1
|
Vincent M, Karolak JA, Deutsch G, Gambin T, Popek E, Isidor B, Szafranski P, Le Caignec C, Stankiewicz P. Clinical, Histopathological, and Molecular Diagnostics in Lethal Lung Developmental Disorders. Am J Respir Crit Care Med 2020; 200:1093-1101. [PMID: 31189067 DOI: 10.1164/rccm.201903-0495tr] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lethal lung developmental disorders are a rare but important group of pediatric diffuse lung diseases presenting with neonatal respiratory failure. On the basis of histopathological appearance at lung biopsy or autopsy, they have been termed: alveolar capillary dysplasia with misalignment of the pulmonary veins, acinar dysplasia, congenital alveolar dysplasia, and other unspecified primary pulmonary hypoplasias. However, the histopathological continuum in these lethal developmental disorders has made accurate diagnosis challenging, which has implications for recurrence risk. Over the past decade, genetic studies in infants with alveolar capillary dysplasia with misalignment of the pulmonary veins have revealed the causative role of the dosage-sensitive FOXF1 gene and its noncoding regulatory variants in the distant lung-specific enhancer at chromosome 16q24.1. In contrast, the molecular bases of acinar dysplasia and congenital alveolar dysplasia have remained poorly understood. Most recently, disruption of the TBX4-FGF10-FGFR2 epithelial-mesenchymal signaling pathway has been reported in patients with these lethal pulmonary dysplasias. Application of next-generation sequencing techniques, including exome sequencing and whole-genome sequencing, has demonstrated their complex compound inheritance. These data indicate that noncoding regulatory elements play a critical role in lung development in humans. We propose that for more precise lethal lung developmental disorder diagnosis, a diagnostic pathway including whole-genome sequencing should be implemented.
Collapse
Affiliation(s)
- Marie Vincent
- Service de Genetique Medicale, Centre Hospitalier Universitaire de Nantes, Nantes, France.,Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de Nantes, L'institut du Thorax, Nantes, France
| | - Justyna A Karolak
- Department of Molecular and Human Genetics and.,Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Gail Deutsch
- Department of Pathology, Seattle Children's Hospital, Seattle, Washington
| | - Tomasz Gambin
- Department of Molecular and Human Genetics and.,Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland; and.,Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
| | - Edwina Popek
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Bertrand Isidor
- Service de Genetique Medicale, Centre Hospitalier Universitaire de Nantes, Nantes, France.,Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de Nantes, L'institut du Thorax, Nantes, France
| | | | - Cedric Le Caignec
- Service de Genetique Medicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | | |
Collapse
|
2
|
Mesenchyme-specific deletion of Tgf-β1 in the embryonic lung disrupts branching morphogenesis and induces lung hypoplasia. J Transl Med 2019; 99:1363-1375. [PMID: 31028279 PMCID: PMC7422700 DOI: 10.1038/s41374-019-0256-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/06/2019] [Accepted: 03/13/2019] [Indexed: 01/08/2023] Open
Abstract
Proper lung development depends on the precise temporal and spatial expression of several morphogenic factors, including Fgf10, Fgf9, Shh, Bmp4, and Tgf-β. Over- or under-expression of these molecules often leads to aberrant embryonic or postnatal lung development. Herein, we deleted the Tgf-β1 gene specifically within the lung embryonic mesenchymal compartment at specific gestational stages to determine the contribution of this cytokine to lung development. Mutant embryos developed severe lung hypoplasia and died at birth due to the inability to breathe. Despite the markedly reduced lung size, proliferation and differentiation of the lung epithelium was not affected by the lack of mesenchymal expression of the Tgf-β1 gene, while apoptosis was significantly increased in the mutant lung parenchyma. Lack of mesenchymal expression of the Tgf-β1 gene was also associated with reduced lung branching morphogenesis, with accompanying inhibition of the local FGF10 signaling pathway as well as abnormal development of the vascular system. To shed light on the mechanism of lung hypoplasia, we quantified the phosphorylation of 226 proteins in the mutant E12.5 lung compared with control. We identified five proteins, Hrs, Vav2, c-Kit, the regulatory subunit of Pi3k (P85), and Fgfr1, that were over- or under-phosphorylated in the mutant lung, suggesting that they could be indispensable effectors of the TGF-β signaling program during embryonic lung development. In conclusion, we have uncovered novel roles of the mesenchyme-specific Tgf-β1 ligand in embryonic mouse lung development and generated a mouse model that may prove helpful to identify some of the key pathogenic mechanisms underlying lung hypoplasia in humans.
