1
|
Schieferdecker A, Wendler P. Structural Mapping of Missense Mutations in the Pex1/Pex6 Complex. Int J Mol Sci 2019; 20:ijms20153756. [PMID: 31374812 PMCID: PMC6696164 DOI: 10.3390/ijms20153756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 01/05/2023] Open
Abstract
Peroxisome biogenesis disorders (PBDs) are nontreatable hereditary diseases with a broad range of severity. Approximately 65% of patients are affected by mutations in the peroxins Pex1 and Pex6. The proteins form the heteromeric Pex1/Pex6 complex, which is important for protein import into peroxisomes. To date, no structural data are available for this AAA+ ATPase complex. However, a wealth of information can be transferred from low-resolution structures of the yeast scPex1/scPex6 complex and homologous, well-characterized AAA+ ATPases. We review the abundant records of missense mutations described in PBD patients with the aim to classify and rationalize them by mapping them onto a homology model of the human Pex1/Pex6 complex. Several mutations concern functionally conserved residues that are implied in ATP hydrolysis and substrate processing. Contrary to fold destabilizing mutations, patients suffering from function-impairing mutations may not benefit from stabilizing agents, which have been reported as potential therapeutics for PBD patients.
Collapse
Affiliation(s)
- Anne Schieferdecker
- Institute of Biochemistry and Biology, University of Potsdam, D-14476 Potsdam, Germany
| | - Petra Wendler
- Institute of Biochemistry and Biology, University of Potsdam, D-14476 Potsdam, Germany.
| |
Collapse
|
2
|
Yu HL, Shen Y, Sun YM, Zhang Y. Two novel mutations of PEX6 in one Chinese Zellweger spectrum disorder and their clinical characteristics. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:368. [PMID: 31555682 DOI: 10.21037/atm.2019.06.42] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Zellweger spectrum disorder (ZSD) is an autosomal recessive peroxisome biogenesis disorder (PBD) caused by bi-allelic mutations in any of the 13 PEX family genes. Methods We reported a Chinese PBD-ZSD patient with compound heterozygous mutations of PEX6 detected by target sequencing and Sanger sequencing. The clinical materials were collected. In silico analysis were used to evaluate the pathogenicity of the two mutations. An updated review summarized the genotype-phenotype correlation of PBD patients with PEX6 mutations. Results The patient was diagnosed as PBD-ZSD and displayed retinitis pigmentosa, bilateral sensorineural hearing loss, hypotonia, developmental delay, ovarian and enamel dysplasia. Elevated very long chain fatty acids were shown and a pattern of leukodystrophy was displayed through MRI. The two mutations were novel with p.Cys358* and p.Leu83Pro, both classified as pathogenic according to American College of Medical Genetics and Genomics guideline. Phenotype-genotype correlations were shown in the reported patients with PBD-ZSD continuum. Conclusions we reported the first Chinese PBD-ZSD patient with 2 novel mutations in PEX6. Target sequencing and VLFAC were helpful in diagnosis.
Collapse
Affiliation(s)
- Hui-Ling Yu
- Department & Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yan Shen
- Department & Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yi-Min Sun
- Department & Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yue Zhang
- Department & Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
3
|
Human disorders of peroxisome metabolism and biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:922-33. [DOI: 10.1016/j.bbamcr.2015.11.015] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 12/22/2022]
|
4
|
Lüsebrink N, Porto L, Waterham HR, Ferdinandusse S, Rosewich H, Kurlemann G, Kieslich M. Absence of biochemical evidence at an early age delays diagnosis in a patient with a clinically severe peroxisomal biogenesis disorder. Eur J Paediatr Neurol 2016; 20:331-335. [PMID: 26700162 DOI: 10.1016/j.ejpn.2015.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 10/26/2015] [Accepted: 11/05/2015] [Indexed: 11/24/2022]
Abstract
Analysis of the plasma levels of very long chain fatty acids (VLCFA) is a primary screening method for peroxisomal disorders and usually identifies severe peroxisomal biogenesis defects reliably. We report a patient presenting with typical facial stigmata, a treatment resistant seizure disorder and polymicrogyria, whose plasma VLCFA levels were within normal limits until the age of 18 months. Only thereafter an elevation was found. Subsequent enzymatic and molecular genetic analysis revealed compound heterozygous mutations in the PEX6 gene. In conclusion, normal VLCFA levels do not necessarily exclude global peroxisomal biogenesis defects and the analysis should be repeated subsequently. Persisting clinical suspicion justifies further enzymatic and molecular evaluation.
