1
|
Tanaka M, Sokabe M, Nakanishi K, Asai M. Effects of nestorone, a progesterone receptor agonist, on neonatal hypoxic-ischemic brain injury and reproductive functions in male and female rats. Neuropharmacology 2025; 271:110411. [PMID: 40081795 DOI: 10.1016/j.neuropharm.2025.110411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/23/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Perinatal hypoxic-ischemic encephalopathy (HIE) is one of the leading causes of neonatal death and neurological disorders. We recently demonstrated the neuroprotective effects of nestorone, a progesterone receptor agonist, in adult male rats subjected to focal cerebral ischemia; however, its effects on neonatal ischemic brain injury and on sexual differentiation and reproductive functions remain unclear. Therefore, the present study investigated the effects of nestorone on neonatal hypoxic-ischemic brain injury and reproductive functions in rats of both sexes. Seven-day-old male and female rat pups were subjected to occlusion of the right carotid artery and then exposed to 8 % oxygen (hypoxic-ischemia, HI). Brain lesion sizes and the numbers of activated astrocytes and microglia in male and female rats were significantly lower after administrating 10 μg/kg nestorone than vehicle 48 h after HI. Furthermore, the post-HI administration of nestorone for 7 days (10 μg/kg, once a day) significantly improved motor coordination and tactile responses 28 days after HI and cognitive performance 4 months after HI in male and female rats. The administration of nestorone did not affect the delivery rates or number of weaned pups in HI and sham-operated female rats or in intact female rats mated with HI or sham-operated males. These results suggest that nestorone exerts persistent neuroprotective effects against neonatal HI brain injury without serious adverse effects on reproductive functions in male and female rats. Therefore, nestorone is a promising potent and safe therapeutic agent in newborn infants with HIE of both sexes.
Collapse
Affiliation(s)
- Motoki Tanaka
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kagiya-cho, Kasugai, 480-0392, Japan.
| | - Masahiro Sokabe
- Human Information Systems Laboratory, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan, Ishikawa, 924-0838, Japan
| | - Keiko Nakanishi
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kagiya-cho, Kasugai, 480-0392, Japan; Department of Pediatrics, Central Hospital, Aichi Developmental Disability Center, 713-8 Kagiya-cho, Kasugai, 480-0392, Japan
| | - Masato Asai
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kagiya-cho, Kasugai, 480-0392, Japan
| |
Collapse
|
2
|
Kwon H, Kim SM, Kim JS, Kim YJ, Kim WY. Advanced age and neurological recovery in elderly patients with out-of-hospital cardiac arrest treated with targeted temperature management: a nationwide population‑based registry study 2016-2020. Intern Emerg Med 2025; 20:281-289. [PMID: 38847959 DOI: 10.1007/s11739-024-03662-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 05/27/2024] [Indexed: 02/06/2025]
Abstract
The likelihood of neurological recovery after out-of-hospital cardiac arrest (OHCA) may be influenced by advanced age. This study aims to evaluate the impact of advanced age on neurological recovery in elderly OHCA survivors treated with targeted temperature management (TTM). This retrospective observational study, using a nationwide population-based OHCA registry, was conducted from January 2016 to December 2020. Non-traumatic elderly (≥ 65 years) comatose OHCA survivors treated with TTM were categorized according to age (65-69, 70-74, 75-79, and ≥ 80 years). Among 23,336 admitted OHCA patients, 3,398 were treated with TTM. Excluding 2,033 non-elderly patients, 1,365 were analyzed. Among the four groups, the rate of good neurological outcomes decreased by advanced age (24.2%, 16.1%, 11.4%, and 5.9%, respectively), which was also observed after subgroup analysis based on the initial shockable (40.6%, 31.5%, 28.6%, and 14.9%, respectively) and non-shockable rhythm (10.6%, 7.2%, 4.1%, and 3.4%, respectively). Multivariate analysis showed the adjusted odds ratio (aOR) for good neurological outcome decreased as age increased (65-69: reference, 70-74: aOR 0.70, 75-79: aOR 0.49, and ≥ 80 years: aOR 0.25). The optimal age cutoffs for good outcomes in elderly OHCA survivors with shockable and non-shockable rhythm were 77 and 72 years, respectively. The neurologic recovery rate in OHCA survivors treated with TTM gradually decreased with increasing age. However, even patients aged ≥ 80 years with shockable rhythm had a good neurologic outcome of 14.9% compared with patients aged 65-69 years with non-shockable rhythm (10.6%).
Collapse
Affiliation(s)
- Hyojeong Kwon
- Department of Emergency Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Sang-Min Kim
- Department of Emergency Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - June-Sung Kim
- Department of Emergency Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Youn-Jung Kim
- Department of Emergency Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Won Young Kim
- Department of Emergency Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
3
|
Leavy A, Phelan J, Jimenez-Mateos EM. Contribution of microglia to the epileptiform activity that results from neonatal hypoxia. Neuropharmacology 2024; 253:109968. [PMID: 38692453 DOI: 10.1016/j.neuropharm.2024.109968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Microglia are described as the immune cells of the brain, their immune properties have been extensively studied since first described, however, their neural functions have only been explored over the last decade. Microglia have an important role in maintaining homeostasis in the central nervous system by surveying their surroundings to detect pathogens or damage cells. While these are the classical functions described for microglia, more recently their neural functions have been defined; they are critical to the maturation of neurons during embryonic and postnatal development, phagocytic microglia remove excess synapses during development, a process called synaptic pruning, which is important to overall neural maturation. Furthermore, microglia can respond to neuronal activity and, together with astrocytes, can regulate neural activity, contributing to the equilibrium between excitation and inhibition through a feedback loop. Hypoxia at birth is a serious neurological condition that disrupts normal brain function resulting in seizures and epilepsy later in life. Evidence has shown that microglia may contribute to this hyperexcitability after neonatal hypoxia. This review will summarize the existing data on the role of microglia in the pathogenesis of neonatal hypoxia and the plausible mechanisms that contribute to the development of hyperexcitability after hypoxia in neonates. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Aisling Leavy
- Discipline of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Jessie Phelan
- Discipline of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Eva M Jimenez-Mateos
- Discipline of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Florance I, Ramasubbu S. Regulation of genes involved in the metabolic adaptation of murine microglial cells in response to elevated HIF-1α mediated activation. Immunogenetics 2024; 76:93-108. [PMID: 38326657 DOI: 10.1007/s00251-024-01334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
Microglia cells are activated in response to different stress signals. Several metabolic adaptations underlie microglia activation in the brain. Among these, in conditions like ischemic stroke and, hypoxic stress stimuli activate microglia cells. Hypoxic stress is mediated by HIF-1α. Although HIF-1α has been implicated in the alteration of metabolic pathways, changes in microglia lipid metabolism during M1 activation of microglia induced by elevated HIF-1α levels are yet to be understood. This can also merit interest in the development of novel targets to mitigate chronic inflammation. Our study aims to elucidate the transcriptional regulation of metabolic pathways in microglia cells during HIF-1α mediated activation. To study the adaptations in the metabolic pathways we induced microglia activation, by activating HIF-1α. Here, we show that microglia cells activated in response to elevated HIF-1α require ongoing lipogenesis and fatty acid breakdown. Notably, autophagy is activated during the initial stages of microglia activation. Inhibition of autophagy in activated microglia affects their viability and phagocytic activity. Collectively, our study expands the understanding of the molecular link between autophagy, lipid metabolism, and inflammation during HIF-1α mediated microglial activation that can lead to the development of promising strategies for controlling maladaptive activation states of microglia responsible for neuroinflammation. Together, our findings suggest that the role of HIF-1α in regulating metabolic pathways during hypoxia in microglia is beyond optimization of glucose utilization and distinctly regulates lipid metabolism during pro-inflammatory activation.
Collapse
Affiliation(s)
- Ida Florance
- Center for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Seenivasan Ramasubbu
- Center for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
5
|
Nakajima S, Matsuyama T, Okada N, Kandori K, Okada A, Okada Y, Kitamura T, Ohta B. Targeted temperature management on outcome of older adult patients after out-of-hospital cardiac arrest. Am J Emerg Med 2023; 66:61-66. [PMID: 36706483 DOI: 10.1016/j.ajem.2023.01.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/27/2022] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Targeted temperature management (TTM) can potentially improve the prognosis of patients with out-of-hospital cardiac arrest (OHCA). However, the effectiveness of TTM in older adults remains unknown. Therefore, this study aimed to assess the outcomes of older adult patients with OHCA who underwent TTM. METHODS This study was a multicenter, retrospective, nationwide observational analysis of the Japanese Association for Acute Medicine out-of-hospital cardiac arrest (JAAM-OHCA) registry. We included patients aged ≥18 years who had experienced OHCA and underwent TTM from June 1, 2014, to December 31, 2017, in Japan. The primary outcome was a 1-month neurological favorable outcome, and the secondary outcome was 1-month survival. RESULTS A total of 1847 patients were included in the analysis. 79 of 389 patients aged ≥75 years (20.3%) had a 1-month neurological favorable outcome compared with 369 of 959 patients aged 18-64 years (38.5%) (adjusted odds ratios, 0.31; 95% confidence interval [CI], 0.21-0.45; P for trend <0.001). With increasing age, 1-month mortality showed an increasing trend; however, there was no significant difference. CONCLUSION In this retrospective nationwide observational study in Japan, neurological outcomes worsened as age increased in patients with OHCA who underwent TTM.
Collapse
Affiliation(s)
- Satoshi Nakajima
- Department of Emergency Medicine, Kyoto Prefectural University of Medicine, Kaji-cho 465, Kamigyo-ku, Kyoto 6028566, Japan
| | - Tasuku Matsuyama
- Department of Emergency Medicine, Kyoto Prefectural University of Medicine, Kaji-cho 465, Kamigyo-ku, Kyoto 6028566, Japan.
