1
|
Ponnurangam M, Balaji S. Tune in to the terrific applications of turanose. Eur Food Res Technol 2024; 250:375-387. [DOI: 10.1007/s00217-023-04417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 01/04/2025]
Abstract
AbstractTuranose, a rare sugar with low calorific value and glycemic index, used as an alternative to sucrose and other artificial sweeteners. The occurrence of turanose is in limited quantities, especially found in honey. Thus, it should be produced by either chemical or biological means. Turanose is released as a by-product during synthesis of the linear α-(1,4)-glucan from sucrose by the action of amylosucrase. In recent times, turanose attracted interest in several industries such as agricultural, food, and pharmaceuticals due to its feasible production. Hence, this review outlines about the history of turanose, its physiochemical properties, production along with inhibition and inducing effects. It is high time to tune in the terrific applications of turanose, as it retains the potential for more than a century of discovery, since 1889. These applications include detection of pathogens, facilitation of cellular respiration, regulation of inflammation, authentication of honey, phagodeterrency effects, osmoprotection, stabilization of therapeutical proteins, and edibility enhancement of foods.
Collapse
|
2
|
One Molecule for Mental Nourishment and More: Glucose Transporter Type 1—Biology and Deficiency Syndrome. Biomedicines 2022; 10:biomedicines10061249. [PMID: 35740271 PMCID: PMC9219734 DOI: 10.3390/biomedicines10061249] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023] Open
Abstract
Glucose transporter type 1 (Glut1) is the main transporter involved in the cellular uptake of glucose into many tissues, and is highly expressed in the brain and in erythrocytes. Glut1 deficiency syndrome is caused mainly by mutations of the SLC2A1 gene, impairing passive glucose transport across the blood–brain barrier. All age groups, from infants to adults, may be affected, with age-specific symptoms. In its classic form, the syndrome presents as an early-onset drug-resistant metabolic epileptic encephalopathy with a complex movement disorder and developmental delay. In later-onset forms, complex motor disorder predominates, with dystonia, ataxia, chorea or spasticity, often triggered by fasting. Diagnosis is confirmed by hypoglycorrhachia (below 45 mg/dL) with normal blood glucose, 18F-fluorodeoxyglucose positron emission tomography, and genetic analysis showing pathogenic SLC2A1 variants. There are also ongoing positive studies on erythrocytes’ Glut1 surface expression using flow cytometry. The standard treatment still consists of ketogenic therapies supplying ketones as alternative brain fuel. Anaplerotic substances may provide alternative energy sources. Understanding the complex interactions of Glut1 with other tissues, its signaling function for brain angiogenesis and gliosis, and the complex regulation of glucose transportation, including compensatory mechanisms in different tissues, will hopefully advance therapy. Ongoing research for future interventions is focusing on small molecules to restore Glut1, metabolic stimulation, and SLC2A1 transfer strategies. Newborn screening, early identification and treatment could minimize the neurodevelopmental disease consequences. Furthermore, understanding Glut1 relative deficiency or inhibition in inflammation, neurodegenerative disorders, and viral infections including COVID-19 and other settings could provide clues for future therapeutic approaches.
Collapse
|
3
|
Ribeiro Reis AP, Gerber-Hollbach N, Weber P, Palmowski-Wolfe A. Intermittent Alternating Eye-Head Synkinesia in GLUT1 Deficiency Syndrome. Klin Monbl Augenheilkd 2021; 239:812-813. [PMID: 33607684 DOI: 10.1055/a-1333-3075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | | | - Peter Weber
- Neurology, Universitäts-Kinderspital beider Basel, Basel, Switzerland
| | | |
Collapse
|
4
|
Klepper J, Akman C, Armeno M, Auvin S, Cervenka M, Cross HJ, De Giorgis V, Della Marina A, Engelstad K, Heussinger N, Kossoff EH, Leen WG, Leiendecker B, Monani UR, Oguni H, Neal E, Pascual JM, Pearson TS, Pons R, Scheffer IE, Veggiotti P, Willemsen M, Zuberi SM, De Vivo DC. Glut1 Deficiency Syndrome (Glut1DS): State of the art in 2020 and recommendations of the international Glut1DS study group. Epilepsia Open 2020; 5:354-365. [PMID: 32913944 PMCID: PMC7469861 DOI: 10.1002/epi4.12414] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Glut1 deficiency syndrome (Glut1DS) is a brain energy failure syndrome caused by impaired glucose transport across brain tissue barriers. Glucose diffusion across tissue barriers is facilitated by a family of proteins including glucose transporter type 1 (Glut1). Patients are treated effectively with ketogenic diet therapies (KDT) that provide a supplemental fuel, namely ketone bodies, for brain energy metabolism. The increasing complexity of Glut1DS, since its original description in 1991, now demands an international consensus statement regarding diagnosis and treatment. International experts (n = 23) developed a consensus statement utilizing their collective professional experience, responses to a standardized questionnaire, and serial discussions of wide-ranging issues related to Glut1DS. Key clinical features signaling the onset of Glut1DS are eye-head movement abnormalities, seizures, neurodevelopmental impairment, deceleration of head growth, and movement disorders. Diagnosis is confirmed by the presence of these clinical signs, hypoglycorrhachia documented by lumbar puncture, and genetic analysis showing pathogenic SLC2A1 variants. KDT represent standard choices with Glut1DS-specific recommendations regarding duration, composition, and management. Ongoing research has identified future interventions to restore Glut1 protein content and function. Clinical manifestations are influenced by patient age, genetic complexity, and novel therapeutic interventions. All clinical phenotypes will benefit from a better understanding of Glut1DS natural history throughout the life cycle and from improved guidelines facilitating early diagnosis and prompt treatment. Often, the presenting seizures are treated initially with antiseizure drugs before the cause of the epilepsy is ascertained and appropriate KDT are initiated. Initial drug treatment fails to treat the underlying metabolic disturbance during early brain development, contributing to the long-term disease burden. Impaired development of the brain microvasculature is one such complication of delayed Glut1DS treatment in the postnatal period. This international consensus statement should facilitate prompt diagnosis and guide best standard of care for Glut1DS throughout the life cycle.
