1
|
Liu Y, Chen Z, Kang L, He R, Song J, Liu Y, Shi C, Chen J, Dong H, Zhang Y, Ma Y, Wu T, Wang Q, Ding Y, Li X, Li D, Li M, Jin Y, Qin J, Yang Y. Comparing amniotic fluid mass spectrometry assays and amniocyte gene analyses for the prenatal diagnosis of methylmalonic aciduria. PLoS One 2022; 17:e0265766. [PMID: 35358224 PMCID: PMC8970362 DOI: 10.1371/journal.pone.0265766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/07/2022] [Indexed: 11/26/2022] Open
Abstract
Background Methylmalonic aciduria (MMA), a rare inherited disorder, is the most common organic aciduria in China, and prenatal diagnosis has contributed to its prevention. However, the prenatal diagnosis of MMA using cultured amniocytes or chorionic villi to detect gene mutations is exclusively applicable to families with a definite genetic diagnosis. To evaluate the reliability of mass spectrometry assays for the prenatal diagnosis of MMA, we conducted a retrospective study of our 10 years’ experience. Materials and methods This retrospective compare study reviewed the medical records for maternal and fetuses data for 287 mothers with a family history of MMA from June 2010 to December 2020. Methylmalonate and propionylcarnitine in cell-free amniotic fluid were measured using a stable isotope dilution method (GC/MS) and MS/MS-based method (LC/MS/MS). Total homocysteine (tHcy) was measured by fluorescence polarization immunoassay. Depending on the presence of disease-causing gene mutations in probands, gene studies on amniocytes from 222 pregnant women were performed. Results For 222 fetuses of the families with definite genetic diagnosis, gene analyses were performed using cultured amniocytes. 52 fetuses were affected by MMA, whereas 170 were “unaffected”. For GC/MS and LC/MS/MS, the specificity was 96.5% and 95.9%, sensitivity was 71.2% and 84.6%, respectively. The positive and negative predictive values were 86.0% and 91.6% and 86.3% and 95.3%, respectively. Propionylcarnitine/butyrylcarnitine ratio showed the highest accuracy and could thus serve as a sensitive indicator to identify those at a risk for MMA. When GC/MS and LC/MS/MS were performed in parallel, the specificity was 92.5% and sensitivity was 95.6%. When evaluating tHcy, the positive and negative predictive values were 95.0% and 96.1%, respectively. In 65 fetuses without family genetic diagnosis, 11 were finally confirmed to have MMA and 54 were “unaffected” by amniotic fluid biochemical assays. The 54 children showed normal urine organic acids and healthy development after birth. Conclusions Amniotic fluid biochemical assays using GC/MS and LC/MS/MS in parallel increased the accuracy of prenatal diagnosis of MMA. Propionylcarnitine is a more reliable marker than methylmalonic acid in amniotic fluid. Further, tHcy is recommended for the prenatal diagnosis of combined MMA and homocysteinemia.
Collapse
Affiliation(s)
- Yupeng Liu
- Department of Pediatrics, Peking University People’s Hospital, Beijing, China
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Zhehui Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Lulu Kang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ruxuan He
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jinqing Song
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yi Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Chunyan Shi
- Department of Gynaecology and Obstetrics, Peking University First Hospital, Beijing, China
| | - Junya Chen
- Department of Gynaecology and Obstetrics, Peking University First Hospital, Beijing, China
| | - Hui Dong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yao Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yanyan Ma
- Department of Pediatrics, Qinghai University Affiliated Hospital, Xining, China
| | - Tongfei Wu
- Clinical Laboratory Center, Capital Medical University, Beijing, China
| | - Qiao Wang
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Yuan Ding
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Xiyuan Li
- Department of Precise Medicine, General Hospital of Tianjin Medical University, Tianjin, China
| | - Dongxiao Li
- Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Mengqiu Li
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ying Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jiong Qin
- Department of Pediatrics, Peking University People’s Hospital, Beijing, China
- * E-mail: (YY); (JQ)
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- * E-mail: (YY); (JQ)
| |
Collapse
|
2
|
He R, Mo R, Shen M, Kang L, Song J, Liu Y, Chen Z, Zhang H, Yao H, Liu Y, Zhang Y, Dong H, Jin Y, Li M, Qin J, Zheng H, Chen Y, Li D, Wei H, Li X, Zhang H, Huang M, Zhang C, Jiang Y, Liang D, Tian Y, Yang Y. Variable phenotypes and outcomes associated with the MMACHC c.609G>A homologous mutation: long term follow-up in a large cohort of cases. Orphanet J Rare Dis 2020; 15:200. [PMID: 32746869 PMCID: PMC7398195 DOI: 10.1186/s13023-020-01485-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/26/2020] [Indexed: 01/06/2023] Open
Abstract
Background Cobalamin C deficiency (cblC) caused by the MMACHC mutations is the most common type of the disorders of intracellular cobalamin metabolism. While the c.609G > A mutation is most frequent in Chinese cblC patients, its correlation with phenotype has not been delineated. Here we aim to investigate the factors affecting variable phenotypes and outcomes associated with the MMACHC c.609G > A homologous mutation in 149 Chinese cases to have implications for treatment and prevention. Methods We assessed 149 cblC patients caused by MMACHC c.609G > A homozygous mutation. The clinical manifestations, complications, treatment, and outcomes were evaluated; 120 patients were followed-up till December 2019. Results Two patients (1.3%) were prenatally diagnosed, treated after birth and consequently showed normal development. In 15 patients (10.1%) detected by newborn screening, 10 were treated at the age of 2 weeks and showed normal development, while the other 5 were treated after onset and showed neurologic disorders. All 132 clinically diagnosed patients (88.6%) developed symptoms at age from few minutes after birth to 72 months. Among them, 101 (76.5%) had early-onset (before the age of 12 months) and 31 (23.5%) had late-onset (after the age of 12 months). Totally 5 patients died and 24 were lost to follow-up. Of the 132 clinical diagnosed patients, 92 (69.7%) presented with developmental delay, 65 (49.2%) had seizures, 37 (28.0%) had anemia, 24 (18.2%) had feeding difficulty, 23 (17.4%) had ocular problems, and 22 (16.7%) had hydrocephalus. Compared with the non-developmental delay group, the onset age, the age at treatment initiation and the time from onset to treatment initiation were later in the developmental delay group. Seizure group showed significantly higher urinary methylmalonic acid concentration. During long-term follow-up, plasma total homocysteine (tHcy) levels were significantly higher in patients in the uncontrolled group than those in the seizure-free group. Conclusions Most cblC patients caused by MMACHC c.609G > A homozygous mutation showed early-onset. The clinically diagnosed patients usually showed the presence of irreversible brain disorders. Patients treated from the pre-symptomatic stage showed favorable outcomes. Therefore, newborn screening, prenatal diagnosis and early treatment are crucial and the c.609G > A mutant allele should be listed in the pre-pregnancy carrier screening panel in China.