| | - Nobunaga Okada
- Department of Emergency and Critical Care Medicine, Japanese Red Cross Kyoto Daiichi Hospital, Honmachi 15-749, Higashiyama-ku, Kyoto 6050981, Japan
| | - Kenji Kandori
- Department of Emergency and Critical Care Medicine, Japanese Red Cross Society, Kyoto Daini Hospital, Haruobi-cho 355-5, Kamigyo-ku, Kyoto 6020826, Japan
| | - Asami Okada
- Department of Emergency and Critical Care Medicine, Japanese Red Cross Society, Kyoto Daini Hospital, Haruobi-cho 355-5, Kamigyo-ku, Kyoto 6020826, Japan
| | - Yohei Okada
- Health Services and Systems Research, Duke-NUS Medical School, National University of Singapore, 8 College Road, Singapore 169857, Singapore
| | - Tetsuhisa Kitamura
- Division of Environmental Medicine and Population Sciences, Department of Social and Environmental Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 5650871, Japan
| | - Bon Ohta
- Department of Emergency Medicine, Kyoto Prefectural University of Medicine, Kaji-cho 465, Kamigyo-ku, Kyoto 6028566, Japan
| |
Collapse
|
6
|
Teo EJ, Chand KK, Miller SM, Wixey JA, Colditz PB, Bjorkman ST. Early evolution of glial morphology and inflammatory cytokines following hypoxic-ischemic injury in the newborn piglet brain. Sci Rep 2023; 13:282. [PMID: 36609414 PMCID: PMC9823001 DOI: 10.1038/s41598-022-27034-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/23/2022] [Indexed: 01/09/2023] Open
Abstract
Neuroinflammation is a hallmark of hypoxic-ischemic injury and can be characterized by the activation of glial cells and the expression of inflammatory cytokines and chemokines. Interleukin (IL)-1β and tumor necrosis factor (TNF)α are among the best-characterized early response cytokines and are often expressed concurrently. Several types of central nervous system cells secrete IL-1β and TNFα, including microglia, astrocytes, and neurons, and these cytokines convey potent pro-inflammatory actions. Chemokines also play a central role in neuroinflammation by controlling inflammatory cell trafficking. Our aim was to characterise the evolution of early neuroinflammation in the neonatal piglet model of hypoxic-ischemic encephalopathy (HIE). Piglets (< 24 h old) were exposed to HI insult, and recovered to 2, 4, 8, 12 or 24H post-insult. Brain tissue from the frontal cortex and basal ganglia was harvested for assessment of glial cell activation profiles and transcription levels of inflammatory markers in HI piglets with comparison to a control group of newborn piglets. Fluorescence microscopy was used to observe microglia, astrocytes, neurons, degenerating neurons and possibly apoptotic cells, and quantitative polymerase chain reaction was used to measure gene expression of several cytokines and chemokines. HI injury was associated with microglial activation and morphological changes to astrocytes at all time points examined. Gene expression analyses of inflammation-related markers revealed significantly higher expression of pro-inflammatory cytokines tumor necrosis factor-α (TNFα) and interleukin 1 beta (IL-1β), chemokines cxc-chemokine motif ligand (CXCL)8 and CXCL10, and anti-inflammatory cytokine transforming growth factor (TGF)β in every HI group, with some region-specific differences noted. No significant difference was observed in the level of C-X-C chemokine receptor (CCR)5 over time. This high degree of neuroinflammation was associated with a reduction in the number of neurons in piglets at 12H and 24H in the frontal cortex, and the putamen at 12H. This reduction of neurons was not associated with increased numbers of degenerating neurons or potentially apoptotic cells. HI injury triggered a robust early neuroinflammatory response associated with a reduction in neurons in cortical and subcortical regions in our piglet model of HIE. This neuroinflammatory response may be targeted using novel therapeutics to reduce neuropathology in our piglet model of neonatal HIE.
Collapse
Affiliation(s)
- Elliot J. Teo
- grid.1003.20000 0000 9320 7537Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane City, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| | - Kirat. K. Chand
- grid.1003.20000 0000 9320 7537Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane City, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| | - Stephanie M. Miller
- grid.1003.20000 0000 9320 7537Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane City, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| | - Julie A. Wixey
- grid.1003.20000 0000 9320 7537Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane City, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| | - Paul B. Colditz
- grid.1003.20000 0000 9320 7537Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane City, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| | - S. Tracey. Bjorkman
- grid.1003.20000 0000 9320 7537Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane City, QLD 4029 Australia ,grid.416100.20000 0001 0688 4634Perinatal Research Centre, Royal Brisbane and Women’s Hospital, Herston, QLD Australia
| |
Collapse
|
7
|
Brégère C, Schwendele B, Radanovic B, Guzman R. Microglia and Stem-Cell Mediated Neuroprotection after Neonatal Hypoxia-Ischemia. Stem Cell Rev Rep 2022; 18:474-522. [PMID: 34382141 PMCID: PMC8930888 DOI: 10.1007/s12015-021-10213-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2021] [Indexed: 12/14/2022]
Abstract
Neonatal hypoxia-ischemia encephalopathy (HIE) refers to a brain injury in term infants that can lead to death or lifelong neurological deficits such as cerebral palsy (CP). The pathogenesis of this disease involves multiple cellular and molecular events, notably a neuroinflammatory response driven partly by microglia, the brain resident macrophages. Treatment options are currently very limited, but stem cell (SC) therapy holds promise, as beneficial outcomes are reported in animal studies and to a lesser degree in human trials. Among putative mechanisms of action, immunomodulation is considered a major contributor to SC associated benefits. The goal of this review is to examine whether microglia is a cellular target of SC-mediated immunomodulation and whether the recruitment of microglia is linked to brain repair. We will first provide an overview on microglial activation in the rodent model of neonatal HI, and highlight its sensitivity to developmental age. Two complementary questions are then addressed: (i) do immune-related treatments impact microglia and provide neuroprotection, (ii) does stem cell treatment modulates microglia? Finally, the immune-related findings in patients enrolled in SC based clinical trials are discussed. Our review points to an impact of SCs on the microglial phenotype, but heterogeneity in experimental designs and methodological limitations hamper our understanding of a potential contribution of microglia to SC associated benefits. Thorough analyses of the microglial phenotype are warranted to better address the relevance of the neuroimmune crosstalk in brain repair and improve or advance the development of SC protocols in humans.
Collapse
Affiliation(s)
- Catherine Brégère
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
| | - Bernd Schwendele
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
| | - Boris Radanovic
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
| | - Raphael Guzman
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
8
|
Rayasam A, Fukuzaki Y, Vexler ZS. Microglia-leucocyte axis in cerebral ischaemia and inflammation in the developing brain. Acta Physiol (Oxf) 2021; 233:e13674. [PMID: 33991400 DOI: 10.1111/apha.13674] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022]
Abstract
Development of the Central Nervous System (CNS) is reliant on the proper function of numerous intricately orchestrated mechanisms that mature independently, including constant communication between the CNS and the peripheral immune system. This review summarizes experimental knowledge of how cerebral ischaemia in infants and children alters physiological communication between leucocytes, brain immune cells, microglia and the neurovascular unit (NVU)-the "microglia-leucocyte axis"-and contributes to acute and long-term brain injury. We outline physiological development of CNS barriers in relation to microglial and leucocyte maturation and the plethora of mechanisms by which microglia and peripheral leucocytes communicate during postnatal period, including receptor-mediated and intracellular inflammatory signalling, lipids, soluble factors and extracellular vesicles. We focus on the "microglia-leucocyte axis" in rodent models of most common ischaemic brain diseases in the at-term infants, hypoxic-ischaemic encephalopathy (HIE) and focal arterial stroke and discuss commonalities and distinctions of immune-neurovascular mechanisms in neonatal and childhood stroke compared to stroke in adults. Given that hypoxic and ischaemic brain damage involve Toll-like receptor (TLR) activation, we discuss the modulatory role of viral and bacterial TLR2/3/4-mediated infection in HIE, perinatal and childhood stroke. Furthermore, we provide perspective of the dynamics and contribution of the axis in cerebral ischaemia depending on the CNS maturational stage at the time of insult, and modulation independently and in consort by individual axis components and in a sex dependent ways. Improved understanding on how to modify crosstalk between microglia and leucocytes will aid in developing age-appropriate therapies for infants and children who suffered cerebral ischaemia.
Collapse
Affiliation(s)
- Aditya Rayasam
- Department of Neurology University of California San Francisco San Francisco CA USA
| | - Yumi Fukuzaki
- Department of Neurology University of California San Francisco San Francisco CA USA
| | - Zinaida S. Vexler
- Department of Neurology University of California San Francisco San Francisco CA USA
| |
Collapse
|
9
|
Fajardo‐Fregoso BF, Castañeda‐Cabral JL, Beas‐Zárate C, Ureña‐Guerrero ME. Neonatal excitotoxicity modifies blood‐brain barrier properties increasing its susceptibility to hypertonic shock in adulthood. Int J Dev Neurosci 2020; 80:335-346. [DOI: 10.1002/jdn.10027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/29/2020] [Accepted: 03/16/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Blanca Fabiola Fajardo‐Fregoso
- Departamento de Biología Celular y Molecular Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA) Universidad de Guadalajara Zapopan Jalisco México
| | - Jose Luis Castañeda‐Cabral
- Departamento de Biología Celular y Molecular Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA) Universidad de Guadalajara Zapopan Jalisco México
| | - Carlos Beas‐Zárate
- Departamento de Biología Celular y Molecular Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA) Universidad de Guadalajara Zapopan Jalisco México
| | - Mónica E. Ureña‐Guerrero
- Departamento de Biología Celular y Molecular Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA) Universidad de Guadalajara Zapopan Jalisco México
| |
Collapse
|
10
|
Niño DF, Zhou Q, Yamaguchi Y, Martin LY, Wang S, Fulton WB, Jia H, Lu P, Prindle T, Zhang F, Crawford J, Hou Z, Mori S, Chen LL, Guajardo A, Fatemi A, Pletnikov M, Kannan RM, Kannan S, Sodhi CP, Hackam DJ. Cognitive impairments induced by necrotizing enterocolitis can be prevented by inhibiting microglial activation in mouse brain. Sci Transl Med 2019; 10:10/471/eaan0237. [PMID: 30541786 DOI: 10.1126/scitranslmed.aan0237] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/21/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022]
Abstract
Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease of the premature infant. One of the most important long-term complications observed in children who survive NEC early in life is the development of profound neurological impairments. However, the pathways leading to NEC-associated neurological impairments remain unknown, thus limiting the development of prevention strategies. We have recently shown that NEC development is dependent on the expression of the lipopolysaccharide receptor Toll-like receptor 4 (TLR4) on the intestinal epithelium, whose activation by bacteria in the newborn gut leads to mucosal inflammation. Here, we hypothesized that damage-induced production of TLR4 endogenous ligands in the intestine might lead to activation of microglial cells in the brain and promote cognitive impairments. We identified a gut-brain signaling axis in an NEC mouse model in which activation of intestinal TLR4 signaling led to release of high-mobility group box 1 in the intestine that, in turn, promoted microglial activation in the brain and neurological dysfunction. We further demonstrated that an orally administered dendrimer-based nanotherapeutic approach to targeting activated microglia could prevent NEC-associated neurological dysfunction in neonatal mice. These findings shed light on the molecular pathways leading to the development of NEC-associated brain injury, provide a rationale for early removal of diseased intestine in NEC, and indicate the potential of targeted therapies that protect the developing brain in the treatment of NEC in early childhood.