Collapse
Affiliation(s)
- Natalia Lüsebrink
- Department of Pediatric Neurology, Goethe University Hospital, Frankfurt, Germany.
| | - Luciana Porto
- Institute for Neuroradiology, Goethe University Hospital, Frankfurt, Germany
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics/Emma Children's Hospital, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics/Emma Children's Hospital, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Hendrik Rosewich
- Department of Pediatrics and Pediatric Neurology, Georg August University, Göttingen, Germany
| | - Gerd Kurlemann
- Department of Pediatric Neurology, University Hospital Muenster, Germany
| | - Matthias Kieslich
- Department of Pediatric Neurology, Goethe University Hospital, Frankfurt, Germany
| |
Collapse
|
5
|
Kao YT, Bartel B. Elevated growth temperature decreases levels of the PEX5 peroxisome-targeting signal receptor and ameliorates defects of Arabidopsis mutants with an impaired PEX4 ubiquitin-conjugating enzyme. BMC PLANT BIOLOGY 2015; 15:224. [PMID: 26377801 PMCID: PMC4574000 DOI: 10.1186/s12870-015-0605-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 09/06/2015] [Indexed: 05/29/2023]
Abstract
BACKGROUND Peroxisomes house critical metabolic reactions. For example, fatty acid β-oxidation enzymes, which are essential during early seedling development, are peroxisomal. Peroxins (PEX proteins) are needed to bring proteins into peroxisomes. Most matrix proteins are delivered to peroxisomes by PEX5, a receptor that forms transient pores to escort proteins across the peroxisomal membrane. After cargo delivery, a peroxisome-tethered ubiquitin-conjugating enzyme (PEX4) and peroxisomal ubiquitin-protein ligases mono- or polyubiquitinate PEX5 for recycling back to the cytosol or for degradation, respectively. Arabidopsis pex mutants β-oxidize fatty acids inefficiently and therefore fail to germinate or grow less vigorously. These defects can be partially alleviated by providing a fixed carbon source, such as sucrose, in the growth medium. Despite extensive characterization of peroxisome biogenesis in Arabidopsis grown in non-challenged conditions, the effects of environmental stressors on peroxisome function and pex mutant dysfunction are largely unexplored. RESULTS We surveyed the impact of growth temperature on a panel of pex mutants and found that elevated temperature ameliorated dependence on external sucrose and reduced PEX5 levels in the pex4-1 mutant. Conversely, growth at low temperature exacerbated pex4-1 physiological defects and increased PEX5 levels. Overexpressing PEX5 also worsened pex4-1 defects, implying that PEX5 lingering on the peroxisomal membrane when recycling is impaired impedes peroxisome function. Growth at elevated temperature did not reduce the fraction of membrane-associated PEX5 in pex4-1, suggesting that elevated temperature did not restore PEX4 enzymatic function in the mutant. Moreover, preventing autophagy in pex4-1 did not restore PEX5 levels at high temperature. In contrast, MG132 treatment increased PEX5 levels, implicating the proteasome in degrading PEX5, especially at high temperature. CONCLUSIONS We conclude that growth at elevated temperature increases proteasomal degradation of PEX5 to reduce overall PEX5 levels and ameliorate pex4-1 physiological defects. Our results support the hypothesis that efficient retrotranslocation of PEX5 after cargo delivery is needed not only to make PEX5 available for further rounds of cargo delivery, but also to prevent the peroxisome dysfunction that results from PEX5 lingering in the peroxisomal membrane.