Collapse
Affiliation(s)
- Ruxuan He
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Ruo Mo
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Ming Shen
- Research Center for Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
| | - Lulu Kang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Jinqing Song
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Yi Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Zhehui Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Hongwu Zhang
- Department of Pediatric Surgery, Peking University First Hospital, Beijing, China
| | - Hongxin Yao
- Department of Pediatric Surgery, Peking University First Hospital, Beijing, China
| | - Yupeng Liu
- Department of Pediatrics, People's Hospital of Peking University, Beijing, China
| | - Yao Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Hui Dong
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Ying Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Mengqiu Li
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Jiong Qin
- Department of Pediatrics, People's Hospital of Peking University, Beijing, China
| | - Hong Zheng
- Department of Pediatrics, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yongxing Chen
- Department of Endocrinology and Inherited Metabolic, Henan Children's Hospital, Zhengzhou, China
| | - Dongxiao Li
- Department of Endocrinology and Inherited Metabolic, Henan Children's Hospital, Zhengzhou, China
| | - Haiyan Wei
- Department of Endocrinology and Inherited Metabolic, Henan Children's Hospital, Zhengzhou, China
| | - Xiyuan Li
- Precision Medicine Center, General Hospital of Tianjin Medical University, Tianjin, China
| | - Huifeng Zhang
- Department of Pediatrics, Hebei Medical University Second Hospital, Shijiazhuang, China
| | | | - Chunyan Zhang
- Research Center for Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Desheng Liang
- School of Life Sciences, Central South University, Changsha, 410013, China.
| | - Yaping Tian
- Research Center for Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
3
|
Mika A, Sledzinski T, Stepnowski P. Current Progress of Lipid Analysis in Metabolic Diseases by Mass Spectrometry Methods. Curr Med Chem 2019; 26:60-103. [PMID: 28971757 DOI: 10.2174/0929867324666171003121127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/14/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Obesity, insulin resistance, diabetes, and metabolic syndrome are associated with lipid alterations, and they affect the risk of long-term cardiovascular disease. A reliable analytical instrument to detect changes in the composition or structures of lipids and the tools allowing to connect changes in a specific group of lipids with a specific disease and its progress, is constantly lacking. Lipidomics is a new field of medicine based on the research and identification of lipids and lipid metabolites present in human organism. The primary aim of lipidomics is to search for new biomarkers of different diseases, mainly civilization diseases. OBJECTIVE We aimed to review studies reporting the application of mass spectrometry for lipid analysis in metabolic diseases. METHOD Following an extensive search of peer-reviewed articles on the mass spectrometry analysis of lipids the literature has been discussed in this review article. RESULTS The lipid group contains around 1.7 million species; they are totally different, in terms of the length of aliphatic chain, amount of rings, additional functional groups. Some of them are so complex that their complex analyses are a challenge for analysts. Their qualitative and quantitative analysis of is based mainly on mass spectrometry. CONCLUSION Mass spectrometry techniques are excellent tools for lipid profiling in complex biological samples and the combination with multivariate statistical analysis enables the identification of potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Adriana Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Poland.,Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Poland
| |
Collapse
|
4
|
Evaluation of Metabolic Defects in Fatty Acid Oxidation Using Peripheral Blood Mononuclear Cells Loaded with Deuterium-Labeled Fatty Acids. DISEASE MARKERS 2019; 2019:2984747. [PMID: 30881520 PMCID: PMC6383405 DOI: 10.1155/2019/2984747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/13/2018] [Accepted: 12/03/2018] [Indexed: 11/17/2022]
Abstract
Because tandem mass spectrometry- (MS/MS-) based newborn screening identifies many suspicious cases of fatty acid oxidation and carnitine cycle disorders, a simple, noninvasive test is required to confirm the diagnosis. We have developed a novel method to evaluate the metabolic defects in peripheral blood mononuclear cells loaded with deuterium-labeled fatty acids directly using the ratios of acylcarnitines determined by flow injection MS/MS. We have identified diagnostic indices for the disorders as follows: decreased ratios of d27-C14-acylcarnitine/d31-C16-acylcarnitine and d23-C12-acylcarnitine/d31-C16-acylcarnitine for carnitine palmitoyltransferase-II (CPT-II) deficiency, decreased ratios of d23-C12-acylcarnitine/d27-C14-acylcarnitine for very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency, and increased ratios of d29-C16-OH-acylcarnitine/d31-C16-acylcarnitine for trifunctional protein (TFP) deficiency, together with increased ratios of d7-C4-acylcarnitine/d31-C16-acylcarnitine for carnitine palmitoyltransferase-I deficiency. The decreased ratios of d1-acetylcarnitine/d31-C16-acylcarnitine could be indicative of β-oxidation ability in patients with CPT-II, VLCAD, and TFP deficiencies. Overall, our data showed that the present method was valuable for establishing a rapid diagnosis of fatty acid oxidation disorders and carnitine cycle disorders and for complementing gene analysis because our diagnostic indices may overcome the weaknesses of conventional enzyme activity measurements using fibroblasts or mononuclear cells with assumedly uncertain viability.
