1
|
Munoz MA, Skinner OP, Masle-Farquhar E, Jurczyluk J, Xiao Y, Fletcher EK, Kristianto E, Hodson MP, O'Donoghue SI, Kaur S, Brink R, Zahra DG, Deenick EK, Perry KA, Robertson AA, Mehr S, Hissaria P, Mulders-Manders CM, Simon A, Rogers MJ. Increased core body temperature exacerbates defective protein prenylation in mouse models of mevalonate kinase deficiency. J Clin Invest 2022; 132:160929. [PMID: 36189795 PMCID: PMC9525117 DOI: 10.1172/jci160929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Mevalonate kinase deficiency (MKD) is characterized by recurrent fevers and flares of systemic inflammation, caused by biallelic loss-of-function mutations in MVK. The underlying disease mechanisms and triggers of inflammatory flares are poorly understood because of the lack of in vivo models. We describe genetically modified mice bearing the hypomorphic mutation p.Val377Ile (the commonest variant in patients with MKD) and amorphic, frameshift mutations in Mvk. Compound heterozygous mice recapitulated the characteristic biochemical phenotype of MKD, with increased plasma mevalonic acid and clear buildup of unprenylated GTPases in PBMCs, splenocytes, and bone marrow. The inflammatory response to LPS was enhanced in compound heterozygous mice and treatment with the NLRP3 inflammasome inhibitor MCC950 prevented the elevation of circulating IL-1β, thus identifying a potential inflammasome target for future therapeutic approaches. Furthermore, lines of mice with a range of deficiencies in mevalonate kinase and abnormal prenylation mirrored the genotype-phenotype relationship in human MKD. Importantly, these mice allowed the determination of a threshold level of residual enzyme activity, below which protein prenylation is impaired. Elevated temperature dramatically but reversibly exacerbated the deficit in the mevalonate pathway and the defective prenylation in vitro and in vivo, highlighting increased body temperature as a likely trigger of inflammatory flares.
Collapse
Affiliation(s)
- Marcia A Munoz
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Oliver P Skinner
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Etienne Masle-Farquhar
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Julie Jurczyluk
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Ya Xiao
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Emma K Fletcher
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Esther Kristianto
- Victor Chang Cardiac Innovation Centre, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Mark P Hodson
- School of Pharmacy, University of Queensland, Woolloongabba, Queensland, Australia
| | - Seán I O'Donoghue
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Sandeep Kaur
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Robert Brink
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - David G Zahra
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Elissa K Deenick
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Kristen A Perry
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Avril Ab Robertson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Sam Mehr
- Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Pravin Hissaria
- Royal Adelaide Hospital, SA Pathology and University of Adelaide, Adelaide, South Australia, Australia
| | - Catharina M Mulders-Manders
- Department of Internal Medicine, Radboudumc Expertise Centre for Immunodeficiency and Autoinflammation, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Anna Simon
- Department of Internal Medicine, Radboudumc Expertise Centre for Immunodeficiency and Autoinflammation, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Michael J Rogers
- Garvan Institute of Medical Research and School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Mevalonate kinase deficiency leads to decreased prenylation of Rab GTPases. Immunol Cell Biol 2016; 94:994-999. [PMID: 27377765 PMCID: PMC5122740 DOI: 10.1038/icb.2016.58] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 01/02/2023]
Abstract
Mevalonate kinase deficiency (MKD) is caused by mutations in a key enzyme of the mevalonate–cholesterol biosynthesis pathway, leading to recurrent autoinflammatory disease characterised by enhanced release of interleukin-1β (IL-1β). It is currently believed that the inflammatory phenotype of MKD is triggered by temperature-sensitive loss of mevalonate kinase activity and reduced biosynthesis of isoprenoid lipids required for the prenylation of small GTPase proteins. However, previous studies have not clearly shown any change in protein prenylation in patient cells under normal conditions. With lymphoblast cell lines from two compound heterozygous MKD patients, we used a highly sensitive in vitro prenylation assay, together with quantitative mass spectrometry, to reveal a subtle accumulation of unprenylated Rab GTPases in cells cultured for 3 days or more at 40 °C compared with 37 °C. This included a 200% increase in unprenylated Rab7A, Rab14 and Rab1A. Inhibition of sterol regulatory element-binding protein (SREBP) activation by fatostatin led to more pronounced accumulation of unprenylated Rab proteins in MKD cells but not parent cells, suggesting that cultured MKD cells may partially overcome the loss of isoprenoid lipids by SREBP-mediated upregulation of enzymes required for isoprenoid biosynthesis. Furthermore, while inhibition of Rho/Rac/Rap prenylation promoted the release of IL-1β, specific inhibition of Rab prenylation by NE10790 had no effect in human peripheral blood mononuclear cells or human THP-1 monocytic cells. These studies demonstrate for the first time that mutations in mevalonate kinase can lead to a mild, temperature-induced defect in the prenylation of small GTPases, but that loss of prenylated Rab GTPases is not the cause of enhanced IL-1β release in MKD.