Collapse
|
3
|
Vuckovic A, Herber-Jonat S, Flemmer AW, Ruehl IM, Votino C, Segers V, Benachi A, Martinovic J, Nowakowska D, Dzieniecka M, Jani JC. Increased TGF-β: a drawback of tracheal occlusion in human and experimental congenital diaphragmatic hernia? Am J Physiol Lung Cell Mol Physiol 2015; 310:L311-27. [PMID: 26637634 DOI: 10.1152/ajplung.00122.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 12/03/2015] [Indexed: 12/15/2022] Open
Abstract
Survivors of severe congenital diaphragmatic hernia (CDH) present significant respiratory morbidity despite lung growth induced by fetal tracheal occlusion (TO). We hypothesized that the underlying mechanisms would involve changes in lung extracellular matrix and dysregulated transforming growth factor (TGF)-β pathway, a key player in lung development and repair. Pulmonary expression of TGF-β signaling components, downstream effectors, and extracellular matrix targets were evaluated in CDH neonates who died between birth and the first few weeks of life after prenatal conservative management or TO, and in rabbit pups that were prenatally randomized for surgical CDH and TO vs. sham operation. Before tissue harvesting, lung tissue mechanics in rabbits was measured using the constant-phase model during the first 30 min of life. Human CDH and control fetal lungs were also collected from midterm onwards. Human and experimental CDH did not affect TGF-β/Smad2/3 expression and activity. In human and rabbit CDH lungs, TO upregulated TGF-β transcripts. Analysis of downstream pathways indicated increased Rho-associated kinases to the detriment of Smad2/3 activation. After TO, subtle accumulation of collagen and α-smooth muscle actin within alveolar walls was detected in rabbit pups and human CDH lungs with short-term mechanical ventilation. Despite TO-induced lung growth, mediocre lung tissue mechanics in the rabbit model was associated with increased transcription of extracellular matrix components. These results suggest that prenatal TO increases TGF-β/Rho kinase pathway, myofibroblast differentiation, and matrix deposition in neonatal rabbit and human CDH lungs. Whether this might influence postnatal development of sustainably ventilated lungs remains to be determined.
Collapse
Affiliation(s)
- Aline Vuckovic
- Laboratory of Physiology and Pathophysiology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium;
| | - Susanne Herber-Jonat
- Division of Neonatology, University Children's Hospital, Perinatal Center, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Andreas W Flemmer
- Division of Neonatology, University Children's Hospital, Perinatal Center, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Ina M Ruehl
- Division of Neonatology, University Children's Hospital, Perinatal Center, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Carmela Votino
- Department of Obstetrics and Gynecology, Fetal Medicine Unit, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Valérie Segers
- Unit of Pediatric Pathology, Pathology Department, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexandra Benachi
- Department of Obstetrics and Gynecology and Centre de Maladie Rare: Hernie de Coupole Diaphragmatique, Hôpital Antoine Béclère, Assistance Publique Hôpitaux de Paris (APHP), Université Paris Sud, Paris, France
| | - Jelena Martinovic
- Unit of Fetal Pathology, Hôpital Antoine Béclère, Assistance Publique Hôpitaux de Paris (APHP), Université Paris Sud, Paris, France
| | - Dorota Nowakowska
- Department of Fetal-Maternal Medicine and Gynecology, Medical University and the Research Institute Polish Mother's Memorial Hospital, Lodz, Poland; and
| | - Monika Dzieniecka
- Department of Clinical Pathology, Medical University and the Research Institute Polish Mother's Memorial Hospital, Lodz, Poland
| | - Jacques C Jani
- Department of Obstetrics and Gynecology, Fetal Medicine Unit, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
4
|
A case of congenital Echovirus 11 infection acquired early in pregnancy. J Clin Virol 2013; 59:71-3. [PMID: 24332364 DOI: 10.1016/j.jcv.2013.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/28/2013] [Accepted: 11/04/2013] [Indexed: 11/20/2022]
Abstract
Enterovirus (EV) maternal infection during pregnancy and its relation to fetal developmental pathology are seldomly described. When reported, the main manifestations of EV congenital infections are myocarditis or intra-uterine fetal demise (IUFD). No information on intrauterine Echovirus 11 infection or the effect of transplacental Echovirus 11 infection on development of the fetus has been described in literature up to date (excluding late-pregnancy infections). We report here a case of an extreme form of pulmonary hypoplasia in a neonate, characterized by total failure of development of terminal respiratory units. This pregnancy was marked by spontaneous demise of a co-twin at 14 weeks of gestation (WG), as well as by positive PCR for EV (Echovirus 11 serotype) in the amniotic fluid, performed for moderate pericardial effusion at 22WG. No signs of cardiac disease were further observed, but at 32WG a bilateral abnormal lung development was noticed After spontaneous delivery at 38WG, the child could not be resuscitated, and died at one hour after birth. Pulmonary hypoplasia is usually described following decrease intrapulmonary pressure due to oligohydramnios or compression due to intrathoracic mass of variable cause. However, rare cases of primary pulmonary hypoplasia are also described and usually of unknown etiology. The coexistence in our case of a congenital EV infection and a severe primary pulmonary hypoplasia with congenital acinar aplasia, challenges our understanding of the pathogenesis of this severe pulmonary growth arrest.