Collapse
Affiliation(s)
- Diego F Niño
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA.,Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Qinjie Zhou
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA.,Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Yukihiro Yamaguchi
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA.,Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Laura Y Martin
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA.,Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Sanxia Wang
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA.,Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - William B Fulton
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA.,Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Hongpeng Jia
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA.,Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Peng Lu
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA.,Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Thomas Prindle
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA.,Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Fan Zhang
- Program of Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Joshua Crawford
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Zhipeng Hou
- Department of Biomedical Engineering and The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Susumu Mori
- Department of Biomedical Engineering and The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Liam L Chen
- Division of Neuropathology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Andrew Guajardo
- Division of Neuropathology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ali Fatemi
- Departments of Neurology and Pediatrics, Kennedy Krieger Institute and Johns Hopkins University School of Medicine, MD 21205, USA
| | - Mikhail Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.,Department of Molecular and Comparative Pathobiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University and Johns Hopkins Children's Center, Johns Hopkins Hospital, Baltimore, MD 21205, USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chhinder P Sodhi
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA. .,Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - David J Hackam
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA. .,Division of General Pediatric Surgery, Johns Hopkins University and Johns Hopkins Children's Center, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| |
Collapse
|
11
|
Repurposing azithromycin for neonatal neuroprotection. Pediatr Res 2019; 86:444-451. [PMID: 31100754 PMCID: PMC6764891 DOI: 10.1038/s41390-019-0408-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Inflammation contributes to neonatal hypoxic-ischemic brain injury pathogenesis. We evaluated the neuroprotective efficacy of azithromycin, a safe, widely available antibiotic with anti-inflammatory properties, in a neonatal rodent hypoxic-ischemic brain injury model. METHODS Seven-day-old rats underwent right carotid artery ligation followed by 90-min 8% oxygen exposure; this procedure elicits quantifiable left forepaw functional impairment and right cerebral hemisphere damage. Sensorimotor function (vibrissae-stimulated forepaw placing, grip strength) and brain damage were compared in azithromycin- and saline-treated littermates 2-4 weeks later. Multiple treatment protocols were evaluated (variables included doses ranging from 15 to 45 mg/kg; treatment onset 15 min to 4 h post-hypoxia, and comparison of 1 vs. 3 injections). RESULTS All azithromycin doses improved function and reduced brain damage; efficacy was dose dependent, and declined with increasing treatment delay. Three azithromycin injections, administered over 48 h, improved performance on both function measures and reduced brain damage more than a single dose. CONCLUSION In this neonatal rodent model, azithromycin improved functional and neuropathology outcomes. If supported by confirmatory studies in complementary neonatal brain injury models, azithromycin could be an attractive candidate drug for repurposing and evaluation for neonatal neuroprotection in clinical trials.
Collapse
|
12
|
Brandenburg JE, Fogarty MJ, Sieck GC. A Critical Evaluation of Current Concepts in Cerebral Palsy. Physiology (Bethesda) 2019; 34:216-229. [PMID: 30968751 PMCID: PMC7938766 DOI: 10.1152/physiol.00054.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/11/2019] [Accepted: 01/23/2019] [Indexed: 11/22/2022] Open
Abstract
Spastic cerebral palsy (CP), despite the name, is not consistently identifiable by specific brain lesions. CP animal models focus on risk factors for development of CP, yet few reproduce the diagnostic symptoms. Animal models of CP must advance beyond risk factors to etiologies, including both the brain and spinal cord.
Collapse
Affiliation(s)
- Joline E Brandenburg
- Department of Physical Medicine and Rehabilitation, Mayo Clinic College of Medicine , Rochester, Minnesota
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine , Rochester, Minnesota
| | - Matthew J Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine , Rochester, Minnesota
| | - Gary C Sieck
- Department of Physical Medicine and Rehabilitation, Mayo Clinic College of Medicine , Rochester, Minnesota
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine , Rochester, Minnesota
- Department of Anesthesiology, Mayo Clinic College of Medicine , Rochester, Minnesota
| |
Collapse
|
13
|
Microglia and Neonatal Brain Injury. Neuroscience 2018; 405:68-76. [PMID: 29352997 DOI: 10.1016/j.neuroscience.2018.01.023] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/21/2017] [Accepted: 01/09/2018] [Indexed: 12/16/2022]
Abstract
Microglial cells are now recognized as the "gate-keepers" of healthy brain microenvironment with their disrupted functions adversely affecting neurovascular integrity, neuronal homeostasis, and network connectivity. The perception that these cells are purely toxic under neurodegenerative conditions has been challenged by a continuously increasing understanding of their complexity, the existence of a broad array of microglial phenotypes, and their ability to rapidly change in a context-dependent manner to attenuate or exacerbate injuries of different nature. Recent studies have demonstrated that microglial cells exert crucial physiological functions during embryonic and postnatal brain development, some of these functions being unique to particular stages of development, and extending far beyond sensing dangerous signals and serving as antigen presenting cells. In this focused review we cover the roles of microglial cells in regulating embryonic vasculogenesis, neurogenesis, and establishing network connectivity during postnatal brain development. We further discuss context-dependent microglial contribution to neonatal brain injuries associated with prenatal and postnatal infection and inflammation, in relation to neurodevelopmental disorders, as well as perinatal hypoxia-ischemia and arterial focal stroke. We also emphasize microglial phenotypic diversity, notably at the ultrastructural level, and their sex-dependent influence on the pathophysiology of neurodevelopmental disorders.
Collapse
|
14
|
Ueda Y, Misumi S, Suzuki M, Ogawa S, Nishigaki R, Ishida A, Jung CG, Hida H. Disorganization of Oligodendrocyte Development in the Layer II/III of the Sensorimotor Cortex Causes Motor Coordination Dysfunction in a Model of White Matter Injury in Neonatal Rats. Neurochem Res 2018; 43:136-146. [DOI: 10.1007/s11064-017-2352-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/21/2017] [Accepted: 07/07/2017] [Indexed: 12/14/2022]
|
15
|
Teo JD, Morris MJ, Jones NM. Maternal obesity increases inflammation and exacerbates damage following neonatal hypoxic-ischaemic brain injury in rats. Brain Behav Immun 2017; 63:186-196. [PMID: 27746186 DOI: 10.1016/j.bbi.2016.10.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE In humans, maternal obesity is associated with an increase in the incidence of birth related difficulties. However, the impact of maternal obesity on the severity of brain injury in offspring is not known. Recent studies have found evidence of increased glial response and inflammatory mediators in the brains as a result of obesity in humans and rodents. We hypothesised that hypoxic-ischaemic (HI) brain injury is greater in neonatal offspring from obese rat mothers compared to lean controls. METHODS Female Sprague Dawley rats were randomly allocated to high fat (HFD, n=8) or chow (n=4) diet and mated with lean male rats. On postnatal day 7 (P7), male and female pups were randomly assigned to HI injury or control (C) groups. HI injury was induced by occlusion of the right carotid artery followed by 3h exposure to 8% oxygen, at 37°C. Control pups were removed from the mother for the same duration under ambient conditions. Righting behaviour was measured on day 1 and 7 following HI. The extent of brain injury was quantified in brain sections from P14 pups using cresyl violet staining and the difference in volume between brain hemispheres was measured. RESULTS Before mating, HFD mothers were 11% heavier than Chow mothers (p<0.05, t-test). Righting reflex was delayed in offspring from HFD-fed mothers compared to the Chow mothers. The Chow-HI pups showed a loss in ipsilateral brain tissue, while the HFD-HI group had significantly greater loss. No significant difference was detected in brain volume between the HFD-C and Chow-C pups. When analysed on a per litter basis, the size of the injury was significantly correlated with maternal weight. Similar observations were made with neuronal staining showing a greater loss of neurons in the brain of offspring from HFD-mothers following HI compared to Chow. Astrocytes appeared to more hypertrophic and a greater number of microglia were present in the injured hemisphere in offspring from mothers on HFD. HI caused an increase in the proportion of amoeboid microglia and exposure to maternal HFD exacerbated this response. In the contralateral hemisphere, offspring exposed to maternal HFD displayed a reduced proportion of ramified microglia. CONCLUSIONS Our data clearly demonstrate that maternal obesity can exacerbate the severity of brain damage caused by HI in neonatal offspring. Given that previous studies have shown enhanced inflammatory responses in offspring of obese mothers, these factors including gliosis and microglial infiltration are likely to contribute to enhanced brain injury.
Collapse
Affiliation(s)
- Jonathan D Teo
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, New South Wales, Australia
| | - Margaret J Morris
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, New South Wales, Australia
| | - Nicole M Jones
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, New South Wales, Australia.
| |
Collapse
|
16
|
Huang S, Turlova E, Li F, Bao MH, Szeto V, Wong R, Abussaud A, Wang H, Zhu S, Gao X, Mori Y, Feng ZP, Sun HS. Transient receptor potential melastatin 2 channels (TRPM2) mediate neonatal hypoxic-ischemic brain injury in mice. Exp Neurol 2017; 296:32-40. [PMID: 28668375 DOI: 10.1016/j.expneurol.2017.06.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/01/2017] [Accepted: 06/27/2017] [Indexed: 02/01/2023]
Abstract
Transient receptor potential melastatin 2 (TRPM2), a calcium-permeable non-selective cation channel, is reported to mediate brain damage following ischemic insults in adult mice. However, the role of TRPM2 channels in neonatal hypoxic-ischemic brain injury remains unknown. We hypothesize that TRPM2+/- and TRPM2-/- neonatal mice have reduced hypoxic-ischemic brain injury. To study the effect of TRPM2 on neonatal brain damage, we used 2,3,5-triphenyltetrazolium chloride (TTC) staining to assess the infarct volume and whole brain imaging to assess morphological changes in the brain. In addition, we also evaluated neurobehavioral outcomes for sensorimotor function 7days following hypoxic-ischemic brain injury. We report that the infarct volumes were significantly smaller and behavioral outcomes were improved in both TRPM2+/- and TRPM2-/- mice compared to that of wildtype mice. Next, we found that TRPM2-null mice showed reduced dephosphorylation of GSK-3β following hypoxic ischemic injury unlike sham mice. TRPM2+/- and TRPM2-/- mice also had reduced activation of astrocytes and microglia in ipsilateral hemispheres, compared to wildtype mice. These findings suggest that TRPM2 channels play an essential role in mediating hypoxic-ischemic brain injury in neonatal mice. Genetically eliminating TRPM2 channels can provide neuroprotection against hypoxic-ischemic brain injury and this effect is elicited in part through regulation of GSK-3β.
Collapse
Affiliation(s)
- Sammen Huang
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ekaterina Turlova
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Feiya Li
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Mei-Hua Bao
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Vivian Szeto
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Raymond Wong
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ahmed Abussaud
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Haitao Wang
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shuzhen Zhu
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Xinzheng Gao
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Hong-Shuo Sun
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Pharmacology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
17
|
Mori H, Momosaki K, Kido J, Naramura T, Tanaka K, Matsumoto S, Nakamura K, Mitsubuchi H, Endo F, Iwai M. Amelioration by glycine of brain damage in neonatal rat brain following hypoxia-ischemia. Pediatr Int 2017; 59:321-327. [PMID: 27613478 DOI: 10.1111/ped.13164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 07/20/2016] [Accepted: 08/10/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND Glycine protected adult brains against injury in an experimental model of stroke, but, because the ischemic response of neonatal brains differs from that of adult brains, we examined the neuroprotective efficacy of glycine and associated mechanisms in an experimental model of neonatal hypoxic-ischemic (HI) encephalopathy. METHODS Neonatal (postnatal day 7) Wistar rats were randomly divided into an untreated group (non-HI) and two HI groups that were treated with left common carotid artery ligation and saline control or glycine. After recovery, pups that received surgery were injected i.p. with saline or glycine (800 mg/kg; optimal dose determined in pilot experiments) and were placed in a controlled 8% O2 chamber for 120 min. Brains were harvested at various times after return to normoxia (several hours-days after HI) for analysis of infarct area, glial activation, cell apoptosis, and tumor necrosis factor-α (TNF-α) expression on histology and reverse transcription-polymerase chain reaction. RESULTS Glycine injections induced large (approx. 15-fold) but brief (approx. 2 h) increases in cerebrospinal fluid concentrations. In particular, the glycine group had a >70% decrease in infarct areas compared with controls at 7 days after HI. Glycine also significantly reduced astrocyte reactive transformation, microglia activation, and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive (apoptotic) cell numbers in peri-lesional areas at 3 days after HI, and TNF-α mRNA expression in the injured hemisphere at 12 and 24 h after HI. CONCLUSION Glycine protected neonatal rat brains against HI, in part by inhibiting TNF-α-induced inflammation and gliosis. Hence, systemic glycine infusions may have clinical utility for the treatment of HI injury in human newborns.