Collapse
|
3
|
Welti M. Regulation of dolichol-linked glycosylation. Glycoconj J 2012; 30:51-6. [DOI: 10.1007/s10719-012-9417-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/06/2012] [Accepted: 06/11/2012] [Indexed: 11/28/2022]
|
4
|
Henneman L, Schneiders MS, Turkenburg M, Waterham HR. Compromized geranylgeranylation of RhoA and Rac1 in mevalonate kinase deficiency. J Inherit Metab Dis 2010; 33:625-32. [PMID: 20814828 PMCID: PMC2946549 DOI: 10.1007/s10545-010-9173-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 05/25/2010] [Accepted: 07/07/2010] [Indexed: 11/30/2022]
Abstract
Mevalonate kinase deficiency (MKD) is an autoinflammatory disorder caused by mutations in the MVK gene resulting in decreased activity of the enzyme mevalonate kinase (MK). Although MK is required for biosynthesis of all isoprenoids, in MKD, in particular, the timely synthesis of geranylgeranyl pyrophosphate appears to be compromised. Because small guanosine triphosphatases (GTPases) depend on geranylgeranylation for their proper signaling function, we studied the effect of MK deficiency on geranylgeranylation and activation of the two small GTPases, RhoA and Rac1. We demonstrate that both geranylgeranylation and activation of the two GTPases are more easily disturbed in MKD cells than in control cells when the flux though the isoprenoid biosynthesis pathway is suppressed by low concentrations of simvastatin. The limited capacity of geranylgeranylation in MKD cells readily leads to markedly increased levels of nonisoprenylated and activated GTPases, which will affect proper signaling by these GTPases.
Collapse
Affiliation(s)
- L. Henneman
- Laboratory Genetic Metabolic Diseases (F0-222), Departments of Clinical Chemistry and Pediatrics, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| | - M. S. Schneiders
- Laboratory Genetic Metabolic Diseases (F0-222), Departments of Clinical Chemistry and Pediatrics, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| | - M. Turkenburg
- Laboratory Genetic Metabolic Diseases (F0-222), Departments of Clinical Chemistry and Pediatrics, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| | - H. R. Waterham
- Laboratory Genetic Metabolic Diseases (F0-222), Departments of Clinical Chemistry and Pediatrics, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| |
Collapse
|
5
|
Haas D, Niklowitz P, Hörster F, Baumgartner ER, Prasad C, Rodenburg RJ, Hoffmann GF, Menke T, Okun JG. Coenzyme Q(10) is decreased in fibroblasts of patients with methylmalonic aciduria but not in mevalonic aciduria. J Inherit Metab Dis 2009; 32:570-5. [PMID: 19504350 DOI: 10.1007/s10545-009-1150-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 04/20/2009] [Accepted: 04/29/2009] [Indexed: 10/20/2022]
Abstract
The content of coenzyme Q(10) (CoQ(10)) was examined in skin fibroblasts of 10 patients with mevalonic aciduria (MVA) and of 22 patients with methylmalonic aciduria (MMA). Patients with these inborn errors of metabolism are thought to be at risk for CoQ(10) depletion either by direct inhibition of the proximal pathway of CoQ(10) synthesis (MVA) or indirectly by inhibition of mitochondrial energy metabolism (MMA). We demonstrated that CoQ(10) concentrations were not significantly different from controls in MVA patients, suggesting that there may be upregulatory effects. On the other hand the CoQ(10) content in fibroblasts of patients with MMA was significantly reduced.