Collapse
Affiliation(s)
- Yun-Ting Kao
- Biochemistry and Cell Biology Program, Department of BioSciences, Rice University, Houston, TX, USA.
| | - Bonnie Bartel
- Biochemistry and Cell Biology Program, Department of BioSciences, Rice University, Houston, TX, USA.
| |
Collapse
|
6
|
Recovery of PEX1-Gly843Asp peroxisome dysfunction by small-molecule compounds. Proc Natl Acad Sci U S A 2010; 107:5569-74. [PMID: 20212125 DOI: 10.1073/pnas.0914960107] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Zellweger spectrum disorder (ZSD) is a heterogeneous group of diseases with high morbidity and mortality caused by failure to assemble normal peroxisomes. There is no therapy for ZSD, but management is supportive. Nevertheless, one-half of the patients have a phenotype milder than classic Zellweger syndrome and exhibit a progressive disease course. Thus, patients would benefit if therapies became available and were instituted early. Recent reports indicate several interventions that result in partial peroxisome recovery in ZSD fibroblasts. To identify drugs that recover peroxisome functions, we expressed a GFP-peroxisome targeting signal 1 reporter in fibroblasts containing the common disease allele, PEX1-p.Gly843Asp. The GFP reporter remained cytosolic at baseline, and improvement in peroxisome functions was detected by the redistribution of the GFP reporter from the cytosol to the peroxisome. We established a high-content screening assay based on this phenotype assay and evaluated 2,080 small molecules. The cells were cultured in chemical for 2 days and then, were fixed and imaged by epifluorescent microscopy on a high-content imaging platform. We identified four compounds that partially recover matrix protein import, and we confirmed three using independent assays. Our results suggest that PEX1-p.G843D is a misfolded protein amenable to chaperone therapy.
Collapse
|
7
|
Steinberg SJ, Dodt G, Raymond GV, Braverman NE, Moser AB, Moser HW. Peroxisome biogenesis disorders. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1733-48. [PMID: 17055079 DOI: 10.1016/j.bbamcr.2006.09.010] [Citation(s) in RCA: 343] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 09/05/2006] [Accepted: 09/06/2006] [Indexed: 01/02/2023]
Abstract
Defects in PEX genes impair peroxisome assembly and multiple metabolic pathways confined to this organelle, thus providing the biochemical and molecular bases of the peroxisome biogenesis disorders (PBD). PBD are divided into two types--Zellweger syndrome spectrum (ZSS) and rhizomelic chondrodysplasia punctata (RCDP). Biochemical studies performed in blood and urine are used to screen for the PBD. DNA testing is possible for all of the disorders, but is more challenging for the ZSS since 12 PEX genes are known to be associated with this spectrum of PBD. In contrast, PBD-RCDP is associated with defects in the PEX7 gene alone. Studies of the cellular and molecular defects in PBD patients have contributed significantly to our understanding of the role of each PEX gene in peroxisome assembly.
Collapse
Affiliation(s)
- Steven J Steinberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Crane DI, Maxwell MA, Paton BC. PEX1mutations in the Zellweger spectrum of the peroxisome biogenesis disorders. Hum Mutat 2005; 26:167-75. [PMID: 16086329 DOI: 10.1002/humu.20211] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diseases of the Zellweger spectrum represent a major subgroup of the peroxisome biogenesis disorders, a group of autosomal-recessive diseases that are characterized by widespread tissue pathology, including neurodegeneration. The Zellweger spectrum represents a clinical continuum, with Zellweger syndrome (ZS) having the most severe phenotype, and neonatal adrenoleukodystrophy (NALD) and infantile Refsum disease (IRD) having progressively milder phenotypes. Mutations in the PEX1 gene, which encodes a 143-kDa AAA ATPase protein required for peroxisome biogenesis, are the most common cause of the Zellweger spectrum diseases. The PEX1 mutations identified to date comprise insertions, deletions, nonsense, missense, and splice site mutations. Mutations that produce premature truncation codons (PTCs) are distributed throughout the PEX1 gene, whereas the majority of missense mutations segregate with the two essential AAA domains of the PEX1 protein. Severity at the two ends of the Zellweger spectrum correlates broadly with mutation type and impact (i.e., the severe ZS correlates with PTCs on both alleles, and the milder phenotypes correlate with missense mutations), but exceptions to these general correlations exist. This article provides an overview of the currently known PEX1 mutations, and includes, when necessary, revised mutation nomenclature and genotype-phenotype correlations that may be useful for clinical diagnosis.