Collapse
|
5
|
Vianey-Saban C, Acquaviva C, Cheillan D, Collardeau-Frachon S, Guibaud L, Pagan C, Pettazzoni M, Piraud M, Lamazière A, Froissart R. Antenatal manifestations of inborn errors of metabolism: biological diagnosis. J Inherit Metab Dis 2016; 39:611-624. [PMID: 27393412 DOI: 10.1007/s10545-016-9947-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 12/30/2022]
Abstract
Inborn errors of metabolism (IEMs) that present with abnormal imaging findings in the second half of pregnancy are mainly lysosomal storage disorders (LSDs), cholesterol synthesis disorders (CSDs), glycogen storage disorder type IV (GSD IV), peroxisomal disorders, mitochondrial fatty acid oxidation defects (FAODs), organic acidurias, aminoacidopathies, congenital disorders of glycosylation (CDGs), and transaldolase deficiency. Their biological investigation requires fetal material. The supernatant of amniotic fluid (AF) is useful for the analysis of mucopolysaccharides, oligosaccharides, sialic acid, lysosphingolipids and some enzyme activities for LSDs, 7- and 8-dehydrocholesterol, desmosterol and lathosterol for CSDs, acylcarnitines for FAODs, organic acids for organic acidurias, and polyols for transaldolase deficiency. Cultured AF or fetal cells allow the measurement of enzyme activities for most IEMs, whole-cell assays, or metabolite measurements. The cultured cells or tissue samples taken after fetal death can be used for metabolic profiling, enzyme activities, and DNA extraction. Fetal blood can also be helpful. The identification of vacuolated cells orients toward an LSD, and plasma is useful for diagnosing peroxisomal disorders, FAODs, CSDs, some LSDs, and possibly CDGs and aminoacidopathies. We investigated AF of 1700 pregnancies after exclusion of frequent etiologies of nonimmune hydrops fetalis and identified 108 fetuses affected with LSDs (6.3 %), 29 of them with mucopolysaccharidosis type VII (MPS VII), and six with GSD IV (0.3 %). In the AF of 873 pregnancies, investigated because of intrauterine growth restriction and/or abnormal genitalia, we diagnosed 32 fetuses affected with Smith-Lemli-Opitz syndrome (3.7 %).
Collapse
Affiliation(s)
- Christine Vianey-Saban
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France.
- Unité INSERM U1060 CarMeN Laboratory, University Lyon-1, Lyon, France.
| | - Cécile Acquaviva
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
- UMR 5305 CNRS/UCBL, Lyon, France
| | - David Cheillan
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
- Unité INSERM U1060 CarMeN Laboratory, University Lyon-1, Lyon, France
| | - Sophie Collardeau-Frachon
- Unité INSERM U1060 CarMeN Laboratory, University Lyon-1, Lyon, France
- Département de Pathologie, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
| | - Laurent Guibaud
- Département d'Imagerie Pédiatrique et Fœtale, Hôpital Femme Mère Enfant CHU de Lyon, Lyon, France
| | - Cécile Pagan
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
- Lyon Neuroscience Research Center, CNRS UMR5292; INSERM U1028, Université Claude Bernard Lyon 1, Lyon, France
| | - Magali Pettazzoni
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
| | - Monique Piraud
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
| | - Antonin Lamazière
- Département PM2, Plateforme de Métabolomique, Peptidomique et dosage de Médicaments, APHP, Hôpital Saint Antoine, Paris, France, Laboratoire de spectrométrie de masse, INSERM ERL 1157, CNRS UMR 7203 LBM, Sorbonne Universités-UPMC, Paris, France
| | - Roseline Froissart
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
- UMR 5305 CNRS/UCBL, Lyon, France
| |
Collapse
|
6
|
Boemer F, Deberg M, Schoos R, Caberg JH, Gaillez S, Dugauquier C, Delbecque K, François A, Maton P, Demonceau N, Senterre G, Ferdinandusse S, Debray FG. Diagnostic pitfall in antenatal manifestations of CPT II deficiency. Clin Genet 2015; 89:193-7. [PMID: 25827434 DOI: 10.1111/cge.12593] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/24/2015] [Accepted: 03/27/2015] [Indexed: 12/26/2022]
Abstract
Carnitine palmitoyltransferase II (CPT2) deficiency is a rare inborn error of mitochondrial fatty acid metabolism associated with various phenotypes. Whereas most patients present with postnatal signs of energetic failure affecting muscle and liver, a small subset of patients presents antenatal malformations including brain dysgenesis and neuronal migration defects. Here, we report recurrence of severe cerebral dysgenesis with Dandy-Walker malformation in three successive pregnancies and review previously reported antenatal cases. Interestingly, we also report that acylcarnitines profile, tested retrospectively on the amniotic fluid of last pregnancy, was not sensitive enough to allow reliable prenatal diagnosis of CPT2 deficiency. Finally, because fetuses affected by severe cerebral malformations are frequently aborted, CPT2 deficiency may be underestimated and fatty acid oxidation disorders should be considered when faced with a fetus with Dandy-Walker anomaly or another brain dysgenesis.
Collapse
Affiliation(s)
- F Boemer
- Biochemical Genetics Lab, Department of Human Genetics, CHU Sart-Tilman, University of Liège, Liege, Belgium
| | - M Deberg
- Biochemical Genetics Lab, Department of Human Genetics, CHU Sart-Tilman, University of Liège, Liege, Belgium
| | - R Schoos
- Biochemical Genetics Lab, Department of Human Genetics, CHU Sart-Tilman, University of Liège, Liege, Belgium
| | - J-H Caberg
- Molecular Genetics Lab, Department of Human Genetics, CHU Sart-Tilman, University of Liège, Liege, Belgium
| | - S Gaillez
- Clinical Genetics, Department of Human Genetics, CHU Sart-Tilman, University of Liège, Liege, Belgium
| | - C Dugauquier
- Department of Pathology, Institut de Pathologie et de Génétique, Charleroi, Belgium
| | - K Delbecque
- Department of Pathology, CHU Sart-Tilman, University of Liège, Liege, Belgium
| | - A François
- Department of Pediatrics, Clinique Saint-Vincent, CHC, Liège, Belgium
| | - P Maton
- Department of Pediatrics, Clinique Saint-Vincent, CHC, Liège, Belgium
| | - N Demonceau
- Department of Pediatrics, Clinique Saint-Vincent, CHC, Liège, Belgium
| | - G Senterre
- Department of Gynecology-Obstetrics, Clinique Saint-Vincent, CHC, Liège, Belgium
| | - S Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - F-G Debray
- Clinical Genetics, Department of Human Genetics, CHU Sart-Tilman, University of Liège, Liege, Belgium.,Department of Pediatrics, Clinique Saint-Vincent, CHC, Liège, Belgium.,Metabolic Unit, Department of Human Genetics, CHU Sart-Tilman, University of Liège, Liege, Belgium
| |
Collapse
|
7
|
Proteomics- and metabolomics-based neonatal diagnostics in assessing and managing the critically ill neonate. Clin Perinatol 2008; 35:695-716, vi. [PMID: 19026335 DOI: 10.1016/j.clp.2008.07.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The use of proteomic-based neonatal screening has been relatively limited until the present era and has focused primarily on the evaluation of newborns for inborn errors of metabolism. The future of proteomic-based screening seems to be much more encompassing, however. Tandem mass spectrometry and other related technologies are highly likely to be used in the evaluation of acute disease processes. Proteomics has the advantage over genomics of permitting a more direct look at an evolving disease process, because genomics primarily relates only the potential for a disease or abnormality to express itself. This article reviews the current uses of proteomics-based newborn evaluation and evaluates how this rapidly evolving area of medicine may be used to assess the fetus and the neonate in the near future.
