neuropathol Commun 2024; 12:63. [PMID: 38650040 PMCID: PMC11036580 DOI: 10.1186/s40478-024-01776-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/07/2024] [Indexed: 04/25/2024] Open
Abstract
Integration of molecular data with histologic, radiologic, and clinical features is imperative for accurate diagnosis of pediatric central nervous system (CNS) tumors. Whole transcriptome RNA sequencing (RNAseq), a genome-wide and non-targeted approach, allows for the detection of novel or rare oncogenic fusion events that contribute to the tumorigenesis of a substantial portion of pediatric low- and high-grade glial and glioneuronal tumors. We present two cases of pediatric glioneuronal tumors occurring in the occipital region with a CLIP2::MET fusion detected by RNAseq. Chromosomal microarray studies revealed copy number alterations involving chromosomes 1, 7, and 22 in both tumors, with Case 2 having an interstitial deletion breakpoint in the CLIP2 gene. By methylation profiling, neither tumor had a match result, but both clustered with the low-grade glial/glioneuronal tumors in the UMAP. Histologically, in both instances, our cases displayed characteristics of a low-grade tumor, notably the absence of mitotic activity, low Ki-67 labeling index and the lack of necrosis and microvascular proliferation. Glial and neuronal markers were positive for both tumors. Clinically, both patients achieved clinical stability post-tumor resection and remain under regular surveillance imaging without adjuvant therapy at the last follow-up, 6 months and 3 years, respectively. This is the first case report demonstrating the presence of a CLIP2::MET fusion in two pediatric low-grade glioneuronal tumors (GNT). Conservative clinical management may be considered for patients with GNT and CLIP2:MET fusion in the context of histologically low-grade features.
Collapse
Affiliation(s)
- Nicholas Chapman
- Division of Neurosurgery, Neurological Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Joshua Greenwald
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jolee Suddock
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dong Xu
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Alexander Markowitz
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Maeve Humphrey
- Division of Neurosurgery, Neurological Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Jennifer A Cotter
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mark D Krieger
- Division of Neurosurgery, Neurological Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Debra Hawes
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jianling Ji
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA.
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Yuan P, Xue X, Qiu T, Ying J. MET alterations detection platforms and clinical implications in solid tumors: a comprehensive review of literature. Ther Adv Med Oncol 2024; 16:17588359231221910. [PMID: 38249331 PMCID: PMC10798113 DOI: 10.1177/17588359231221910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/04/2023] [Indexed: 01/23/2024] Open
Abstract
MET alterations, including MET exon 14 skipping variants, MET amplification, MET overexpression, and MET fusion, play pivotal roles in primary tumorigenesis and acquired resistance to targeted therapies, especially EGFR tyrosine kinase inhibitors. They represent important diagnostic, prognostic, and predictive biomarkers in many solid tumor types. However, the detection of MET alterations is challenging due to the complexity of MET alterations and the diversity of platform technologies. Therefore, techniques with high sensitivity, specificity, and reliable molecular detection accuracy are needed to overcome such hindrances and aid in biomarker-guided therapies. The current review emphasizes the role of MET alterations as oncogenic drivers in a variety of cancers and their involvement in the development of resistance to targeted therapies. Moreover, our review provides an overview of and recommendations on the selection of various cross-platform technologies for the detection of MET exon 14 skipping variants, MET amplification, MET overexpression, and MET fusion. Furthermore, challenges and hurdles underlying these common detection platforms are discussed.
Collapse
Affiliation(s)
- Pei Yuan
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuemin Xue
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian Qiu
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianming Ying
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| |
Collapse
|
4
|
Yoon JY, Jiang W, Orr CR, Rushton C, Gargano S, Song SJ, Modi M, Hozack B, Abraham J, Mallick AB, Brooks JSJ, Rosenbaum JN, Zhang PJ. TERT gene rearrangement in chordomas and comparison to other TERT-rearranged solid tumors. Cancer Genet 2021; 258-259:74-79. [PMID: 34583232 DOI: 10.1016/j.cancergen.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/25/2021] [Accepted: 09/16/2021] [Indexed: 11/27/2022]
Abstract
Chordomas are rare, slow-growing neoplasms thought to arise from the foetal notochord remnant. A limited number of studies that examined the mutational profiles in chordomas identified potential driver mutations, including duplication in the TBXT gene (encoding brachyury), mutations in the PI3K/AKT signaling pathway, and loss of the CDKN2A gene. Most chordomas remain without clear driver mutations, and no fusion genes have been identified thus far. We discovered a novel TERT in-frame fusion involving RPH3AL (exon 5) and TERT (exon 2) in the index chordoma case. We screened a discovery cohort of 18 additional chordoma cases for TERT gene rearrangement by FISH, in which TERT rearrangement was identified in one additional case. In our independent, validation cohort of 36 chordomas, no TERT rearrangement was observed by FISH. Immunohistochemistry optimized for nuclear TERT expression showed at least focal TERT expression in 40/55 (72.7%) chordomas. Selected cases underwent molecular genetic profiling, which showed low tumor mutational burdens (TMBs) without obvious driver oncogenic mutations. We next examined a cohort of 1,913 solid tumor patients for TERT rearrangements, and TERT fusions involving exon 2 were observed in 7/1,913 (0.4%) cases. The seven tumors comprised five glial tumors, and two poorly differentiated carcinomas. In contrast to chordomas, the other TERT-rearranged tumors were notable for higher TMBs, frequent TP53 mutations (6/7) and presence of other driver oncogenic mutations, including a concurrent fusion (TRIM24-MET). In conclusion, TERT gene rearrangements are seen in a small subset (2/55, 3.6%) of chordomas. In contrast to other TERT-rearranged tumors, where the TERT rearrangements are likely passenger events, the possibility that TERT protein overexpression representing a key event in chordoma tumorigenesis is left open.
Collapse
Affiliation(s)
- Ju-Yoon Yoon
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States; Department of Laboratory Medicine, St. Michael's Hospital/Unity Health Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| | - Wei Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States
| | - Christopher R Orr
- Center for Personalized Diagnostics, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Chase Rushton
- Center for Personalized Diagnostics, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Stacey Gargano
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States
| | - Sharon J Song
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Mitul Modi
- Department of Pathology, Pennsylvania Hospital, Philadelphia, Pennsylvania, United States
| | - Bryan Hozack
- Rothman Orthopedic Institute, Philadelphia, Pennsylvania, United States
| | - John Abraham
- Rothman Orthopedic Institute, Philadelphia, Pennsylvania, United States; Division of Sarcoma and Bone Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States
| | - Atrayee Basu Mallick
- Department of Medical Oncology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, United States
| | - John S J Brooks
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States; Department of Pathology, Pennsylvania Hospital, Philadelphia, Pennsylvania, United States
| | - Jason N Rosenbaum
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States; Center for Personalized Diagnostics, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Paul J Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.
| |
Collapse
|