Collapse
Affiliation(s)
- D Haas
- Department of General Pediatrics, Division of Inborn Metabolic Diseases, University Children's Hospital, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Autoinflammatory diseases (AIDs) are illnesses caused by primary dysfunction of the innate immune system. Proteins that are mutated in AIDs mediate the regulation of NFkappaB activation, cell apoptosis, and IL-1beta secretion through cross-regulated and sometimes common signaling pathways. AIDs include a broad number of monogenic [e.g., familial Mediterranean fever (FMF), cryopyrin-associated periodic syndrome (CAPS), mevalonate kinase deficiency (MKD), tumor necrosis factor (TNF)-receptor-associated periodic syndrome (TRAPS)] and multifactorial (e.g., Behçet's syndrome) disorders. These conditions are characterized by recurrent attacks of fever, abdominal pain, arthritis, and cutaneous signs; these symptoms sometimes overlap, obscuring diagnosis. Distinguishing signs and the use of specific functional tests where available (e.g., in MKD) are helpful. However, some patients remain hard to manage despite the advent of new genetic tests and/or due to lack of effective treatment.
Collapse
Affiliation(s)
- Isabelle Touitou
- CHU Montpellier, Unité médicale des maladies autoinflammatoires, Hôpital A de Villeneuve, Montpellier, France.
| | | |
Collapse
|
7
|
Edison R, Muenke M. The interplay of genetic and environmental factors in craniofacial morphogenesis: holoprosencephaly and the role of cholesterol. Clin Genet 2008. [DOI: 10.1111/j.1399-0004.2003.tb02302.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Naruto T. MVK gene abnormality and new approach to treatment of hyper IgD syndrome and periodic fever syndrome. ACTA ACUST UNITED AC 2007; 30:86-9. [PMID: 17473510 DOI: 10.2177/jsci.30.86] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Hyper IgD and periodic fever syndrome (HIDS; OMIM 260920) is one of the hereditary autoinflammatory syndromes characterized by recurrent episodes of fever and inflammation.. HIDS is an autosomal recessive disorder characterized by recurrent fever attacks in early childhood. HIDS caused by mevalonate kinase (MK) mutations, also that is the gene of mevalonic aciduria (OMIM 251170). During febrile episodes, urinary mevalonate concentrations were found to be significantly elevated in patients. Diagnosis of HIDS was retrieving gene or measurement of the enzyme activity in peripheral blood lymphocyte in general. This of HIDS is an activity decline of MK, and a complete deficiency of MK becomes a mevalonic aciduria with a nervous symptom. The relation between the fever and inflammation of mevalonate or isoprenoid products are uncertain. The therapy attempt with statins, which is inhibited the next enzyme after HMG-CoA reductase, or inhibit the proinflammatory cytokines.
Collapse
Affiliation(s)
- Takuya Naruto
- Department of Pediatrics, Yokohama City, University School of Medicine
| |
Collapse
|
9
|
Simon A, van der Meer JWM. Pathogenesis of familial periodic fever syndromes or hereditary autoinflammatory syndromes. Am J Physiol Regul Integr Comp Physiol 2006; 292:R86-98. [PMID: 16931648 DOI: 10.1152/ajpregu.00504.2006] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Familial periodic fever syndromes, otherwise known as hereditary autoinflammatory syndromes, are inherited disorders characterized by recurrent episodes of fever and inflammation. The general hypothesis is that the innate immune response in these patients is wrongly tuned, being either too sensitive to very minor stimuli or turned off too late. The genetic background of the major familial periodic fever syndromes has been unraveled, and through research into the pathophysiology, a clearer picture of the innate immune system is emerging. After an introduction on fever, interleukin-1beta and inflammasomes, which are involved in the majority of these diseases, this manuscript offers a detailed review of the pathophysiology of the cryopyrin-associated periodic syndromes, familial Mediterranean fever, the syndrome of pyogenic arthritis, pyoderma gangrenosum and acne, Blau syndrome, TNF-receptor-associated periodic syndrome and hyper-IgD and periodic fever syndrome. Despite recent major advances, there are still many questions to be answered regarding the pathogenesis of these disorders.
Collapse
Affiliation(s)
- Anna Simon
- Department of General Internal Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
| | | |
Collapse
|
10
|
Abstract
The isoprenoid biosynthetic pathway is the source of a wide array of products. The pathway has been highly conserved throughout evolution, and isoprenoids are some of the most ancient biomolecules ever identified, playing key roles in many life forms. In this review we focus on C-10 mono-, C-15 sesqui-, and C-20 diterpenes. Evidence for interconversion between the pathway intermediates farnesyl pyrophosphate and geranylgeranyl pyrophosphate and their respective metabolites is examined. The diverse functions of these molecules are discussed in detail, including their ability to regulate expression of the beta-HMG-CoA reductase and Ras-related proteins. Additional topics include the mechanisms underlying the apoptotic effects of select isoprenoids, antiulcer activities, and the disposition and degradation of isoprenoids in the environment. Finally, the significance of pharmacological manipulation of the isoprenoid pathway and clinical correlations are discussed.