Collapse
|
8
|
Osorio JH, Pourfarzam M. [Determination of normal acylcarnitine levels in a healthy pediatric population as a diagnostic tool in inherited errors of mitochondrial fatty acid beta-oxidation]. An Pediatr (Barc) 2007; 67:548-52. [PMID: 18053519 DOI: 10.1016/s1695-4033(07)70802-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Acylcarnitine measurement in blood is a useful test for the diagnosis of inherited errors of mitochondrial fatty acid beta-oxidation. However, there are few data in the literature on the reference ranges of the various acylcarnitines and on whether these reference ranges are age- or sex-dependent. OBJECTIVES To draw attention to inherited errors of mitochondrial fatty acid beta-oxidation and to establish reference acylcarnitine values in children. PATIENTS AND METHODS A total of 309 blood samples from healthy children divided into four age groups (group A: <1 month; group B: 1-12 months; group C: 1-7 years; group D: 7-18 years) were obtained and analyzed using tandem mass spectrometry. RESULTS AND CONCLUSION Reference acylcarnitine values in children are provided. No significant differences were found in relation to age or sex. Our results differ from those reported in the literature reviewed. Importantly, hydroxyacylcarnitines and glutaryl carnitine are absent when normal samples are processed. We review the literature on the main clinical and laboratory findings in mitochondrial fatty acid beta-oxidation deficiencies.
Collapse
Affiliation(s)
- J H Osorio
- Universidad de Caldas, Laboratorio de Enfermedades Metabólicas, Departamento de Ciencias Básicas de la Salud, Manizales, Colombia.
| | | |
Collapse
|
9
|
Cavicchi C, Donati MA, Funghini S, la Marca G, Malvagia S, Ciani F, Poggi GM, Pasquini E, Zammarchi E, Morrone A. Genetic and biochemical approach to early prenatal diagnosis in a family with mut methylmalonic aciduria. Clin Genet 2006; 69:72-6. [PMID: 16451139 DOI: 10.1111/j.1399-0004.2005.00547.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genetic and biochemical prenatal diagnosis was performed at 11 weeks of gestation in a family with a proband affected by mut methylmalonic aciduria (MMA) and homozygotes for the MUT gene c.643G>A (p.Gly215Ser) mutation. Both chorionic villus and amniotic fluid samples were used. The presence of high levels of methylmalonic acid and propionylcarnitine determined by gas chromatography/mass spectrometry and LC/MS/MS analysis, respectively, and the identification of the p.Gly215Ser at a homozygous level in foetal DNA allowed a certain, rapid and early diagnosis. To our knowledge, this is the first mut MMA prenatal diagnosis carried out by genetic and biochemical approach.
Collapse
Affiliation(s)
- C Cavicchi
- Metabolic and Muscular Unit, Department of Paediatrics, University of Florence, Meyer Children's Hospital, Florence, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hasegawa Y, Iga M, Kimura M, Shigematsu Y, Yamaguchi S. Prenatal diagnosis for organic acid disorders using two mass spectrometric methods, gas chromatography mass spectrometry and tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 823:13-7. [PMID: 15908288 DOI: 10.1016/j.jchromb.2005.04.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 04/04/2005] [Accepted: 04/06/2005] [Indexed: 11/18/2022]
Abstract
We performed prenatal diagnosis of organic acid disorders using two mass spectrometric methods; gas chromatography mass spectrometry (GC/MS) and tandem mass spectrometry (ESI/MS/MS). Of 28 cases whose amniotic fluid was tested, 11 cases were diagnosed as "affected". All cases whose samples were diagnosed as "unaffected" were confirmed to have no symptoms or abnormalities in urinary organic acid analysis after birth. Of the 11 "affected" cases, two cases were missed by ESI/MS/MS but not by GC/MS. When the stability of metabolites in amniotic fluid was checked, it was found that acylcarnitines degraded in one week at room temperature, whereas organic acids such as methylmalonate or methylcitrate were stable for at least 14 days. Prenatal diagnosis by analysis using simultaneous two or more methods may be more reliable, though attention should be paid to sample transportation conditions.