Collapse
Affiliation(s)
- Hiroko Mori
- Department of Pediatrics, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Ken Momosaki
- Department of Pediatrics, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Jun Kido
- Department of Pediatrics, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Tetsuo Naramura
- Department of Pediatrics, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Kenichi Tanaka
- Department of Pediatrics, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Shirou Matsumoto
- Department of Pediatrics, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Kimitoshi Nakamura
- Department of Pediatrics, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Mitsubuchi
- Department of Pediatrics, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Fumio Endo
- Department of Pediatrics, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Masanori Iwai
- Department of Pediatrics, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
18
|
Hanlon LA, Raghupathi R, Huh JW. Differential effects of minocycline on microglial activation and neurodegeneration following closed head injury in the neonate rat. Exp Neurol 2016; 290:1-14. [PMID: 28038986 DOI: 10.1016/j.expneurol.2016.12.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/02/2016] [Accepted: 12/23/2016] [Indexed: 12/13/2022]
Abstract
The role of microglia in the pathophysiology of injury to the developing brain has been extensively studied. In children under the age of 4 who have sustained a traumatic brain injury (TBI), markers of microglial/macrophage activation were increased in the cerebrospinal fluid and were associated with worse neurologic outcome. Minocycline is an antibiotic that decreases microglial/macrophage activation following hypoxic-ischemia in neonatal rodents and TBI in adult rodents thereby reducing neurodegeneration and behavioral deficits. In study 1, 11-day-old rats received an impact to the intact skull and were treated for 3days with minocycline. Immediately following termination of minocycline administration, microglial reactivity was reduced in the cortex and hippocampus (p<0.001) and was accompanied by an increase in the number of fluoro-Jade B profiles (p<0.001) suggestive of a reduced clearance of degenerating cells; however, this effect was not sustained at 7days post-injury. Although microglial reactivity was reduced in the white matter tracts (p<0.001), minocycline treatment did not reduce axonal injury or degeneration. In the thalamus, minocycline treatment did not affect microglial reactivity, axonal injury and degeneration, and neurodegeneration. Injury-induced spatial learning and memory deficits were also not affected by minocycline. In study 2, to test whether extended dosing of minocycline may be necessary to reduce the ongoing pathologic alterations, a separate group of animals received minocycline for 9days. Immediately following termination of treatment, microglial reactivity and neurodegeneration in all regions examined were exacerbated in minocycline-treated brain-injured animals compared to brain-injured animals that received vehicle (p<0.001), an effect that was only sustained in the cortex and hippocampus up to 15days post-injury (p<0.001). Whereas injury-induced spatial learning deficits remained unaffected by minocycline treatment, memory deficits appeared to be significantly worse (p<0.05). Sex had minimal effects on either injury-induced alterations or the efficacy of minocycline treatment. Collectively, these data demonstrate the differential effects of minocycline in the immature brain following impact trauma and suggest that minocycline may not be an effective therapeutic strategy for TBI in the immature brain.
Collapse
Affiliation(s)
- L A Hanlon
- Program in Neuroscience, Drexel University College of Medicine, Philadelphia, PA, United States
| | - R Raghupathi
- Program in Neuroscience, Drexel University College of Medicine, Philadelphia, PA, United States; Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States; Coatesville Veteran's Administration Medical Center, Coatesville, PA, United States
| | - J W Huh
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| |
Collapse
|
19
|
Wixey JA, Chand KK, Colditz PB, Bjorkman ST. Review: Neuroinflammation in intrauterine growth restriction. Placenta 2016; 54:117-124. [PMID: 27916232 DOI: 10.1016/j.placenta.2016.11.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022]
Abstract
Disruption to the maternal environment during pregnancy from events such as hypoxia, stress, toxins, inflammation, and reduced placental blood flow can affect fetal development. Intrauterine growth restriction (IUGR) is commonly caused by chronic placental insufficiency, interrupting supply of oxygen and nutrients to the fetus resulting in abnormal fetal growth. IUGR is a major cause of perinatal morbidity and mortality, occurring in approximately 5-10% of pregnancies. The fetal brain is particularly vulnerable in IUGR and there is an increased risk of long-term neurological disorders including cerebral palsy, epilepsy, learning difficulties, behavioural difficulties and psychiatric diagnoses. Few studies have focused on how growth restriction interferes with normal brain development in the IUGR neonate but recent studies in growth restricted animal models demonstrate increased neuroinflammation. This review describes the role of neuroinflammation in the progression of brain injury in growth restricted neonates. Identifying the mediators responsible for alterations in brain development in the IUGR infant is key to prevention and treatment of brain injury in these infants.
Collapse
Affiliation(s)
- Julie A Wixey
- The University of Queensland, Perinatal Research Centre, UQ Centre for Clinical Research, Herston, Queensland 4029, Australia.
| | - Kirat K Chand
- The University of Queensland, Perinatal Research Centre, UQ Centre for Clinical Research, Herston, Queensland 4029, Australia
| | - Paul B Colditz
- The University of Queensland, Perinatal Research Centre, UQ Centre for Clinical Research, Herston, Queensland 4029, Australia
| | - S Tracey Bjorkman
- The University of Queensland, Perinatal Research Centre, UQ Centre for Clinical Research, Herston, Queensland 4029, Australia
| |
Collapse
|
20
|
Fernandes NC, Sriram U, Gofman L, Cenna JM, Ramirez SH, Potula R. Methamphetamine alters microglial immune function through P2X7R signaling. J Neuroinflammation 2016; 13:91. [PMID: 27117066 PMCID: PMC4847215 DOI: 10.1186/s12974-016-0553-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 04/17/2016] [Indexed: 01/22/2023] Open
Abstract
Background Purinoceptors have emerged as mediators of chronic inflammation and neurodegenerative processes. The ionotropic purinoceptor P2X7 (P2X7R) is known to modulate proinflammatory signaling and integrate neuronal-glial circuits. Evidence of P2X7R involvement in neurodegeneration, chronic pain, and chronic inflammation suggests that purinergic signaling plays a major role in microglial activation during neuroinflammation. In this study, we investigated the effects of methamphetamine (METH) on microglial P2X7R. Methods ESdMs were used to evaluate changes in METH-induced P2X7R gene expression via Taqman PCR and protein expression via western blot analysis. Migration and phagocytosis assays were used to evaluate functional changes in ESdMs in response to METH treatment. METH-induced proinflammatory cytokine production following siRNA silencing of P2X7R in ESdMs measured P2X7R-dependent functional changes. In vivo expression of P2X7R and tyrosine hydroxylase (TH) was visualized in an escalating METH dose mouse model via immunohistochemical analysis. Results Stimulation of ESdMs with METH for 48 h significantly increased P2X7R mRNA (*p < 0.0336) and protein expression (*p < 0.022). Further analysis of P2X7R protein in cellular fractionations revealed increases in membrane P2X7R (*p < 0.05) but decreased cytoplasmic expression after 48 h METH treatment, suggesting protein mobilization from the cytoplasm to the membrane which occurs upon microglial stimulation with METH. Forty-eight hour METH treatment increased microglial migration towards Fractalkine (CX3CL1) compared to control (****p < 0.0001). Migration toward CX3CL1 was confirmed to be P2X7R-dependent through the use of A 438079, a P2X7R-competitive antagonist, which reversed the METH effects (****p < 0.0001). Similarly, 48 h METH treatment increased microglial phagocytosis compared to control (****p < 0.0001), and pretreatment of P2X7R antagonist reduced METH-induced phagocytosis (****p < 0.0001). Silencing the microglial P2X7R decreased TNF-α (*p < 0.0363) and IL-10 production after 48 h of METH treatment. Additionally, our studies demonstrate increased P2X7R and decreased TH expression in the striata of escalating dose METH animal model compared to controls. Conclusions This study sheds new light on the functional role of P2X7R in the regulation of microglial effector functions during substance abuse. Our findings suggest that P2X7R plays an important role in METH-induced microglial activation responses. P2X7R antagonists may thus constitute a novel target of therapeutic utility in neuroinflammatory conditions by regulating pathologically activated glial cells in stimulant abuse. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0553-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole C Fernandes
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, MERB 845A, 3500 N. Broad Street, Philadelphia, 19140, PA, USA
| | - Uma Sriram
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, MERB 845A, 3500 N. Broad Street, Philadelphia, 19140, PA, USA
| | - Larisa Gofman
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, MERB 845A, 3500 N. Broad Street, Philadelphia, 19140, PA, USA
| | - Jonathan M Cenna
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, MERB 845A, 3500 N. Broad Street, Philadelphia, 19140, PA, USA
| | - Servio H Ramirez
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, MERB 845A, 3500 N. Broad Street, Philadelphia, 19140, PA, USA.,Center for Substance Abuse Research, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Raghava Potula
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, MERB 845A, 3500 N. Broad Street, Philadelphia, 19140, PA, USA. .,Center for Substance Abuse Research, Lewis Katz School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Hanlon LA, Huh JW, Raghupathi R. Minocycline Transiently Reduces Microglia/Macrophage Activation but Exacerbates Cognitive Deficits Following Repetitive Traumatic Brain Injury in the Neonatal Rat. J Neuropathol Exp Neurol 2016; 75:214-26. [PMID: 26825312 DOI: 10.1093/jnen/nlv021] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Elevated microglial/macrophage-associated biomarkers in the cerebrospinal fluid of infant victims of abusive head trauma (AHT) suggest that these cells play a role in the pathophysiology of the injury. In a model of AHT in 11-day-old rats, 3 impacts (24 hours apart) resulted in spatial learning and memory deficits and increased brain microglial/macrophage reactivity, traumatic axonal injury, neuronal degeneration, and cortical and white-matter atrophy. The antibiotic minocycline has been effective in decreasing injury-induced microglial/macrophage activation while simultaneously attenuating cellular and functional deficits in models of neonatal hypoxic ischemia, but the potential for this compound to rescue deficits after impact-based trauma to the immature brain remains unexplored. Acute minocycline administration in this model of AHT decreased microglial/macrophage reactivity in the corpus callosum of brain-injured animals at 3 days postinjury, but this effect was lost by 7 days postinjury. Additionally, minocycline treatment had no effect on traumatic axonal injury, neurodegeneration, tissue atrophy, or spatial learning deficits. Interestingly, minocycline-treated animals demonstrated exacerbated injury-induced spatial memory deficits. These results contrast with previous findings in other models of brain injury and suggest that minocycline is ineffective in reducing microglial/macrophage activation and ameliorating injury-induced deficits following repetitive neonatal traumatic brain injury.