Collapse
|
5
|
Langston C, Dishop MK. Diffuse lung disease in infancy: a proposed classification applied to 259 diagnostic biopsies. Pediatr Dev Pathol 2009; 12:421-37. [PMID: 19323600 DOI: 10.2350/08-11-0559.1] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Thoracoscopic and open lung biopsies are being performed with increasing frequency in neonates and infants and are an important component of the diagnostic evaluation of respiratory compromise in these very young children. Diffuse lung disease in infancy includes a wide spectrum of developmental, genetic, inflammatory, infectious, and reactive disorders. The majority of the entities diagnosed in infancy (68%) in this retrospective lung biopsy series are seen almost exclusively in this age group and not in older children and adults. These include primary disorders of pulmonary and pulmonary vascular development, secondary disorders affecting prenatal and/or postnatal lung growth, genetic disorders of surfactant function, pulmonary interstitial glycogenosis, and neuroendocrine cell hyperplasia of infancy. Although the diagnostic approach to infant lung biopsies is guided primarily by the clinical history and imaging findings, all cases require careful assessment of alveolar growth, vascular architecture, interstitial cellularity, and histologic patterns associated with genetic abnormalities of surfactant metabolism. Recognition of one or more of these processes assists not only in treatment planning but also in further diagnostic evaluation and prognostication and may have implications for subsequent siblings and other family members. In this study, we have applied a classification system developed by a North American multicenter multidisciplinary group to lung biopsies seen at our institution and have used this material to describe and illustrate the spectrum of diffuse lung disease in infancy.
Collapse
Affiliation(s)
- Claire Langston
- Department of Pathology, Baylor College of Medicine and Texas Children's Hospital, 6621 Fannin Street, Houston, TX 77030, USA.
| | | |
Collapse
|
6
|
Alejandre-Alcázar MA, Michiels-Corsten M, Vicencio AG, Reiss I, Ryu J, de Krijger RR, Haddad GG, Tibboel D, Seeger W, Eickelberg O, Morty RE. TGF-beta signaling is dynamically regulated during the alveolarization of rodent and human lungs. Dev Dyn 2008; 237:259-69. [PMID: 18095342 DOI: 10.1002/dvdy.21403] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Although transforming growth factor-beta (TGF-beta) signaling negatively regulates branching morphogenesis in early lung development, few studies to date have addressed the role of this family of growth factors during late lung development. We describe here that the expression, tissue localization, and activity of components of the TGF-beta signaling machinery are dynamically regulated during late lung development in the mouse and human. Pronounced changes in the expression and localization of the TGF-beta receptors Acvrl1, Tgfbr1, Tgfbr2, Tgfbr3, and endoglin, and the intracellular messengers Smad2, Smad3, Smad4, Smad6, and Smad7 were noted as mouse and human lungs progressed through the canalicular, saccular, and alveolar stages of development. TGF-beta signaling, assessed by phosphorylation of Smad2, was detected in the vascular and airway smooth muscle, as well as the alveolar and airway epithelium throughout late lung development. These data suggest that active TGF-beta signaling is required for normal late lung development.
Collapse
Affiliation(s)
- Miguel A Alejandre-Alcázar
- Department of Internal Medicine, University of Giessen Lung Center, Justus Liebig University, Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Galambos C, Demello DE. Regulation of alveologenesis: clinical implications of impaired growth. Pathology 2008; 40:124-40. [PMID: 18203035 DOI: 10.1080/00313020701818981] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
During its development that begins in intrauterine life, the lung is transformed from a simple epithelial lined sac that emerges from the foregut into a complex arrangement of blood vessels, airways, and alveoli that make up the mature lung structure. This remarkable transformation that continues for several years postnatally, is achieved by the influence of several genes, transcription factors, growth factors and hormones upon the cells and proteins of the lung bud. A seminal event in this process is the formation of the air-blood barrier within the alveolar wall, an evolutionary modification that permits independent air-breathing existence in mammals. Molecular biological techniques have enabled elucidation of the mechanistic pathways contributing to alveologenesis and have provided probable molecular bases for examples of impaired alveologenesis encountered by the paediatric pathologist.