Collapse
Affiliation(s)
- Yuki Hasegawa
- Department of Pediatrics, Shimane University School of Medicine, 89-1 En-ya-cho, Izumo, Shimane 693-8501, Japan.
| | | | | | | | | |
Collapse
|
11
|
Shigematsu Y, Hata I, Tanaka Y, Tajima G, Sakura N, Naito E, Yorifuji T. Stable-isotope dilution gas chromatography-mass spectrometric measurement of 3-hydroxyglutaric acid, glutaric acid and related metabolites in body fluids of patients with glutaric aciduria type 1 found in newborn screening. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 823:7-12. [PMID: 16055049 DOI: 10.1016/j.jchromb.2005.03.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 01/14/2005] [Accepted: 03/03/2005] [Indexed: 10/25/2022]
Abstract
We developed a simple and sensitive stable-isotope dilution method for the quantification of 3-hydroxyglutaric acid (3HGA) and glutaric acid (GA) in body fluids. In our method, tert-butyldimethylsilyl (tBDMS) derivatives of 3HGA and GA were measured with a conventional electron-impact ionization (EI) mode in gas chromatography-mass spectrometry (GC-MS). The control values for 3HGA in nmol/ml were 0.15+/-0.08 (serum; n=10) and 0.07+/-0.03 (CSF; n=10). In addition, glutarylcarnitine and free carnitine were quantified by electrospray tandem mass spectrometry. Using these methods, we monitored 3HGA, GA, and glutarylcarnitine in the body fluids of three patients with glutaric aciduria type 1 found during newborn screening. None of the patients had experienced neurological strokes, which are possibly caused by the accumulation of 3HGA, at 15-24 months of age under a disease-specific treatment, including carnitine supplementation. Our data showed that 3HGA levels were relatively high in some serum samples with lower glutarylcarnitine and carnitine levels, suggesting that carnitine supplementation may play a role in preventing the accumulation of 3HGA in patients with this disease.
Collapse
Affiliation(s)
- Yosuke Shigematsu
- Department of Health Science, Faculty of Medical Sciences, University of Fukui, Matsuoka-cho, Fukui 910-1193, Japan.
| | | | | | | | | | | | | |
Collapse
|
12
|
Kumps A, Vamos E, Mardens Y, Abramowicz M, Genin J, Duez P. Assessment of an electron-impact GC-MS method for organic acids and glycine conjugates in amniotic fluid. J Inherit Metab Dis 2004; 27:567-79. [PMID: 15669672 DOI: 10.1023/b:boli.0000042981.52186.a9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We assessed the reliability of a method designed for common electron-impact GC-MS systems to determine in a single run most organic acids and glycine conjugates of clinical interest in amniotic fluid. Suitable sensitivity was achieved by dividing the selected-ion chromatogram into 12 time segments during which the monitoring dwelt on specific ions. Twelve metabolites were simultaneously quantified in amniotic fluid, with performances ranging from very good to clinically acceptable. The total coefficient of variation was 2.5-14.1% and the detection limit was well below the lower value of the physiological range. For five other metabolites, the precision was lower and/or the detection limit was near the physiological range. The method was clinically assessed by the prenatal detection of three cases of tyrosinaemia type I and one case of propionic acidaemia. Analytical and clinical evaluation of the method showed that GC-MS with electron-impact fragmentation can be an informative analytical approach for low-level organic acids in physiological fluids. Apart from the case of glycine conjugates, the method shows a fair reliability for amniotic fluid analysis, which might warrant its use for prenatal diagnosis of organic acidurias. However, this method cannot replace procedures using isotopic internal standards, nor GC-MS based on chemical ionization fragmentation, which remain confirmatory analytical methods of choice.
Collapse
Affiliation(s)
- A Kumps
- Laboratoire de Biochimie Médicale, Institut de Pharmacie, Université Libre de Bruxelles, Brussels
| | | | | | | | | | | |
Collapse
|
13
|
Röschinger W, Olgemöller B, Fingerhut R, Liebl B, Roscher AA. Advances in analytical mass spectrometry to improve screening for inherited metabolic diseases. Eur J Pediatr 2003; 162 Suppl 1:S67-76. [PMID: 14618396 DOI: 10.1007/s00431-003-1356-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
UNLABELLED Gas chromatography/mass spectrometry became available more than 30 years ago and has subsequently profoundly contributed not only in the identification of a wide range of inborn errors but also as a key tool for clinical diagnostic screening of genetic metabolic disease. Due to extraordinary advances in liquid chromatography and mass spectrometry (MS) developed in the last decade, the utilisation of MS and the potential number of applications for the purpose of metabolic screening is currently undergoing considerable expansion. CONCLUSIONS This overview aims to describe only current new developments in clinically most relevant applications, in particular with focus on low molecular weight compounds.
Collapse
Affiliation(s)
- Wulf Röschinger
- Research Center, Department of Biochemical Genetics and Molecular Biology, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstrasse 4, 80337, Munich, Germany.
| | | | | | | | | |
Collapse
|
14
|
Chace DH, Kalas TA, Naylor EW. Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns. Clin Chem 2003; 49:1797-817. [PMID: 14578311 DOI: 10.1373/clinchem.2003.022178] [Citation(s) in RCA: 446] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Over the past decade laboratories that test for metabolic disorders have introduced tandem mass spectrometry (MS/MS), which is more sensitive, specific, reliable, and comprehensive than traditional assays, into their newborn-screening programs. MS/MS is rapidly replacing these one-analysis, one-metabolite, one-disease classic screening techniques with a one-analysis, many-metabolites, many-diseases approach that also facilitates the ability to add new disorders to existing newborn-screening panels. METHODS During the past few years experts have authored many valuable articles describing various approaches to newborn metabolic screening by MS/MS. We attempted to document key developments in the introduction and validation of MS/MS screening for metabolic disorders. Our approach used the perspective of the metabolite and which diseases may be present from its detection rather than a more traditional approach of describing a disease and noting which metabolites are increased when it is present. CONTENT This review cites important historical developments in the introduction and validation of MS/MS screening for metabolic disorders. It also offers a basic technical understanding of MS/MS as it is applied to multianalyte metabolic screening and explains why MS/MS is well suited for analysis of amino acids and acylcarnitines in dried filter-paper blood specimens. It also describes amino acids and acylcarnitines as they are detected and measured by MS/MS and their significance to the identification of specific amino acid, fatty acid, and organic acid disorders. CONCLUSIONS Multianalyte technologies such as MS/MS are suitable for newborn screening and other mass screening programs because they improve the detection of many diseases in the current screening panel while enabling expansion to disorders that are now recognized as important and need to be identified in pediatric medicine.