Collapse
Affiliation(s)
- Denis I Crane
- Cell Biology Group, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Australia.
| | | | | |
Collapse
|
9
|
Hashimoto K, Kato Z, Nagase T, Shimozawa N, Kuwata K, Omoya K, Li A, Matsukuma E, Yamamoto Y, Ohnishi H, Tochio H, Shirakawa M, Suzuki Y, Wanders RJA, Kondo N. Molecular mechanism of a temperature-sensitive phenotype in peroxisomal biogenesis disorder. Pediatr Res 2005; 58:263-9. [PMID: 16006427 DOI: 10.1203/01.pdr.0000169984.89199.69] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Peroxisomal biogenesis disorders include Zellweger syndrome and milder phenotypes, such as neonatal adrenoleukodystrophy (NALD). Our previous study of a NALD patient with a marked deterioration by a fever revealed a mutation (Ile326Thr) within a SH3 domain of PEX13 protein (Pex13p), showing a temperature-sensitive (TS) phenotype in peroxisomal biogenesis. Clinical TS phenotypes also have been reported in several genetic diseases, but the molecular mechanisms still remain to be clarified. The immunofluorescent staining with anti-Pex13p antibody also revealed TS phenotype of the I326T mutant protein itself in the patient cells. Protease digestion of the recombinant Pex13p-SH3 domain showed an increase of protease susceptibility, suggesting a problem of mutant protein fold. Conformational analyses against urea denaturation using urea gradient gel electrophoresis or fluorescence emission from tryptophan residue revealed that the mutant protein should be easily unfolded. Far-UV circular dichroism (CD) spectra demonstrated that both wild-type and the mutant protein have antiparallel beta-sheets as their secondary structure with slightly different extent. The thermal unfolding profiles measured by CD showed a marked lower melting temperature for I326T protein compared with that of wild-type protein. Analysis of the protein 3D-structure indicated that the Ile326 should be a core residue for folding kinetics and the substitution of Ile326 by threonine should directly alter the kinetic equilibrium, suggesting a marked increase of the unfolded molecules when the patient had a high fever. Structural analyses of the protein in the other genetic diseases could provide an avenue for better understanding of genotype-phenotype correlations.
Collapse
Affiliation(s)
- Kazuyuki Hashimoto
- Department of Pediatrics, Gifu University School of Medicine, Gifu 501-1194, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kurbatova EM, Dutova TA, Trotsenko YA. Structural, functional and genetic aspects of peroxisome biogenesis. RUSS J GENET+ 2005. [DOI: 10.1007/s11177-005-0032-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Steinberg S, Chen L, Wei L, Moser A, Moser H, Cutting G, Braverman N. The PEX Gene Screen: molecular diagnosis of peroxisome biogenesis disorders in the Zellweger syndrome spectrum. Mol Genet Metab 2004; 83:252-63. [PMID: 15542397 DOI: 10.1016/j.ymgme.2004.08.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 08/14/2004] [Accepted: 08/20/2004] [Indexed: 10/26/2022]
Abstract
Peroxisome biogenesis disorders in the Zellweger syndrome spectrum (PBD-ZSS) are caused by defects in at least 12 PEX genes required for normal organelle assembly. Clinical and biochemical features continue to be used reliably to assign patients to this general disease category. Identification of the precise genetic defect is important, however, to permit carrier testing and early prenatal diagnosis. Molecular analysis is likely to expand the clinical spectrum of PBD and may also provide data relevant to prognosis and future therapeutic intervention. However, the large number of genes involved has thus far impeded rapid mutation identification. In response, we developed the PEX Gene Screen, an algorithm for the systematic screening of exons in the six PEX genes most commonly defective in PBD-ZSS. We used PCR amplification of genomic DNA and sequencing to screen 91 unclassified PBD-ZSS patients for mutations in PEX1, PEX26, PEX6, PEX12, PEX10, and PEX2. A maximum of 14 reactions per patient identified pathological mutations in 79% and both mutant alleles in 54%. Twenty-five novel mutations were identified overall. The proportion of patients with different PEX gene defects correlated with frequencies previously identified by complementation analysis. This systematic, hierarchical approach to mutation identification is therefore a valuable tool to identify rapidly the molecular etiology of suspected PBD-ZSS disorders.