Collapse
Affiliation(s)
- Sarah A Holstein
- Departments of Internal Medicine and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
11
|
Ohashi K, Osuga JI, Tozawa R, Kitamine T, Yagyu H, Sekiya M, Tomita S, Okazaki H, Tamura Y, Yahagi N, Iizuka Y, Harada K, Gotoda T, Shimano H, Yamada N, Ishibashi S. Early embryonic lethality caused by targeted disruption of the 3-hydroxy-3-methylglutaryl-CoA reductase gene. J Biol Chem 2003; 278:42936-41. [PMID: 12920113 DOI: 10.1074/jbc.m307228200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The endoplasmic reticulum (ER) enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, which converts HMG-CoA to mevalonate, catalyzes the ratelimiting step in cholesterol biosynthesis. Because this mevalonate pathway also produces several non-sterol isoprenoid compounds, the level of HMG-CoA reductase activity may coordinate many cellular processes and functions. We used gene targeting to knock out the mouse HMG-CoA reductase gene. The heterozygous mutant mice (Hmgcr+/-) appeared normal in their development and gross anatomy and were fertile. Although HMG-CoA reductase activities were reduced in Hmgcr+/- embryonic fibroblasts, the enzyme activities and cholesterol biosynthesis remained unaffected in the liver from Hmgcr+/- mice, suggesting that the haploid amount of Hmgcr gene is not rate-limiting in the hepatic cholesterol homeostasis. Consistently, plasma lipoprotein profiles were similar between Hmgcr+/- and Hmgcr+/+ mice. In contrast, the embryos homozygous for the Hmgcr mutant allele were recovered at the blastocyst stage, but not at E8.5, indicating that HMG-CoA reductase is crucial for early development of the mouse embryos. The lethal phenotype was not completely rescued by supplementing the dams with mevalonate. Although it has been postulated that a second, peroxisome-specific HMG-CoA reductase could substitute for the ER reductase in vitro, we speculate that the putative peroxisomal reductase gene, if existed, does not fully compensate for the lack of the ER enzyme at least in embryogenesis.
Collapse
Affiliation(s)
- Ken Ohashi
- Department of Metabolic Diseases, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Edison R, Muenke M. The interplay of genetic and environmental factors in craniofacial morphogenesis: holoprosencephaly and the role of cholesterol. Congenit Anom (Kyoto) 2003; 43:1-21. [PMID: 12692399 DOI: 10.1111/j.1741-4520.2003.tb01022.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cyclopia, the paradigmatic "face [that] predicts the brain" in severe holoprosencephaly (HPE) (DeMyer et al., 1964), has been recognized since ancient times. Descriptive embryologists and pathologists have noted the continuum of defective separation of the forebrain and loss of central nervous system (CNS) midline structures for more than a century. It has been recognized more recently that inhibitors of cholesterol biosynthesis, whether consumed in native plants by range sheep, or experimentally applied to early embryos, could phenocopy the natural malformation, as could a variety of other teratogens (maternal diabetes, alcohol). Yet it has been less than a decade that the genomic knowledge base and powerful analytic methods have brought the sciences of descriptive, molecular, and genetic embryology within range of each other. In this review, we discuss the clinical presentations and pathogenesis of HPE. We will outline various genetic and teratogenic mechanisms leading to HPE. Lastly, we will attempt to examine the pivotal role of cholesterol and the Sonic Hedgehog (Shh) pathway in this disorder and in normal embryonic forebrain development.