Collapse
Affiliation(s)
- Donald H Chace
- Pediatrix Screening, PO Box 219, 90 Emerson Lane, Bridgeville, PA 15017, USA.
| | | | | |
Collapse
|
15
|
Yoshino M, Tokunaga Y, Watanabe Y, Yoshida I, Sakaguchi M, Hata I, Shigematsu Y, Kimura M, Yamaguchi S. Effect of supplementation with L-carnitine at a small dose on acylcarnitine profiles in serum and urine and the renal handling of acylcarnitines in a patient with multiple acyl-coenzyme A dehydrogenation defect. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 792:73-82. [PMID: 12828999 DOI: 10.1016/s1570-0232(03)00310-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We studied the effects of L-carnitine supplementation at a small dose on the profiles of acylcarnitines in serum and urine, as well as the renal handling of acylcarnitines, in a patient with multiple acyl-coenzyme A dehydrogenation defect. After supplementation with L-carnitine at a dose of 20 mg/kg/day, the concentration of each acylcarnitine measured both in the serum and in the urine had increased significantly, with the exception of that of an acylcarnitine with a carbon chain length (C) of 8 (C8 acylcarnitine). The magnitude of increase in the concentrations of the acylcarnitines in the serum was not associated with chain length, whereas in the urine, the magnitude tended to be greater in proportion to the shortness of the chain length. The fractional excretions of C2-C5 acylcarnitines exceeded 100%, indicating that they were produced in, or transported across, renal tubular epithelial cells and secreted into the urine. These results indicate that supplementation with a relatively small amount of L-carnitine can enhance the renal excretion of accumulated short-chain-length acylcarnitines through tubular excretion, in addition to basic glomerular filtration.
Collapse
Affiliation(s)
- Makoto Yoshino
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Shigematsu Y, Hirano S, Hata I, Tanaka Y, Sudo M, Sakura N, Tajima T, Yamaguchi S. Newborn mass screening and selective screening using electrospray tandem mass spectrometry in Japan. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 776:39-48. [PMID: 12127323 DOI: 10.1016/s1570-0232(02)00077-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Electrospray tandem mass spectrometry was applied to detect a series of inherited metabolic disorders during a newborn-screening pilot study and a selective screening in Japan. In our mass screening of 102,200 newborns, five patients with propionic acidemia, two with methylmalonic acidemia, two with medium-chain acyl-CoA dehydrogenase deficiency, three with citrullinemia type II, and one with phenylketonuria were identified. In a selective screening of 164 patients with symptoms mainly related to hypoglycemia and/or hyperammonemia, 12 with fatty acid oxidation disorders and six with other disorders were found. The results indicated the importance of newborn screening using this technology in Japan.
Collapse
Affiliation(s)
- Yosuke Shigematsu
- Department of Health Science, School of Nursing, Fukui Medical University, Matsuoka-cho, 910-1193 Fukui, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Carpenter KH, Wiley V. Application of tandem mass spectrometry to biochemical genetics and newborn screening. Clin Chim Acta 2002; 322:1-10. [PMID: 12104075 DOI: 10.1016/s0009-8981(02)00135-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Tandem mass spectrometry (MS/MS) has become a key technology in the fields of biochemical genetics and newborn screening. The development of electrospray ionisation (ESI) and associated automation of sample handling and data manipulation have allowed the introduction of expanded newborn screening for disorders which feature accumulation of acylcarnitines and certain amino acids in a number of programs worldwide. In addition, the technique has proven valuable in several areas of biochemical genetics including quantification of carnitine and acylcarnitines, in vitro studies of metabolic pathways (in particular beta-oxidation), and diagnosis of peroxisomal and lysosomal disorders. This review covers some of the basic theory of MS/MS and focuses on the practical application of the technique in these two interrelated areas.
Collapse
Affiliation(s)
- Kevin H Carpenter
- New South Wales Biochemical Genetics, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW 2145, Sydney, Australia.
| | | |
Collapse
|
18
|
Ogier de Baulny H, Saudubray JM. Branched-chain organic acidurias. SEMINARS IN NEONATOLOGY : SN 2002; 7:65-74. [PMID: 12069539 DOI: 10.1053/siny.2001.0087] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Branched chain organic acidurias are a group of disorders that result from an abnormality of specific enzymes involving the catabolism of branched chain amino acids (leucine, isoleucine, valine). Maple syrup urine disease (MSUD), isovaleric acidaemia (IVA), propionic aciduria (PA) and methylmalonic aciduria (MMA) represent the most commonly encountered abnormal organic acidurias. All these four disorders present in neonates as a neurologic distress of the intoxication type with either ketosis or ketoacidosis and hyperammonaemia. There is a free interval between birth and clinical symptoms. MMA, PA and IVA present with a severe dehydration, leuconeutropenia and thrombopenia which can mimic sepsis. All these disorders can be diagnosed by identifying acylcarnitine and other organic acid compounds in plasma and urine by gas chromatography mass spectrometry or tandem MS-MS. These disorders are amenable to treatment by removing toxic compounds and by using special diets and carnitine.
Collapse
Affiliation(s)
- H Ogier de Baulny
- Service de Neuropédiatrie, Maladies Métaboliques, Hôpital Robert Debré, Paris, France.
| | | |
Collapse
|
19
|
Affiliation(s)
- S I Goodman
- Department of Pediatrics, The Children's Hospital and University of Colorado School of Medicine, Denver, CO 80262-0001, USA
| |
Collapse
|
20
|
Chisholm CA, Vavelidis F, Lovell MA, Sweetman L, Roe CR, Roe DS, Frerman FE, Wilson WG. Prenatal diagnosis of multiple acyl-CoA dehydrogenase deficiency: association with elevated alpha-fetoprotein and cystic renal changes. Prenat Diagn 2001; 21:856-9. [PMID: 11746129 DOI: 10.1002/pd.157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We report the occurrence of multiple acyl-CoA dehydrogenase deficiency (MADD) in two consecutive pregnancies in a young, Caucasian, non-consanguineous couple. In the first pregnancy, the maternal serum alpha-fetoprotein was elevated. A sonogram showed growth delay, cystic renal disease, and oligohydramnios; the parents decided to terminate the pregnancy. Postmortem examination confirmed the cystic renal disease and showed hepatic steatosis, raising the suspicion of a metabolic disorder. The diagnosis of MADD was made by immunoblot studies on cultured fibroblasts. In the subsequent pregnancy, a sonogram at 15 weeks' gestation showed an early growth delay but normal kidneys. The maternal serum and amniotic fluid concentrations of alpha-fetoprotein were elevated, and the amniotic fluid acylcarnitine profile was consistent with MADD. In vitro metabolic studies on cultured amniocytes confirmed the diagnosis. A follow-up sonogram showed cystic renal changes. These cases provide additional information regarding the evolution of renal changes in affected fetuses and show a relationship with elevated alpha-fetoprotein, which may be useful in counseling the couple at risk. MADD should be considered in the differential diagnosis of elevated alpha-fetoprotein and cystic renal disease. Early growth delay may be an additional feature.