Collapse
Affiliation(s)
- Csaba Galambos
- Department of Pathology, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
8
|
Abstract
Transforming growth factor (TGF) beta plays an important role in normal pulmonary morphogenesis and function and in the pathogenesis of lung disease. The effect of TGFbeta is regulated via a selective pathway of TGFbeta synthesis and signaling that involves activation of latent TGFbeta, specific TGFbeta receptors, and intracellular signaling via Smad molecules. All three isoforms of TGFbeta are expressed at high levels during normal lung development, being particularly important for branching morphogenesis and epithelial cell differentiation with maturation of surfactant synthesis. Small amounts of TGFbeta are still present in the adult lung, and TGFbeta is involved in normal tissue repair following lung injury. However, in a variety of forms of pulmonary pathology, the expression of TGFbeta is increased. These include chronic lung disease of prematurity as well as several forms of acute and chronic adult lung disease. While TGFbeta1 appears to be the predominant isoform involved, elevated levels of all three isoforms have been demonstrated. The increase in TGFbeta precedes abnormalities in lung function and detectable lung pathology, but correlates with the severity of the disease. TGFbeta plays a key role in mediating fibrotic tissue remodeling by increasing the production and decreasing the degradation of connective tissue via several mechanisms.
Collapse
Affiliation(s)
- Ulrike Bartram
- University Children's Hospital, Josef-Schnewider-Strasse 2, 97080 Wuerzburg, Germany.
| | | |
Collapse
|
9
|
Goddard I, Bouras M, Keramidas M, Hendrick JC, Feige JJ, Benahmed M. Transforming growth factor-beta receptor types I and II in cultured porcine leydig cells: expression and hormonal regulation. Endocrinology 2000; 141:2068-74. [PMID: 10830292 DOI: 10.1210/endo.141.6.7498] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The steroidogenic activity of testicular Leydig cells is controlled both by the pituitary hormone (LH) and by growth factors such as transforming growth factor-beta peptides (TGFbeta1, -2, and -3; inhibin/activin; and anti-Mullerian hormone). By using primary cultures of porcine Leydig cells as a model, the aim of the study was to identify and characterize the TGFbeta receptors and to study their regulation by LH/hCG. TGFbeta receptors have been identified and characterized through three different approaches, including cross-linking experiments and Western and Northern blotting analyses. In cross-linking experiments, labeled TGFbeta was shown to bind to three different molecular species of 300, 80, and 53 kDa, which may correspond to the protein betaglycan (also known as TGFbeta type III receptor) and TGFbeta type II and I receptors (TGFbetaRII and TGFbetaRI), respectively. The presence of TGFbetaRI and -RII was further demonstrated by Western blotting analysis using specific polyclonal antibodies. Finally, the expression of betaglycan, TGFbetaRII, and TGFbetaRI messenger RNAs, was confirmed by Northern blotting analysis, as shown by the presence of 6.4-, 4.6-, and 5.8-kb messenger RNAs, respectively. By using a RT-PCR approach, the mediators of the TGFbeta signal, Smads 1-7, were also detected in cultured Leydig cells. TGFbetaRI and TGFbetaRII protein levels were enhanced by hCG/LH in a dose-dependent (maximal effect with 0.3 ng/ml hCG) and time-dependent (maximal effect observed after 48 h of hCG treatment) manner. Furthermore, to determine whether the stimulatory effect of LH/hCG was mediated by testosterone, use was made of aminogluthetimide, an inhibitor of cytochrome P450scc. The inhibition oftestosterone formation did not affect the stimulatory effect of LH/hCG on TGFbetaRI and -RII levels, suggesting that the gonadotropin action is not mediated by the steroid hormone. Together, the present findings demonstrate that the TGFbeta receptors are expressed and are under hormonal (gonadotropin) control in cultured porcine Leydig cells.
Collapse
Affiliation(s)
- I Goddard
- INSERM, U-407, Communications Cellulaires en Biologie de la Reproduction, Faculté de Médecine Lyon-Sud, Oullins, France
| | | | | | | | | | | |
Collapse
|