Collapse
Affiliation(s)
- Steven Steinberg
- Peroxisomal Diseases Laboratory, Kennedy Krieger Institute and Department of Neurology, Johns Hopkins University, Baltimore, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Gootjes J, Schmohl F, Mooijer PAW, Dekker C, Mandel H, Topcu M, Huemer M, Von Schütz M, Marquardt T, Smeitink JA, Waterham HR, Wanders RJA. Identification of the molecular defect in patients with peroxisomal mosaicism using a novel method involving culturing of cells at 40°C: Implications for other inborn errors of metabolism. Hum Mutat 2004; 24:130-9. [PMID: 15241794 DOI: 10.1002/humu.20062] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The peroxisome biogenesis disorders (PBDs), which comprise Zellweger syndrome (ZS), neonatal adrenoleukodystrophy, and infantile Refsum disease (IRD), represent a spectrum of disease severity, with ZS being the most severe, and IRD the least severe disorder. The PBDs are caused by mutations in one of the at least 12 different PEX genes encoding proteins involved in the biogenesis of peroxisomes. We report the biochemical characteristics and molecular basis of a subset of atypical PBD patients. These patients were characterized by abnormal peroxisomal plasma metabolites, but otherwise normal to very mildly abnormal peroxisomal parameters in cultured skin fibroblasts, including a mosaic catalase immunofluorescence pattern in fibroblasts. Since this latter feature made standard complementation analysis impossible, we developed a novel complementation technique in which fibroblasts were cultured at 40 degrees C, which exacerbates the defect in peroxisome biogenesis. Using this method, we were able to assign eight patients to complementation group 3 (CG3), followed by the identification of a single homozygous c.959C>T (p.S320F) mutation in their PEX12 gene. We also investigated various peroxisomal biochemical parameters in fibroblasts at 30 degrees C, 37 degrees C, and 40 degrees C, and found that all parameters showed a temperature-dependent behavior. The principle of culturing cells at elevated temperatures to exacerbate the defect in peroxisome biogenesis, and thereby preventing certain mutations from being missed, may well have a much wider applicability for a range of different inborn errors of metabolism.
Collapse
Affiliation(s)
- Jeannette Gootjes
- Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The peroxisome biogenesis disorders (PBDs) comprise 12 autosomal recessive complementation groups (CGs). The multisystem clinical phenotype varies widely in severity and results from disturbances in both development and metabolic homeostasis. Progress over the last several years has lead to identification of the genes responsible for all of these disorders and to a much improved understanding of the biogenesis and function of the peroxisome. Increasing availability of mouse models for these disorders offers hope for a better understanding of their pathophysiology and for development of therapies that might especially benefit patients at the milder end of the clinical phenotype.