Collapse
Affiliation(s)
- Lauren A Hanlon
- From the Program in Neuroscience, Drexel University College of Medicine, Philadelphia, Pennsylvania (LAH, RR); Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia Pennsylvania (JWH); and Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania (RR)
| | - Jimmy W Huh
- From the Program in Neuroscience, Drexel University College of Medicine, Philadelphia, Pennsylvania (LAH, RR); Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia Pennsylvania (JWH); and Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania (RR)
| | - Ramesh Raghupathi
- From the Program in Neuroscience, Drexel University College of Medicine, Philadelphia, Pennsylvania (LAH, RR); Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia Pennsylvania (JWH); and Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania (RR).
| |
Collapse
|
22
|
Juul SE, Mayock DE, Comstock BA, Heagerty PJ. Neuroprotective potential of erythropoietin in neonates; design of a randomized trial. Matern Health Neonatol Perinatol 2015; 1:27. [PMID: 27057344 PMCID: PMC4823689 DOI: 10.1186/s40748-015-0028-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/26/2015] [Indexed: 11/12/2022] Open
Abstract
Background In 2013, nearly four million babies were born in the U.S., among whom 447,875 were born preterm. Approximately 30,000 of these infants were born before 28 weeks of gestation. These infants, termed Extremely Low Gestational Age Neonates (ELGANs), experience high morbidity and mortality despite modern therapies: approximately 20 % of ELGANs admitted to an NICU die before discharge, 20 % of survivors have severe, and 20 % moderate neurodevelopmental impairment (NDI). New approaches are needed to improve neonatal outcomes. Recombinant erythropoietin (Epo) is a promising neuroprotective agent that is widely available, affordable, and has been used safely in neonates to stimulate erythropoiesis. There are extensive preclinical data to support its use as a neuroprotective intervention: Epo promotes normal brain maturation by increasing neurogenesis, angiogenesis, and by protecting oligodendrocytes. Epo also decreases acute brain injury following hypoxia ischemia by decreasing inflammation, oxidative and excitotoxic injury, resulting in decreased apoptosis. Despite the availability of both preclinical and safety data there has not been a definitive clinical evaluation of the benefit of Epo, and a large phase III trial is necessary to provide evidence to support potential changes in practice guidelines. Findings We first review the preclinical data motivating further clinical trials, and then describe in detail the design of the PENUT study (Preterm Epo Neuroprotection). PENUT is a phase III study evaluating the effect of neonatal Epo treatment on the combined outcome of death or severe NDI among ELGANS. 940 subjects will be randomized to determine: 1) whether Epo decreases the combined outcome of death or NDI at 22–26 months corrected age; 2) the safety of high dose Epo administration to ELGANs; 3) whether Epo treatment decreases serial measures of circulating inflammatory mediators, and improves biomarkers of brain injury; and 4) whether Epo treatment improves brain structure at 36 weeks postmenstrual age as measured by MRI. Conclusions Epo neuroprotection is an exciting new approach to preterm neuroprotection, and if efficacious, will provide a much-needed therapy for this group of vulnerable infants.
Collapse
Affiliation(s)
- Sandra E Juul
- Department of Pediatrics, Division of Neonatology, University of Washington, 1959 Pacific Ave NE, Box 356320, Seattle, WA 98195-6320 USA
| | - Dennis E Mayock
- Department of Pediatrics, Division of Neonatology, University of Washington, 1959 Pacific Ave NE, Box 356320, Seattle, WA 98195-6320 USA
| | - Bryan A Comstock
- Department of Biostatistics, University of Washington, 4333 Brooklyn Avenue NE, Box 359461, Seattle, WA 98195-9461 USA
| | - Patrick J Heagerty
- Department of Biostatistics, University of Washington, 4333 Brooklyn Avenue NE, Box 359461, Seattle, WA 98195-9461 USA
| |
Collapse
|
23
|
Jin C, Londono I, Mallard C, Lodygensky GA. New means to assess neonatal inflammatory brain injury. J Neuroinflammation 2015; 12:180. [PMID: 26407958 PMCID: PMC4583178 DOI: 10.1186/s12974-015-0397-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/10/2015] [Indexed: 01/23/2023] Open
Abstract
Preterm infants are especially vulnerable to infection-induced white matter injury, associated with cerebral palsy, cognitive and psychomotor impairment, and other adverse neurological outcomes. The etiology of such lesions is complex and multifactorial. Furthermore, timing and length of exposure to infection also influence neurodevelopmental outcomes. Different mechanisms have been posited to mediate the observed brain injury including microglial activation followed by subsequent release of pro-inflammatory species, glutamate-induced excitotoxicity, and vulnerability of developing oligodendrocytes to cerebral insults. The prevalence of such neurological impairments requires an urgent need for early detection and effective neuroprotective strategies. Accordingly, noninvasive methods of monitoring disease progression and therapy effectiveness are essential. While diagnostic tools using biomarkers from bodily fluids may provide useful information regarding potential risks of developing neurological diseases, the use of magnetic resonance imaging/spectroscopy has emerged as a promising candidate for such purpose. Various pharmacological agents have demonstrated protective effects in the immature brain in animal models; however, few studies have progressed to clinical trials with promising results.
Collapse
Affiliation(s)
- Chen Jin
- Department of Pediatrics, Sainte-Justine Hospital and Research Center, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada.
| | - Irene Londono
- Department of Pediatrics, Sainte-Justine Hospital and Research Center, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada.
| | - Carina Mallard
- Perinatal Center, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden.
| | - Gregory A Lodygensky
- Department of Pediatrics, Sainte-Justine Hospital and Research Center, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada. .,Montreal Heart Institute, 5000 Rue Bélanger, Montréal, Québec, Canada. .,Department of Neuroscience and Pharmacology, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
24
|
Jensen FE. Developmental factors in the pathogenesis of neonatal seizures. JOURNAL OF PEDIATRIC NEUROLOGY 2015; 7:5-12. [PMID: 20191097 DOI: 10.3233/jpn-2009-0270] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neonatal seizures are inherently different from seizures in the child and the adult. The phenotype, often exhibiting electroclinical dissociation, is unique: neonatal seizures can be refractory to antiepileptic drugs otherwise effect for older patients. Recent experimental and human-based research reveals that the mechanism of neonatal seizures, as well as their long-term sequelae on later brain development, appears to involve a large number of age-specific factors. These observations help explain the resistance of neonatal seizures to conventional therapy as well as identify potential areas of risk for later neurocognitive development. Emerging targets from this research may suggest new therapies for this unique population of patients.
Collapse
Affiliation(s)
- Frances E Jensen
- Department of Neurology, Children's Hospital, and Program in Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Hypoxic Preconditioning Suppresses Glial Activation and Neuroinflammation in Neonatal Brain Insults. Mediators Inflamm 2015; 2015:632592. [PMID: 26273140 PMCID: PMC4530271 DOI: 10.1155/2015/632592] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/03/2015] [Indexed: 12/20/2022] Open
Abstract
Perinatal insults and subsequent neuroinflammation are the major mechanisms of neonatal brain injury, but there have been only scarce reports on the associations between hypoxic preconditioning and glial activation. Here we use neonatal hypoxia-ischemia brain injury model in 7-day-old rats and in vitro hypoxia model with primary mixed glial culture and the BV-2 microglial cell line to assess the effects of hypoxia and hypoxic preconditioning on glial activation. Hypoxia-ischemia brain insult induced significant brain weight reduction, profound cell loss, and reactive gliosis in the damaged hemisphere. Hypoxic preconditioning significantly attenuated glial activation and resulted in robust neuroprotection. As early as 2 h after the hypoxia-ischemia insult, proinflammatory gene upregulation was suppressed in the hypoxic preconditioning group. In vitro experiments showed that exposure to 0.5% oxygen for 4 h induced a glial inflammatory response. Exposure to brief hypoxia (0.5 h) 24 h before the hypoxic insult significantly ameliorated this response. In conclusion, hypoxic preconditioning confers strong neuroprotection, possibly through suppression of glial activation and subsequent inflammatory responses after hypoxia-ischemia insults in neonatal rats. This might therefore be a promising therapeutic approach for rescuing neonatal brain injury.
Collapse
|
26
|
Umekawa T, Osman AM, Han W, Ikeda T, Blomgren K. Resident microglia, rather than blood-derived macrophages, contribute to the earlier and more pronounced inflammatory reaction in the immature compared with the adult hippocampus after hypoxia-ischemia. Glia 2015; 63:2220-30. [PMID: 26179283 PMCID: PMC5034822 DOI: 10.1002/glia.22887] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/22/2015] [Indexed: 01/05/2023]
Abstract
The mechanisms of neuronal injury after hypoxia–ischemia (HI) are different in the immature and the adult brain, but microglia activation has not been compared. The purpose of this study was to phenotype resident microglia and blood‐derived macrophages in the hippocampus after HI in neonatal (postnatal day 9, P9) or adult (3 months of age, 3mo) mice. Unilateral brain injury after HI was induced in Cx3cr1GFP/+Ccr2RFP/+ male mice on P9 (n = 34) or at 3mo (n = 53) using the Vannucci model. Resident microglia (Cx3cr1‐GFP+) proliferated and were activated earlier after HI in the P9 (1–3 days) than that in the 3mo hippocampus, but remained longer in the adult brain (3–7 days). Blood‐derived macrophages (Ccr2‐RFP+) peaked 3 days after HI in both immature (P9) and adult (3mo) hippocampi but were twice as frequent in adult brains, 41% vs. 21% of all microglia/macrophages. CCL2 expression was three times higher in the P9 hippocampi, indicating that the proinflammatory response was more pronounced in the immature brain after HI. This corresponded well with the higher numbers of galectin‐3‐positive resident microglia in the P9 hippocampi, but did not correlate with CD16/32‐ or CD206‐positive resident microglia or blood‐derived macrophages. In conclusion, resident microglia, rather than infiltrating blood‐derived macrophages, proliferate and are activated earlier in the immature than in the adult brain, but remain increased longer in the adult brain. The inflammatory response is more pronounced in the immature brain, and this correlate well with galectin‐3 expression in resident microglia. GLIA 2015;63:2220–2230
Collapse
Affiliation(s)
- Takashi Umekawa
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Obstetrics and Gynecology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Ahmed M Osman
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Wei Han
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynecology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
27
|
Parmar J, Jones NM. Hypoxic preconditioning can reduce injury-induced inflammatory processes in the neonatal rat brain. Int J Dev Neurosci 2015; 43:35-42. [PMID: 25824817 DOI: 10.1016/j.ijdevneu.2015.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/26/2015] [Accepted: 03/26/2015] [Indexed: 12/20/2022] Open
Abstract
Inflammation plays an important role in the pathophysiology of neonatal hypoxic-ischemic (HI) brain injury. Studies have shown that hypoxic preconditioning (HP) can ameliorate brain damage, but its effects on inflammation remain unknown. Postnatal day 6 (P6), Sprague-Dawley rats were divided into normoxia and hypoxia (8% oxygen, 3h) groups. On P7, some pups underwent a right carotid artery occlusion followed by hypoxia (8% oxygen, 3h) while under 1.5% isofluorane anesthesia and the remaining pups underwent sham surgery without occlusion. Animals were sacrificed 5 days later and fixed tissue was used to examine changes in neurons, astrocytes, and microglia in the cortex. Fresh tissue was collected to determine cortical levels of proinflammatory cytokines using ELISA. There was a significant loss in the number of NeuN positive cells in the cortex following HI injury, which was improved when HP was given prior to HI. There was an increase in cortical area of astrocyte staining after HI injury compared to control. HP before HI was able to reduce area of GFAP staining back to control levels. HI caused a large increase in the number of activated microglia compared to control and HP was able to significantly reduce this, although not back to control levels. HP alone increased microglial activation. Interleukin-1β levels were increased in the cortex 5 days after HI, but HP was not able to significantly reduce this change. The neuroprotective effects of HP appear to be mediated by affecting cellular inflammatory processes in the brain following HI injury.