Collapse
Affiliation(s)
- Robin Edison
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | | |
Collapse
|
13
|
Houten SM, Schneiders MS, Wanders RJA, Waterham HR. Regulation of isoprenoid/cholesterol biosynthesis in cells from mevalonate kinase-deficient patients. J Biol Chem 2003; 278:5736-43. [PMID: 12477733 DOI: 10.1074/jbc.m206564200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mevalonic aciduria (MA) and hyper-IgD and periodic fever syndrome (HIDS) are two inherited disorders both caused by depressed mevalonate kinase (MK) activity. MK is the first enzyme to follow the highly regulated 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase (HMGR), which catalyzes the rate-limiting step in the isoprenoid/cholesterol biosynthesis pathway. In fibroblasts of MA patients, but not of HIDS patients, HMGR activity is elevated under normal growth conditions. This activity is down-regulated when cells are supplemented with the isoprenoid precursors geraniol, farnesol, and geranylgeraniol, and a mixture of 25-hydroxycholesterol and cholesterol. This indicates that the regulation of the pathway in these cells is not disturbed. The elevated HMGR activity is probably due to a shortage of non-sterol isoprenoid end products, as indicated by normal HMGR mRNA levels in MA fibroblasts. Furthermore, the HMGR activity in MA cells was more sensitive to geranylgeraniol suppression and less sensitive to sterol suppression than the HMGR activity in low density lipoprotein receptor-deficient cells. HMGR activity in MA cells was down-regulated also by addition of its product mevalonate to the culture medium. Thus, it appears that the elevation of mevalonate levels, which are high in MA patients and moderate in HIDS patients, allows the cells to compensate for the depressed MK activity. Indeed, the isoprenylation of Ras and RhoA protein appeared normal in HIDS and MA fibroblasts under normal conditions but showed increased sensitivity toward inhibition of HMGR by simvastatin. Our results indicate that MK-deficient cells maintain the flux through the isoprenoid/cholesterol biosynthesis pathway by elevating intracellular mevalonate levels.
Collapse
Affiliation(s)
- Sander M Houten
- Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam 1100 DE, The Netherlands
| | | | | | | |
Collapse
|
14
|
Abstract
Peroxisomes contain enzymes catalyzing a number of indispensable metabolic functions mainly related to lipid metabolism. The importance of peroxisomes in man is stressed by the existence of genetic disorders in which the biogenesis of the organelle is defective, leading to complex developmental and metabolic phenotypes. The purpose of this review is to emphasize some of the recent findings related to the localization of cholesterol biosynthetic enzymes in peroxisomes and to discuss the impairment of cholesterol biosynthesis in peroxisomal deficiency diseases.
Collapse
Affiliation(s)
- Werner J Kovacs
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | | | | |
Collapse
|
15
|
Hanaka S, Abe T, Itakura H, Matsumoto A. Gene expression related to cholesterol metabolism in mouse brain during development. Brain Dev 2000; 22:321-6. [PMID: 10891640 DOI: 10.1016/s0387-7604(00)00129-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Although a large amount of cholesterol is known to be needed for brain maturation and differentiation, cholesterol metabolism during these periods remains unclear. To elucidate the developmental regulation of cholesterol metabolism in the brain, we investigated the expression of 3-hydroxy-3-methyglutaryl-coenzyme A (HMG-CoA) reductase (EC 1.1.1.34), low-density-lipoprotein (LDL) receptor and very-low-density-lipoprotein (VLDL)/apolipoprotein E (apo E) receptor (VLDL receptor) using RNase protection assay (RPA) to quantitate mRNA levels in mouse brain, liver and kidney during development. Messenger RNA levels of HMG-CoA reductase in the brain decreased with age, and those levels at -5 (5 days before birth) and 5 days after birth were significantly higher than the control level of adult mice. The period from -5 to 5 days might correspond to stages of active biogenesis of the membranes of brain cells. The mRNA level of HMG-CoA reductase in the liver was also high at -5 days; a finding that correlated with cell proliferation. On the other hand, mRNA levels of the LDL and VLDL receptors in the brain did not change markedly during development. These results suggest that de novo cholesterol biosynthesis in brain cells plays a major role in the supply of cholesterol to the developing brain, rather than the uptake of cholesterol from serum lipoproteins through lipoprotein receptors.
Collapse
Affiliation(s)
- S Hanaka
- Department of Pediatrics, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, 173-8605, Tokyo, Japan.
| | | | | | | |
Collapse
|
16
|
Hinson DD, Rogers ZR, Hoffmann GF, Schachtele M, Fingerhut R, Kohlschutter A, Kelley RI, Gibson KM. Hematological abnormalities and cholestatic liver disease in two patients with mevalonate kinase deficiency. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1096-8628(19980806)78:5<408::aid-ajmg3>3.0.co;2-h] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|