Collapse
Affiliation(s)
- C A Chisholm
- Department of Obstetrics and Gynecology, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Rashed MS. Clinical applications of tandem mass spectrometry: ten years of diagnosis and screening for inherited metabolic diseases. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2001; 758:27-48. [PMID: 11482732 DOI: 10.1016/s0378-4347(01)00100-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This paper reviews the clinical applications of tandem mass spectrometry (MS-MS) in diagnosis and screening for inherited metabolic diseases in the last 10 years. The broad-spectrum of diseases covered, specificity, ease of sample preparation, and high throughput provided by the MS-MS technology has led to the development of multi-disorder newborn screening programs in many countries for amino acid disorders, organic acidemias, and fatty acid oxidation defects. Issues related to sample acquisition, sample preparation, quantification of metabolites, and validation are discussed. Our current experience with the technique in screening is presented. The application of MS-MS in selective screening has revolutionized the field and made a major impact on the detection of certain disease classes such as the fatty acid oxidation defects. New specific and rapid MS-MS and LC-MS-MS methods for highly polar small molecules are supplementing or replacing some of the classical GC-MS methods for a multitude of metabolites and disorders. New exciting applications are appearing in fields of prenatal, postnatal, and even postmortem diagnosis. Examples for pitfalls in the technique are also presented.
Collapse
Affiliation(s)
- M S Rashed
- Metabolic Screening Laboratory, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| |
Collapse
|
22
|
Affiliation(s)
- D H Chace
- Division of Bio-Analytical Chemistry and Mass Spectrometry, Neo Gen Screening, Inc., P.O. Box 219, Bridgeville, Pennsylvania 15017, USA.
| |
Collapse
|
23
|
Affiliation(s)
- P Rinaldo
- Biochemical Genetics Laboratory--Hilton 330, Department of Laboratory Medicine & Pathology, Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
24
|
Gibson KM, Burlingame TG, Hogema B, Jakobs C, Schutgens RB, Millington D, Roe CR, Roe DS, Sweetman L, Steiner RD, Linck L, Pohowalla P, Sacks M, Kiss D, Rinaldo P, Vockley J. 2-Methylbutyryl-coenzyme A dehydrogenase deficiency: a new inborn error of L-isoleucine metabolism. Pediatr Res 2000; 47:830-3. [PMID: 10832746 DOI: 10.1203/00006450-200006000-00025] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An 4-mo-old male was found to have an isolated increase in 2-methylbutyrylglycine (2-MBG) and 2-methylbutyrylcamitine (2-MBC) in physiologic fluids. In vitro oxidation studies in cultured fibroblasts using 13C- and 14C-labeled branched chain amino acids indicated an isolated block in 2-methylbutyryl-CoA dehydrogenase (2-MBCDase). Western blotting revealed absence of 2-MBCDase protein in fibroblast extracts; DNA sequencing identified a single 778 C>T substitution in the 2-MBCDase coding region (778 C>T), substituting phenylalanine for leucine at amino acid 222 (L222F) and absence of enzyme activity for the 2-MBCDase protein expressed in Escherichia coli. Prenatal diagnosis in a subsequent pregnancy suggested an affected female fetus, supporting an autosomal recessive mode of inheritance. These data confirm the first documented case of isolated 2-MBCDase deficiency in humans.
Collapse
Affiliation(s)
- K M Gibson
- Department of Molecular and Medical Genetics, Oregon Health Sciences University, Portland 97201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Vreken P, van Lint AE, Bootsma AH, Overmars H, Wanders RJ, van Gennip AH. Rapid diagnosis of organic acidemias and fatty-acid oxidation defects by quantitative electrospray tandem-MS acyl-carnitine analysis in plasma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 466:327-37. [PMID: 10709660 DOI: 10.1007/0-306-46818-2_38] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The analysis of circulating free carnitine and acyl-carnitines provides a powerful selective screening tool for genetic defects in mitochondrial fatty acid oxidation and defects in the catabolism of branched chain amino acids. Using electrospray tandem mass spectrometry (ESI/MS/MS) we developed a sensitive quantitative analysis of free carnitine and acyl-carnitines in plasma and/or serum. This method was evaluated by analyzing 250 control samples and 103 samples of patients suffering from twelve different defects in either mitochondrial fatty acid oxidation or the catabolism of branched chain amino acids. The reproducibility of the method was acceptable with a day-to-day coefficient of variation ranging from 6-15% for free carnitine and the different acylcarnitines. Except for one patient with a mild form of short chain acyl CoA dehydrogenase (SCAD) deficiency and a single sample from a patient with a mild form of multiple acyl CoA dehydrogenase (MAD) deficiency all patient samples were clearly abnormal under a wide variety of clinical conditions, illustrating the high sensitivity and specificity of the method.