Collapse
Affiliation(s)
- Jasneet Parmar
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, New South Wales, Australia
| | - Nicole M Jones
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, New South Wales, Australia.
| |
Collapse
|
28
|
Babri S, Doosti MH, Salari AA. Tumor necrosis factor-alpha during neonatal brain development affects anxiety- and depression-related behaviors in adult male and female mice. Behav Brain Res 2014; 261:305-14. [DOI: 10.1016/j.bbr.2013.12.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 12/27/2013] [Accepted: 12/28/2013] [Indexed: 01/09/2023]
|
29
|
Liu F, Mccullough LD. Inflammatory responses in hypoxic ischemic encephalopathy. Acta Pharmacol Sin 2013; 34:1121-30. [PMID: 23892271 PMCID: PMC3764334 DOI: 10.1038/aps.2013.89] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 06/16/2013] [Indexed: 12/22/2022]
Abstract
Inflammation plays a critical role in mediating brain injury induced by neonatal hypoxic ischemic encephalopathy (HIE). The mechanisms underlying inflammatory responses to ischemia may be shared by neonatal and adult brains; however, HIE exhibits a unique inflammation phenotype that results from the immaturity of the neonatal immune system. This review will discuss the current knowledge concerning systemic and local inflammatory responses in the acute and subacute stages of HIE. The key components of inflammation, including immune cells, adhesion molecules, cytokines, chemokines and oxidative stress, will be reviewed, and the differences between neonatal and adult inflammatory responses to cerebral ischemic injury will also be discussed.
Collapse
|
30
|
Abstract
Hypoxia-ischemia is a leading cause of morbidity and mortality in the perinatal period with an incidence of 1/4000 live births. Biochemical events such as energy failure, membrane depolarization, brain edema, an increase of neurotransmitter release and inhibition of uptake, an increase of intracellular Ca(2+), production of oxygen-free radicals, lipid peroxidation, and a decrease of blood flow are triggered by hypoxia-ischemia and may lead to brain dysfunction and neuronal death. These abnormalities can result in mental impairments, seizures, and permanent motor deficits, such as cerebral palsy. The physical and emotional strain that is placed on the children affected and their families is enormous. The care that these individuals need is not only confined to childhood, but rather extends throughout their entire life span, so it is very important to understand the pathophysiology that follows a hypoxic-ischemic insult. This review will highlight many of the mechanisms that lead to neuronal death and include the emerging area of white matter injury as well as the role of inflammation and will provide a summary of therapeutic strategies. Hypothermia and oxygen will also be discussed as treatments that currently lack a specific target in the hypoxic/ischemic cascade.
Collapse
Affiliation(s)
- John W Calvert
- Departments of Neurosurgery and Molecular and Cellular Physiology, Loma Linda University Medical Center, 11234 Anderson Street, Loma Linda, CA 92354, USA
| | | |
Collapse
|
31
|
Rosenkranz K, May C, Meier C, Marcus K. Proteomic analysis of alterations induced by perinatal hypoxic-ischemic brain injury. J Proteome Res 2012; 11:5794-803. [PMID: 23153068 DOI: 10.1021/pr3005869] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Perinatal hypoxic-ischemic brain injury is an important cause of neurological deficits still causing mortality and morbidity in the early period of life. As efficient clinical or pharmaceutical strategies to prevent or reduce the outcome of perinatal hypoxic-ischemic brain damage are limited, the development of new therapies is of utmost importance. To evolve innovative therapeutic concepts, elucidation of the mechanisms contributing to the neurological impairments upon hypoxic-ischemic brain injury is necessary. Therefore, we aimed for the identification of proteins that are affected by hypoxic-ischemic brain injury in neonatal rats. To assess changes in protein expression two days after induction of brain damage, a 2D-DIGE based proteome analysis was performed. Among the proteins altered after hypoxic-ischemic brain injury, Calcineurin A, Coronin-1A, as well as GFAP were identified, showing higher expression in lesioned hemispheres. Validation of the changes in Calcineurin A expression by Western Blot analysis demonstrated several truncated forms of this protein generated by limited proteolysis after hypoxia-ischemia. Further analysis revealed activation of calpain, which is involved in the limited proteolysis of Calcineurin. Active forms of Calcineurin are associated with the dephosphorylation of Darpp-32, an effect that was also demonstrated in lesioned hemispheres after perinatal brain injury.
Collapse
Affiliation(s)
- Katja Rosenkranz
- Department of Functional Proteomics, Ruhr-University Bochum, Germany.
| | | | | | | |
Collapse
|
32
|
Rosenkranz K, Tenbusch M, May C, Marcus K, Meier C. Changes in Interleukin-1 alpha serum levels after transplantation of umbilical cord blood cells in a model of perinatal hypoxic-ischemic brain damage. Ann Anat 2012; 195:122-7. [PMID: 23123184 DOI: 10.1016/j.aanat.2012.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 08/21/2012] [Accepted: 09/15/2012] [Indexed: 01/07/2023]
Abstract
Transplantation of human umbilical cord blood (hUCB) cells is a potential approach for the treatment of perinatal hypoxic-ischemic brain injury. Neurological and motor deficits resulting from the brain lesion are ameliorated upon transplantation. The molecular mechanisms underlying these improvements are currently being unravelled. One parameter identified as part of the beneficial effects of hUCB cells is the reduction of brain inflammation. It is, however, unclear whether the modulation of brain inflammation is due to local or systemic effects of hUCB cells. In this study, the effects of hUCB cell transplantation in a model of perinatal hypoxic-ischemic brain injury were investigated at the systemic level by measurement of serum levels of pro-inflammatory cytokines by multiplex bead arrays. Two days after induction of the brain damage, levels of the pro-inflammatory cytokines Interleukin-1α (IL-1α), Interleukin-1β (IL-1β), and Tumor necrosis factor α (TNFα) were increased in the serum of rats. Application of hUCB cells, in turn, correlated with a reduced elevation of serum levels of these pro-inflammatory cytokines. This decrease was accompanied by a reduced expression of CD68, a marker protein of activated microglia/macrophages in the brain. Therefore, systemic modulation of the immune response by hUCB cells could represent one possible mechanism of how these cells might mediate their beneficial effects. Creation of a regenerative environment with reduced inflammation might account for the functional regeneration observed upon hUCB cell treatment in lesioned animals.
Collapse
Affiliation(s)
- Katja Rosenkranz
- Department of Functional Proteomics, Ruhr-University Bochum, Germany.
| | | | | | | | | |
Collapse
|
33
|
Reinebrant HE, Wixey JA, Buller KM. Disruption of raphé serotonergic neural projections to the cortex: a potential pathway contributing to remote loss of brainstem neurons following neonatal hypoxic-ischemic brain injury. Eur J Neurosci 2012; 36:3483-91. [PMID: 22943572 DOI: 10.1111/j.1460-9568.2012.08276.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neuronal injury is a key feature of neonatal hypoxic-ischemic (HI) brain injury. However, the mechanisms underpinning neuronal losses, such as in the brainstem, are poorly understood. One possibility is that disrupted neural connections between the cortex and brainstem may compromise the survival of neuronal cell bodies in the brainstem. We investigated whether brainstem raphé serotonergic neurons that project to the cortex are lost after HI. We also tested if neuroinflammation has a role in disrupting brainstem raphé projections. Postnatal day 3 (P3) rats underwent unilateral carotid artery ligation followed by hypoxia (6% oxygen for 30 min). A retrograde tracer, choleratoxin b, was deposited in the motor cortex on P38. On P45 we found that retrogradely labelled neurons in the dorsal raphé dorsal, ventrolateral, interfascicular, caudal and ventral nuclei were lost after P3 HI. All retrogradely labelled neurons in the raphé nuclei were serotonergic. Numbers of retrogradely labelled neurons were also reduced in the ventromedial thalamus and basolateral amygdala. Minocycline treatment (45 mg/kg 2 h post-HI, 22.5 mg/kg daily P4-P9) attenuated losses of retrogradely labelled neurons in the dorsal raphé ventrolateral, interfascicular and ventral raphé nuclei, and the ventromedial thalamus. These results indicate that raphé neurons projecting to the cortex constitute a population of serotonergic neurons that are lost after P3 HI. Furthermore, neuroinflammation has a role in the disruption of raphé and thalamic neural projections. Future studies investigating the cellular mechanisms of axonal degeneration may reveal new targets for interventions to prevent neuronal losses after neonatal HI.
Collapse
Affiliation(s)
- Hanna E Reinebrant
- The University of Queensland, The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Herston, Qld 4029, Australia
| | | | | |
Collapse
|
34
|
Eyo U, Dailey ME. Effects of oxygen-glucose deprivation on microglial mobility and viability in developing mouse hippocampal tissues. Glia 2012; 60:1747-60. [PMID: 22847985 DOI: 10.1002/glia.22394] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 06/27/2012] [Indexed: 12/29/2022]
Abstract
As brain-resident immune cells, microglia (MG) survey the brain parenchyma to maintain homeostasis during development and following injury. Research in perinatal stroke, a leading cause of lifelong disability, has implicated MG as targets for therapeutic intervention during stroke. Although MG responses are complex, work in developing rodents suggests that MG limit brain damage after stroke. However, little is known about how energy-limiting conditions affect MG survival and mobility (motility and migration) in developing brain tissues. Here, we used confocal time-lapse imaging to monitor MG viability and mobility during hypoxia or oxygen-glucose deprivation (OGD) in hippocampal tissue slices derived from neonatal GFP-reporter mice (CX3CR1(GFP/+) ). We found that MG remain viable for at least 6 h of hypoxia but begin to die after 2 h of OGD, while both hypoxia and OGD reduce MG motility. Unexpectedly, some MG retain or recover motility during OGD and can engulf dead cells. Additionally, MG from younger neonates (P2-P3) are more resistant to OGD than those from older ones (P6-P7), indicating increasing vulnerability with developmental age. Finally, transient (2 h) OGD also increases MG death, and although motility is rapidly restored after transient OGD, it remains below control levels for many hours. Together, these results show that MG in neonatal mouse brain tissues are vulnerable to both transient and sustained OGD, and many MG die within hours after onset of OGD. Preventing MG death may, therefore, provide a strategy for promoting tissue restoration after stroke.
Collapse
Affiliation(s)
- Ukpong Eyo
- Department of Biology, University of Iowa, Iowa City, Iowa, USA
| | | |
Collapse
|
35
|
Wixey JA, Reinebrant HE, Buller KM. Evidence that the serotonin transporter does not shift into the cytosol of remaining neurons after neonatal brain injury. Neurosci Res 2012; 73:252-6. [DOI: 10.1016/j.neures.2012.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/03/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
|
36
|
Disruption of the serotonergic system after neonatal hypoxia-ischemia in a rodent model. Neurol Res Int 2012; 2012:650382. [PMID: 22474587 PMCID: PMC3306961 DOI: 10.1155/2012/650382] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/26/2011] [Accepted: 11/01/2011] [Indexed: 12/16/2022] Open
Abstract
Identifying which specific neuronal phenotypes are vulnerable to neonatal hypoxia-ischemia, where in the brain they are damaged, and the mechanisms that produce neuronal losses are critical to determine the anatomical substrates responsible for neurological impairments in hypoxic-ischemic brain-injured neonates. Here we describe our current work investigating how the serotonergic network in the brain is disrupted in a rodent model of preterm hypoxia-ischemia. One week after postnatal day 3 hypoxia-ischemia, losses of serotonergic raphé neurons, reductions in serotonin levels in the brain, and reduced serotonin transporter expression are evident. These changes can be prevented using two anti-inflammatory interventions; the postinsult administration of minocycline or ibuprofen. However, each drug has its own limitations and benefits for use in neonates to stem damage to the serotonergic network after hypoxia-ischemia. By understanding the fundamental mechanisms underpinning hypoxia-ischemia-induced serotonergic damage we will hopefully move closer to developing a successful clinical intervention to treat neonatal brain injury.