Collapse
Affiliation(s)
- Joerg Klepper
- Children's Hospital Aschaffenburg‐AlzenauAschaffenburgGermany
| | - Cigdem Akman
- Department of Neurology and PediatricsVagelos College of Physicians and Surgeons at Columbia UniversityNew YorkNYUSA
| | - Marisa Armeno
- Department of NutritionHospital Pediatria JP GarrahanBuenos AiresArgentina
| | - Stéphane Auvin
- Department of Pediatric NeurologyCHU Hôpital Robert DebreAPHPParisFrance
| | - Mackenzie Cervenka
- Department of NeurologyComprehensive Epilepsy CenterJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Helen J. Cross
- UCL NIHR BRC Great Ormond Street Institute of Child HealthLondonUK
| | | | - Adela Della Marina
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, Centre for Neuromuscular Disorders in Children, University Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Kristin Engelstad
- Department of Neurology and PediatricsVagelos College of Physicians and Surgeons at Columbia UniversityNew YorkNYUSA
| | - Nicole Heussinger
- Department of Pediatric NeurologyParacelsus Medical Private UniversityNurembergGermany
| | - Eric H. Kossoff
- Departments of Neurology and PediatricsJohns Hopkins UniversityBaltimoreMDUSA
| | - Wilhelmina G. Leen
- Department of NeurologyCanisius Wilhemina HospitalNijmegenThe Netherlands
| | - Baerbel Leiendecker
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, Centre for Neuromuscular Disorders in Children, University Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Umrao R. Monani
- Center for Motor Neuron Biology & DiseaseDepartments of Neurology and Pathology & Cell BiologyColumbia University Irving Medical CenterNew YorkNYUSA
| | - Hirokazu Oguni
- Department of PediatricsTokyo Women's Medical UniversityTokyoJapan
| | | | - Juan M. Pascual
- Departments of Neurology and Neurotherapeutics, Physiology and PediatricsEugene McDermott Center for Human Growth and DevelopmentThe University of Texas Southwestern Medical CenterDallasTXUSA
| | - Toni S. Pearson
- Mount Sinai Center for Headache & Pain MedicineNew YorkNYUSA
| | - Roser Pons
- First Department of PediatricsAgia Sofia HospitalUniversity of AthensAthensGreece
| | - Ingrid E. Scheffer
- Florey and Murdoch InstitutesAustin Health and Royal Children's HospitalThe University of MelbourneMelbourneVictoriaAustralia
| | - Pierangelo Veggiotti
- Pediatric Neurology V. Buzzi HospitalChild Neuropsychiatry University of MilanMilanItaly
| | - Michél Willemsen
- Department of Pediatric NeurologyRadboud University Medical CentreAmalia Children's HospitalNijmegenNetherlands
| | - Sameer M. Zuberi
- Royal Hospital for Children & College of Medical Veterinary & Life SciencesUniversity of GlasgowGlasgowUK
| | - Darryl C. De Vivo
- Department of Neurology and PediatricsVagelos College of Physicians and Surgeons at Columbia UniversityNew YorkNYUSA
| |
Collapse
|
5
|
Wang QQ, Li MX, Li C, Gu XX, Zheng MZ, Chen LX, Li H. Natural Products and Derivatives Targeting at Cancer Energy Metabolism: A Potential Treatment Strategy. Curr Med Sci 2020; 40:205-217. [PMID: 32337682 DOI: 10.1007/s11596-020-2165-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/14/2020] [Indexed: 12/13/2022]
Abstract
In the 1920s, Dr Otto Warburg first suggested the significant difference in energy metabolism between malignant cancer cells and adjacent normal cells. Tumor cells mainly adopt the glycolysis as energy source to maintain tumor cell growth and biosynthesis under aerobic conditions. Investigation on energy metabolism pathway in cancer cells has aroused the interest of cancer researchers all around the world. In recent years, plentiful studies suggest that targeting the peculiar cancer energy metabolic pathways, including glycolysis, mitochondrial respiration, amino acid metabolism, and fatty acid oxidation may be an effective strategy to starve cancer cells by blocking essential nutrients. Natural products (NPs) are considered as the "treasure trove of small molecules drugs" and have played an extremely remarkable role in the discovery and development of anticancer drugs. And numerous NPs have been reported to act on cancer energy metabolism targets. Herein, a comprehensive overview about cancer energy metabolism targets and their natural-occurring inhibitors is prepared.