Collapse
Affiliation(s)
- P Vreken
- University of Amsterdam, Dept. of Clinical Chemistry, The Netherlands.
| | | | | | | | | | | |
Collapse
|
26
|
Busquets C, Coll MJ, Merinero B, Ugarte M, Ruiz MA, Martinez Bermejo A, Ribes A. Prenatal molecular diagnosis of glutaric aciduria type I by direct mutation analysis. Prenat Diagn 2000. [DOI: 10.1002/1097-0223(200009)20:9<761::aid-pd894>3.0.co;2-t] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Calabrese V, Rizza V. Formation of propionate after short-term ethanol treatment and its interaction with the carnitine pool in rat. Alcohol 1999; 19:169-76. [PMID: 10548162 DOI: 10.1016/s0741-8329(99)00036-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Organic acidurias are genetic disorders of mitochondrial metabolism that lead to the accumulation in tissues and biological fluids of organic acids. It has been demonstrated that interaction of carnitine with the cellular CoA pool, through the production of acyl-carnitines, is potentially critical for maintaining normal cellular metabolism under conditions of impaired acyl-CoA use and that exposure of humans and other mammals to ethanol effects leads to impairment of mitochondrial function. The aim of the present study was to evaluate the role of ethanol on urinary excretion of short-chain organic acids and endogenous carnitines in rats. The data reported show that ethanol significantly increases urinary excretion of propionate, methylmalonate, as well as free acetate, butyrate, pyruvate, lactate, and beta-hydroxybutyrate. Furthermore, the increased formation of propionate and methylmalonate was dependent on the dose of ethanol; did not require the metabolism of ethanol, as was shown in experiments with pyrazole treatment of ethanol rats; and appears to be mediated by beta-adrenergic mechanisms because propranolol almost completely suppresses propionate accumulation. Alcohol administration also increased excretion of specific acyl-carnitines, corresponding to the accumulating acyl groups, whereas excretion of free carnitine was significantly reduced, with respect to control values. The data presented indicate that the short-term ethanol administration is associated with increased excretion of selected organic acids. This study suggests that endogenous carnitine pool might play a role against the deleterious effects of accumulating short-chain organic acids.
Collapse
Affiliation(s)
- V Calabrese
- Biochemistry, Faculty of Medicine, University of Catania, Italy.
| | | |
Collapse
|
28
|
Dowling MM, Chudnow RS. Acute onset of chorea and dystonia following a febrile illness in a 1-year-old boy. Semin Pediatr Neurol 1999; 6:216-20. [PMID: 10522342 DOI: 10.1016/s1071-9091(99)80016-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A 12-month-old boy with acute onset hemichorea and dystonia following a gastroenteritis has abnormal signal intensities of his basal ganglia on brain magnetic resonance imaging (MRI). A rigorous laboratory investigation is successful in diagnosing his rare condition. A discussion of the differential of abnormal basal ganglia on MRI is presented to help illustrate this case.
Collapse
Affiliation(s)
- M M Dowling
- Department of Pediatric Neurology, University of Texas, Southwestern Medical Center at Dallas, USA
| | | |
Collapse
|
29
|
Shigematsu Y, Hata I, Kikawa Y, Mayumi M, Tanaka Y, Sudo M, Kado N. Modifications in electrospray tandem mass spectrometry for a neonatal-screening pilot study in Japan. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1999; 731:97-103. [PMID: 10491994 DOI: 10.1016/s0378-4347(99)00111-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In a neonatal-screening pilot study for inherited disorders in organic acid and amino acid metabolism, we analyzed butyrated acylcarnitines and amino acids in blood spots of more than 20,000 newborns by electrospray tandem mass spectrometry. In order to screen urea cycle disorders, we performed multiple scanning functions with additional stable isotope-labelled internal standards, since such reported functions as neutral loss of m/z 102 or 109 for butyrated amino acids were not sufficient. Arginine levels were measured with arginine-13C6. Hypocitrullinemia for the screening of some urea cycle disorders was detectable by measurement with synthesized citrulline-d6, although we did not find any such disorders. In the acylcarnitine analysis, we found a patient with propionic acidemia, who has been treated effectively. The increasing false positive rate due to the use of pivalic acid-containing antibiotics in the diagnosis of isovaleric acidemia was a problem in Japan.
Collapse
Affiliation(s)
- Y Shigematsu
- Department of Pediatrics, Fukui Medical University Hospital, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
We summarize the current status of the use of tandem mass spectrometry for the detection of inherited metabolic disorders and the investigation of the pathophysiology of these conditions. We also indicate some of the more recent developments of this technology that have potential diagnostic applications.
Collapse
Affiliation(s)
- K Bartlett
- Spence Biochemical Genetics Unit, Sir James Spence Institute of Child Health, University of Newcastle upon Tyne, Royal Victoria Infirmary, UK.
| | | |
Collapse
|
31
|
Vreken P, van Lint AE, Bootsma AH, Overmars H, Wanders RJ, van Gennip AH. Quantitative plasma acylcarnitine analysis using electrospray tandem mass spectrometry for the diagnosis of organic acidaemias and fatty acid oxidation defects. J Inherit Metab Dis 1999; 22:302-6. [PMID: 10384392 DOI: 10.1023/a:1005587617745] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- P Vreken
- Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
32
|
Manning NJ, Bonham JR, Downing M, Edwards RG, Olpin SE, Pollitt RJ, Pourfarzam M, Sharrard MJ, Tanner MS. Normal acylcarnitines in maternal urine during a pregnancy affected by glutaric aciduria type II. J Inherit Metab Dis 1999; 22:88-9. [PMID: 10070625 DOI: 10.1023/a:1005467803802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- N J Manning
- Department of Chemical Pathology and Neonatal Screening, Children's Hospital, Sheffield, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- P T Ozand
- Departments of Pediatrics and Biological and Medical Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
34
|
Screening blood spots for inborn errors of metabolism by electrospray tandem mass spectrometry with a microplate batch process and a computer algorithm for automated flagging of abnormal profiles. Clin Chem 1997. [DOI: 10.1093/clinchem/43.7.1129] [Citation(s) in RCA: 218] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Metabolic profiling of amino acids and acylcarnitines from blood spots by automated electrospray tandem mass spectrometry (ESI-MS/MS) is a powerful diagnostic tool for inborn errors of metabolism. New approaches to sample preparation and data interpretation have helped establish the methodology as a robust, high-throughput neonatal screening method. We introduce an efficient 96-well-microplate batch process for blood-spot sample preparation, with which we can obtain high-quality profiles from 500-1000 samples per day per instrument. A computer-assisted metabolic profiling algorithm automatically flags abnormal profiles. We selected diagnostic parameters for the algorithm by comparing profiles from patients with known metabolic disorders and those from normal newborns. Reference range and cutoff values for the diagnostic parameters were established by measuring either metabolite concentrations or peak ratios of certain metabolite pairs. Rigorous testing of the algorithm demonstrates its outstanding clinical sensitivity in flagging abnormal profiles and its high cumulative specificity.
Collapse
|