Collapse
|
37
|
Anderson V, Spencer-Smith M, Wood A. Do children really recover better? Neurobehavioural plasticity after early brain insult. Brain 2011; 134:2197-221. [PMID: 21784775 DOI: 10.1093/brain/awr103] [Citation(s) in RCA: 362] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Vicki Anderson
- Department of Psychology, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
| | | | | |
Collapse
|
38
|
Czeh M, Gressens P, Kaindl AM. The yin and yang of microglia. Dev Neurosci 2011; 33:199-209. [PMID: 21757877 DOI: 10.1159/000328989] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 05/01/2011] [Indexed: 12/21/2022] Open
Abstract
Microglia, the resident immune cells of the mammalian central nervous system (CNS), play a pivotal role in both physiological and pathological conditions such as the restoration of CNS integrity and the progression of neurodegenerative disorders. Extensive data have been published that describe neuroinflammation by microglial activation to have detrimental consequences on the developing and mature brain. On the other hand, a properly directed and limited inflammatory response is known to be a natural healing process after an insult in several other tissues. Thus, it is not surprising that research results illustrating benefits of neuroinflammation have been emerging over the past decade. Inflammation-mediated benefits for CNS outcomes include mechanisms such as neuroprotection, mobilization of neural precursors for repair, remyelination and axonal regeneration. Here, we review data that highlight the dual aspects of microglia with a focus on the developing brain, i.e. as aggressors potentiating damage and as helpers in the recovery process following CNS damage.
Collapse
Affiliation(s)
- Melinda Czeh
- Department of Pediatric Neurology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | |
Collapse
|
39
|
Abstract
Retinal hypoxia is the potentially blinding mechanism underlying a number of sight-threatening disorders including central retinal artery occlusion, ischemic central retinal vein thrombosis, complications of diabetic eye disease and some types of glaucoma. Hypoxia is implicated in loss of retinal ganglion cells (RGCs) occurring in such conditions. RGC death occurs by apoptosis or necrosis. Hypoxia-ischemia induces the expression of hypoxia inducible factor-1α and its target genes such as vascular endothelial growth factor (VEGF) and nitric oxide synthase (NOS). Increased production of VEGF results in disruption of the blood retinal barrier leading to retinal edema. Enhanced expression of NOS results in increased production of nitric oxide which may be toxic to the cells resulting in their death. Excess glutamate release in hypoxic-ischemic conditions causes excitotoxic damage to the RGCs through activation of ionotropic and metabotropic glutamate receptors. Activation of glutamate receptors is thought to initiate damage in the retina by a cascade of biochemical effects such as neuronal NOS activation and increase in intracellular Ca2+ which has been described as a major contributing factor to RGC loss. Excess production of proinflammatory cytokines also mediates cell damage. Besides the above, free-radicals generated in hypoxic-ischemic conditions result in RGC loss because of an imbalance between antioxidant- and oxidant-generating systems. Although many advances have been made in understanding the mediators and mechanisms of injury, strategies to improve the damage are lacking. Measures to prevent neuronal injury have to be developed.
Collapse
Affiliation(s)
- Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive,National University of Singapore, Singapore.
| | | | | |
Collapse
|
40
|
Woodworth KN, Palmateer J, Swide J, Grafe MR. Short- and long-term behavioral effects of exposure to 21%, 40% and 100% oxygen after perinatal hypoxia-ischemia in the rat. Int J Dev Neurosci 2011; 29:629-38. [PMID: 21600973 DOI: 10.1016/j.ijdevneu.2011.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 04/21/2011] [Accepted: 05/04/2011] [Indexed: 01/22/2023] Open
Abstract
Until recently, supplementation with 100% oxygen was standard therapy for newborns who required resuscitation at birth or suffered later hypoxic-ischemic events. Exposure to high concentrations of oxygen, however, may worsen oxidative stress induced by ischemic injury. In this study we investigated the short- and long-term behavioral outcomes in rats that had undergone hypoxic-ischemic brain injury on postnatal day 7, followed by 2h exposure to 21%, 40%, or 100% oxygen, compared to normal controls. There were no differences in the development of walking, head lifting and righting reflexes from postnatal days 9 to 15. Cliff avoidance showed some abnormal responses in the H21 animals. From postnatal days 28 to 56, three tests of sensorimotor coordination were performed weekly: ledged tapered beam, cylinder, and bilateral tactile stimulation. The ledged tapered beam test without prior training of animals was sensitive to injury, but did not distinguish between treatment groups. The cylinder test showed a greater use of the unimpaired limb in female 21% and 40% oxygen groups compared to controls. Performance in both cylinder and the beam tests showed a correlation with the degree of brain injury. The bilateral tactile stimulation test showed that the male 21% oxygen groups had worse sensory asymmetry than male 40% or 100% oxygen groups, but was not statistically significantly different from controls. We thus found a minor benefit to post-hypoxia-ischemic treatment with 100% and 40% oxygen compared to 21% in one test of early motor skills. Our results for long-term sensorimotor behavior, however, showed conflicting results, however, as males treated with 40% or 100% oxygen had less sensory asymmetry (better performance) in the bilateral tactile stimulation test than males treated with 21% oxygen, while females had impaired motor performance in the cylinder test with both 21% and 40% oxygen.
Collapse
Affiliation(s)
- K Nina Woodworth
- Department of Pathology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, L113 Portland, OR 97239-3098, United States
| | | | | | | |
Collapse
|
41
|
Tu YF, Tsai YS, Wang LW, Wu HC, Huang CC, Ho CJ. Overweight worsens apoptosis, neuroinflammation and blood-brain barrier damage after hypoxic ischemia in neonatal brain through JNK hyperactivation. J Neuroinflammation 2011; 8:40. [PMID: 21518436 PMCID: PMC3090337 DOI: 10.1186/1742-2094-8-40] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 04/25/2011] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Apoptosis, neuroinflammation and blood-brain barrier (BBB) damage affect the susceptibility of the developing brain to hypoxic-ischemic (HI) insults. c-Jun N-terminal kinase (JNK) is an important mediator of insulin resistance in obesity. We hypothesized that neonatal overweight aggravates HI brain damage through JNK hyperactivation-mediated upregulation of neuronal apoptosis, neuroinflammation and BBB leakage in rat pups. METHODS Overweight (OF) pups were established by reducing the litter size to 6, and control (NF) pups by keeping the litter size at 12 from postnatal (P) day 1 before HI on P7. Immunohistochemistry and immunoblotting were used to determine the TUNEL-(+) cells and BBB damage, cleaved caspase-3 and poly (ADP-ribose) polymerase (PARP), and phospho-JNK and phospho-BimEL levels. Immunofluorescence was performed to determine the cellular distribution of phospho-JNK. RESULTS Compared with NF pups, OF pups had a significantly heavier body-weight and greater fat deposition on P7. Compared with the NF-HI group, the OF-HI group showed significant increases of TUNEL-(+) cells, cleaved levels of caspase-3 and PARP, and ED1-(+) activated microglia and BBB damage in the cortex 24 hours post-HI. Immunofluorescence of the OF-HI pups showed that activated-caspase 3 expression was found mainly in NeuN-(+) neurons and RECA1-(+) vascular endothelial cells 24 hours post-HI. The OF-HI group also had prolonged escape latency in the Morris water maze test and greater brain-volume loss compared with the NF-HI group when assessed at adulthood. Phospho-JNK and phospho-BimEL levels were higher in OF-HI pups than in NF-HI pups immediately post-HI. JNK activation in OF-HI pups was mainly expressed in neurons, microglia and vascular endothelial cells. Inhibiting JNK activity by AS601245 caused more attenuation of cleaved caspase-3 and PARP, a greater reduction of microglial activation and BBB damage post-HI, and significantly reduced brain damage in OF-HI than in NF-HI pups. CONCLUSIONS Neonatal overweight increased HI-induced neuronal apoptosis, microglial activation and BBB damage, and aggravated HI brain damage in rat pups through JNK hyperactivation.
Collapse
Affiliation(s)
- Yi-Fang Tu
- Institute of Clinical Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
- Department of Emergency Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Lan-Wan Wang
- Institute of Clinical Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
- Department of Pediatrics, Chi Mei Medical Center, Tainan, Taiwan
| | - Hsin-Chieh Wu
- Department of Pediatrics, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Chao-Ching Huang
- Institute of Clinical Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
- Department of Pediatrics, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Chien-Jung Ho
- Department of Pediatrics, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| |
Collapse
|
42
|
Rosenkranz K, Meier C. Umbilical cord blood cell transplantation after brain ischemia--from recovery of function to cellular mechanisms. Ann Anat 2011; 193:371-9. [PMID: 21514122 DOI: 10.1016/j.aanat.2011.03.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/10/2011] [Accepted: 03/10/2011] [Indexed: 01/14/2023]
Abstract
Cell transplantation has been proposed as a potential approach to the treatment of neurological disorders. One cell population of interest consists of human umbilical cord blood (hUCB) cells, which have previously been shown to be useful for reparative medicine in haematological diseases. However, hUCB cells are also capable of differentiating into various non-haematopoietic cells, including those of the neural lineage. Moreover, hUCB cells can secrete numerous neurotrophic factors and modulate immune function and inflammatory reaction. Several studies on animal models of ischemic brain injury have demonstrated the potential of hUCB cells to minimize damage and promote recovery after ischemic brain injury.This review focuses on the treatment of both stroke and perinatal hypoxic-ischemic brain injury using hUCB cells. We discuss the therapeutic effects demonstrated after hUCB cell transplantation and emphasize possible mechanisms counteracting pathophysiological events of ischemia, thus leading to the generation of a regenerative environment that allows neural plasticity and functional recovery. The therapeutic functional effects of hUCB cells observed in animal models make the transplantation of hUCB cells a promising experimental approach in the treatment of ischemic brain injury. Together with its availability, low risk of transplantation, immaturity of cells, and simple route of application, hUCB transplantation may stand a good chance of being translated into a clinical setting for the therapy of ischemic brain injury.