Collapse
Affiliation(s)
- Sabine Weller
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
14
|
Roels F, Saudubray JM, Giros M, Mandel H, Eyskens F, Saracibar N, Atares Pueyo B, Prats JM, De Prest B, De Preter K, Pineda M, Krystkowiak P, Gootjes J, Wanders RJA, Espeel M, Poll-The BT. Peroxisome Mosaics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 544:97-106. [PMID: 14713220 DOI: 10.1007/978-1-4419-9072-3_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
|
15
|
Raas-Rothschild A, Wanders RJA, Mooijer PAW, Gootjes J, Waterham HR, Gutman A, Suzuki Y, Shimozawa N, Kondo N, Eshel G, Espeel M, Roels F, Korman SH. A PEX6-defective peroxisomal biogenesis disorder with severe phenotype in an infant, versus mild phenotype resembling Usher syndrome in the affected parents. Am J Hum Genet 2002; 70:1062-8. [PMID: 11873320 PMCID: PMC379104 DOI: 10.1086/339766] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2001] [Accepted: 01/14/2002] [Indexed: 11/03/2022] Open
Abstract
Sensorineural deafness and retinitis pigmentosa (RP) are the hallmarks of Usher syndrome (USH) but are also prominent features in peroxisomal biogenesis defects (PBDs); both are autosomal recessively inherited. The firstborn son of unrelated parents, who both had sensorineural deafness and RP diagnosed as USH, presented with sensorineural deafness, RP, dysmorphism, developmental delay, hepatomegaly, and hypsarrhythmia and died at age 17 mo. The infant was shown to have a PBD, on the basis of elevated plasma levels of very-long- and branched-chain fatty acids (VLCFAs and BCFAs), deficiency of multiple peroxisomal functions in fibroblasts, and complete absence of peroxisomes in fibroblasts and liver. Surprisingly, both parents had elevated plasma levels of VLCFAs and BCFAs. Fibroblast studies confirmed that both parents had a PBD. The parents' milder phenotypes correlated with relatively mild peroxisomal biochemical dysfunction and with catalase immunofluorescence microscopy demonstrating mosaicism and temperature sensitivity in fibroblasts. The infant and both of his parents belonged to complementation group C. PEX6 gene sequencing revealed mutations on both alleles, in the infant and in his parents. This unique family is the first report of a PBD with which the parents are themselves affected individuals rather than asymptomatic carriers. Because of considerable overlap between USH and milder PBD phenotypes, individuals suspected to have USH should be screened for peroxisomal dysfunction.
Collapse
|
16
|
Suzuki Y, Shimozawa N, Orii T, Tsukamoto T, Osumi T, Fujiki Y, Kondo N. Genetic and molecular bases of peroxisome biogenesis disorders. Genet Med 2001; 3:372-6. [PMID: 11545691 DOI: 10.1097/00125817-200109000-00007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Y Suzuki
- Medical Education Development Center, Gifu University School of Medicine, Gifu, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Suzuki Y, Shimozawa N, Imamura A, Fukuda S, Zhang Z, Orii T, Kondo N. Clinical, biochemical and genetic aspects and neuronal migration in peroxisome biogenesis disorders. J Inherit Metab Dis 2001; 24:151-65. [PMID: 11405337 DOI: 10.1023/a:1010310816743] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Peroxisome biogenesis disorders (PBDs) are severe autosomal recessive neurological diseases caused by a defect of peroxisomal assembly factors. Zellweger syndrome, the most severe phenotype, is characterized by hypotonia, psychomotor retardation and neuronal migration disorder. Neonatal adrenoleukodystrophy and infantile Refsum disease are milder phenotypes of this disease. Thirteen complementation groups have been established since the genetic heterogeneity of PBDs was elucidated in 1988. Eleven genes for PBDs have been identified either by a functional complementation cloning or by EST homology searches. In 1992, the first gene for PBDs, PEX2, was identified. It encodes peroxisomal integral membrane protein with a RING finger domain. PEX5 and PEX7 are the genes for peroxisomal targeting signal (PTS)-1 and -2 receptors, respectively. PEX3, PEX16 and PEX19 are considered to be required for the early stage of peroxisome biogenesis. PEX13 protein has an SH3 docking site that binds to the PTS-1 receptor. PEX1 and PEX6 encode ABC protein, and PEX10 and PEX12 also encode integral membrane protein, with RING finger. Temperature-sensitivity, whereby peroxisomal biogenesis and metabolic dysfunctions are restored at 30 degrees C in cells from mild phenotypes, is a useful event for predicting the clinical severity and for elucidation of peroxisome biogenesis. Investigations using knockout mice are expected to facilitate understanding of migration disorders.
Collapse
Affiliation(s)
- Y Suzuki
- Department of Pediatrics, Gifu University School of Medicine, Japan.
| | | | | | | | | | | | | |
Collapse
|