Collapse
Affiliation(s)
- Katja Rosenkranz
- Department of Functional Proteomics, Ruhr-University Bochum, Bochum, Germany
| | | |
Collapse
|
43
|
Wixey JA, Reinebrant HE, Spencer SJ, Buller KM. Efficacy of post-insult minocycline administration to alter long-term hypoxia-ischemia-induced damage to the serotonergic system in the immature rat brain. Neuroscience 2011; 182:184-92. [PMID: 21440046 DOI: 10.1016/j.neuroscience.2011.03.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/17/2011] [Accepted: 03/17/2011] [Indexed: 01/23/2023]
Abstract
Neuroinflammation is a key mechanism contributing to long-term neuropathology observed after neonatal hypoxia-ischemia (HI). Minocycline, a second-generation tetracycline, is a potent inhibitor of neuroinflammatory mediators and is successful for at least short-term amelioration of neuronal injury after neonatal HI. However the long-term efficacy of minocycline to prevent injury to a specific neuronal network, such as the serotonergic (5-hydroxytryptamine, 5-HT) system, is not known. In a post-natal day 3 (P3) rat model of preterm HI we found significant reductions in 5-HT levels, 5-HT transporter expression and numbers of 5-HT-positive dorsal raphé neurons 6 weeks after insult compared to control animals. Numbers of activated microglia were significantly elevated in the thalamus and dorsal raphé although the greatest numbers were observed in the thalamus. Brain levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were also significantly elevated on P45 in the thalamus and frontal cortex. Post-insult administration of minocycline for 1 week (P3-P9) attenuated the P3 HI-induced increases in numbers of activated microglia and levels of TNF-α and IL-1β on P45 with concurrent changes in serotonergic outcomes. The parallel prevention of P3 HI-induced serotonergic changes suggests that inhibition of neuroinflammation within the first week after P3 HI injury was sufficient to prevent long-term neuroinflammation as well as serotonergic system damage still evident at 6 weeks. Thus early, post-insult administration of minocycline may target secondary neuroinflammation and represent a long-term therapy to preserve the integrity of the central serotonergic network in the preterm neonate.
Collapse
Affiliation(s)
- J A Wixey
- Perinatal Research Centre, University of Queensland Centre for Clinical Research, The University of Queensland, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | | | | | | |
Collapse
|
44
|
Inhibition of Neuroinflammation Prevents Injury to the Serotonergic Network After Hypoxia-Ischemia in the Immature Rat Brain. J Neuropathol Exp Neurol 2011; 70:23-35. [DOI: 10.1097/nen.0b013e3182020b7b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
45
|
Mu S, Ouyang L, Liu B, Qu H, Zhu Y, Li K, Lei W. Relationship between inflammatory reaction and ischemic injury of caudate-putamen in rats: inflammatory reaction and brain ischemia. Anat Sci Int 2010; 86:86-97. [PMID: 20809266 DOI: 10.1007/s12565-010-0091-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 06/30/2010] [Indexed: 10/19/2022]
Abstract
Inflammatory response after middle cerebral artery occlusion (MCAO) has been a focus of research recently, but the effect of inflammatory cells on ischemic neurons remains unclear. In order to study the effect of the inflammatory reaction on brain ischemic injury, we observed the morphology, number and distribution of CD3-, CD8-, ED1- and ED2-positive cells systematically in the caudate-putamen of rats in a MCAO model. The present results show that all four types of inflammatory cells first infiltrated the ischemic penumbra and then migrated into the center of the ischemic area, but the morphological changes and infiltration processes differed significantly; the infiltration of CD3- and CD8-positive cells into the ischemic area started at 3 days postischemia, and their number peaked at 1 week; however, although ED1- and ED2-positive cells were also observed at 3 days after ischemia, they reached their maximum number at 2 and 4 weeks, respectively. Moreover, ED1-and ED2-positive cells showed evident hyperplasia and hypertrophy in morphology. Our results also showed that the response of CD3-, CD8-, ED1- and ED2-positive cells in the ischemic area and the pathological changes in ischemic brain tissue could be inhibited by cyclosporine A. The results suggest that the infiltration and reaction of inflammatory cells are involved in the pathological process of ischemic brain injury.
Collapse
Affiliation(s)
- Shuhua Mu
- Department of Anatomy, Zhongshan Medical School of Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
46
|
WANG LANWAN, CHANG YINGCHAO, LIN CHANGYI, HONG JAUSHYONG, HUANG CHAOCHING. Low-dose lipopolysaccharide selectively sensitizes hypoxic ischemia-induced white matter injury in the immature brain. Pediatr Res 2010; 68:41-7. [PMID: 20351655 PMCID: PMC3608684 DOI: 10.1203/pdr.0b013e3181df5f6b] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Little is known about roles of inflammation and hypoxic ischemia (HI) in the generation of neuroinflammation and damage of blood-brain barrier (BBB) in the white matter (WM) that displays regional vulnerability in preterm infants. We investigated whether low-dose lipopolysaccharide (LPS) sensitizes HI-induced WM injury in postpartum (P) day 2 rat pups by selectively increasing neuroinflammation and BBB damage in the WM. Pups received LPS (0.05 mg/kg) (LPS + HI) or normal saline (NS + HI) followed by 90-min HI. LPS and NS group were the pups that had LPS or NS only. Myelin basic protein immunohistochemistry on P11 showed WM injury in LPS + HI group, but not in NS + HI, LPS, and NS groups. In contrast, no gray matter injury was found in the four groups. LPS + HI group also showed decreased number of oligodendrocytes in the WM 72-h postinsult. In the same brain region, increases of activated microglia, TNF-alpha expression, BBB leakage, and cleaved caspase-3 positive cells were much more prominent in LPS + HI group than in the other three groups 24-h postinsult. The oligodendrocytes were the major cells with cleaved caspase-3 expression. We concluded that low-dose LPS sensitized HI-induced WM injury in the immature brain by selectively up-regulating neuroinflammation and BBB damage in the WM.
Collapse
Affiliation(s)
- LAN-WAN WANG
- Institutes of Clinical Medicine [L.W.W and C.C.H.] and Basic Medical Sciences [C.Y.L.], and Department of Pediatrics [C.C.H.], National Cheng Kung University College of Medicine, Tainan 704, Taiwan; Department of Pediatrics [L.W.W.], Chi Mei Medical Center, Tainan 704, Taiwan; Department of Pediatrics [Y.C.C], Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung 833, Taiwan Neuropharmacology Section Lab, Pharmacology & Chemistry NIEHS/NIH, Research Triangle Park NC, USA [J.S.H.]
| | - YING-CHAO CHANG
- Institutes of Clinical Medicine [L.W.W and C.C.H.] and Basic Medical Sciences [C.Y.L.], and Department of Pediatrics [C.C.H.], National Cheng Kung University College of Medicine, Tainan 704, Taiwan; Department of Pediatrics [L.W.W.], Chi Mei Medical Center, Tainan 704, Taiwan; Department of Pediatrics [Y.C.C], Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung 833, Taiwan Neuropharmacology Section Lab, Pharmacology & Chemistry NIEHS/NIH, Research Triangle Park NC, USA [J.S.H.]
| | - CHANG-YI LIN
- Institutes of Clinical Medicine [L.W.W and C.C.H.] and Basic Medical Sciences [C.Y.L.], and Department of Pediatrics [C.C.H.], National Cheng Kung University College of Medicine, Tainan 704, Taiwan; Department of Pediatrics [L.W.W.], Chi Mei Medical Center, Tainan 704, Taiwan; Department of Pediatrics [Y.C.C], Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung 833, Taiwan Neuropharmacology Section Lab, Pharmacology & Chemistry NIEHS/NIH, Research Triangle Park NC, USA [J.S.H.]
| | - JAU-SHYONG HONG
- Institutes of Clinical Medicine [L.W.W and C.C.H.] and Basic Medical Sciences [C.Y.L.], and Department of Pediatrics [C.C.H.], National Cheng Kung University College of Medicine, Tainan 704, Taiwan; Department of Pediatrics [L.W.W.], Chi Mei Medical Center, Tainan 704, Taiwan; Department of Pediatrics [Y.C.C], Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung 833, Taiwan Neuropharmacology Section Lab, Pharmacology & Chemistry NIEHS/NIH, Research Triangle Park NC, USA [J.S.H.]
| | - CHAO-CHING HUANG
- Institutes of Clinical Medicine [L.W.W and C.C.H.] and Basic Medical Sciences [C.Y.L.], and Department of Pediatrics [C.C.H.], National Cheng Kung University College of Medicine, Tainan 704, Taiwan; Department of Pediatrics [L.W.W.], Chi Mei Medical Center, Tainan 704, Taiwan; Department of Pediatrics [Y.C.C], Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung 833, Taiwan Neuropharmacology Section Lab, Pharmacology & Chemistry NIEHS/NIH, Research Triangle Park NC, USA [J.S.H.]
| |
Collapse
|
47
|
|
48
|
Inflammation processes in perinatal brain damage. J Neural Transm (Vienna) 2010; 117:1009-17. [PMID: 20473533 DOI: 10.1007/s00702-010-0411-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 04/18/2010] [Indexed: 12/15/2022]
Abstract
Once viewed as an isolated, immune-privileged organ, the central nervous system has undergone a conceptual change. Neuroinflammation has moved into the focus of research work regarding pathomechanisms underlying perinatal brain damage. In this review, we provide an overview of current concepts regarding perinatal brain damage and the role of inflammation in the disease pathomechanism.
Collapse
|
49
|
Ping Z, Liu W, Kang Z, Cai J, Wang Q, Cheng N, Wang S, Wang S, Zhang JH, Sun X. Sulforaphane protects brains against hypoxic-ischemic injury through induction of Nrf2-dependent phase 2 enzyme. Brain Res 2010; 1343:178-85. [PMID: 20417626 DOI: 10.1016/j.brainres.2010.04.036] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 04/15/2010] [Accepted: 04/16/2010] [Indexed: 01/09/2023]
Abstract
Neonatal hypoxia-ischemia (HI) brain injury involves reactive oxygen species (ROS) and inflammatory responses. Sulforaphane (SFN), an isothiocyanate found in cruciferous vegetables, has cytoprotective effects against oxidative stress and its effect was mediated by NF-E2-related factor-2 (Nrf2), a transcription factor, and heme oxygenase 1 (HO-1) which is one of Nrf2 downstream target genes. This study was undertaken to investigate the neuroprotective mechanisms of SFN in a neonatal HI rat model. Seven-day-old rat pups were subjected to left common carotid artery ligation and hypoxia (8% oxygen at 37 degrees C) for 90 min. SFN (5mg/kg) was systemically administered 30 min before HI insult. Brain injury was assessed by 2,3,5-triphenyltetrazoliumchloride (TTC), Nissl, TUNEL staining, malondialdehyde (MDA), 8OH-dG level, and caspase-3 activity in the cortex and hippocampus. SFN pretreatment increased the expression of Nrf2 and HO-1 in the brain and reduced infarct ratio at 24h after HI. The number of TUNEL-positive neurons as well as activated macroglia and the amount of 8OH-dG, were markedly reduced after SFN treatment, accompanied by suppressed caspase-3 activity and reduced lipid peroxidation (MDA) level. These results demonstrated that SFN could exert neuroprotective effects through increasing Nrf2 and HO-1 expression.
Collapse
Affiliation(s)
- Zhang Ping
- Department of Clinical Laboratory, Changzhou No 2 People's Hospital, Jiangsu 213003, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The lifespan risk of seizures is highest in the neonatal period. Current therapies have limited efficacy. Although the treatment of neonatal seizures has not changed significantly in the last several decades, there has been substantial progress in understanding developmental mechanisms that influence seizure generation and responsiveness to anticonvulsants. This article provides an overview of current approaches to the diagnosis and treatment of neonatal seizures, and some of the recent insights about the pathophysiology of neonatal seizures that may provide the foundation for better treatment are identified.
Collapse
Affiliation(s)
- Frances E Jensen
- Children's Hospital Boston, CLS 14073, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|