Collapse
Affiliation(s)
- Qi-Qi Wang
- Wuya College of Innovation, School of Pharmaceutical Engineering, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ming-Xue Li
- Wuya College of Innovation, School of Pharmaceutical Engineering, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chen Li
- Wuya College of Innovation, School of Pharmaceutical Engineering, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiao-Xia Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meng-Zhu Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Li-Xia Chen
- Wuya College of Innovation, School of Pharmaceutical Engineering, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
6
|
Pascual JM, Ronen GM. Glucose Transporter Type I Deficiency (G1D) at 25 (1990-2015): Presumptions, Facts, and the Lives of Persons With This Rare Disease. Pediatr Neurol 2015; 53:379-93. [PMID: 26341673 PMCID: PMC4609610 DOI: 10.1016/j.pediatrneurol.2015.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/30/2015] [Accepted: 08/02/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND As is often the case for rare diseases, the number of published reviews and case reports of glucose transporter type I deficiency (G1D) approaches or exceeds that of original research. This can indicate medical interest, but also scientific stagnation. METHODS In assessing this state of affairs here, we focus not on what is peculiar or disparate about G1D, but on the assumptions that have reigned thus far undisputed, and critique them as a potential impediment to progress. To summarize the most common G1D phenotype, we trace the 25-year story of G1D in parallel with the natural history of one of two index patients, identified in 1990 by one of us (G.M.R.) and brought up to date by the other (J.M.P.) while later examining widely repeated but little-scrutinized statements. Among them are those that pertain to assumptions about brain fuels; energy failure; cerebrospinal glucose concentration; the purpose of ketogenic diet; the role of the defective blood-brain barrier; genotype-phenotype correlations; a bewildering array of phenotypes; ictogenesis, seizures, and the electroencephalograph; the use of mice to model the disorder; and what treatments may and may not be expected to accomplish. RESULTS We reach the forgone conclusion that the proper study of mankind-and of one of its ailments (G1D) -is man itself (rather than mice, isolated cells, or extrapolated inferences) and propose a framework for rigorous investigation that we hope will lead to a better understanding and to better treatments for this and for rare disorders in general. CONCLUSIONS These considerations, together with experience drawn from other disorders, lead, as a logical consequence, to the nullification of the view that therapeutic development (i.e., trials) for rare diseases could or should be accelerated without the most vigorous scientific scrutiny: trial and error constitute an inseparable couple, such that, at the present time, hastening the former is bound to precipitate the latter.
Collapse
Affiliation(s)
- Juan M. Pascual
- Rare Brain Disorders Program, Departments of Neurology and Neurotherapeutics, Physiology and Pediatrics, and Eugene McDermott Center for Human Growth and Development / Center for Human Genetics. The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Gabriel M. Ronen
- Department of Pediatrics, McMaster Child Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
7
|
Naftalin RJ. Definitively, my cup of tea. Focus on "Caffeine inhibits glucose transport by binding at the GLUT1 nucleotide-binding site". Am J Physiol Cell Physiol 2015; 308:C825-6. [PMID: 25810258 DOI: 10.1152/ajpcell.00083.2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Richard J Naftalin
- Departments of Physiology and Vascular Biology, British Heart Foundation Centre of Research Excellence, King's College London School of Medicine, London, United Kingdom
| |
Collapse
|
8
|
Sage JM, Cura AJ, Lloyd KP, Carruthers A. Caffeine inhibits glucose transport by binding at the GLUT1 nucleotide-binding site. Am J Physiol Cell Physiol 2015; 308:C827-34. [PMID: 25715702 DOI: 10.1152/ajpcell.00001.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/23/2015] [Indexed: 11/22/2022]
Abstract
Glucose transporter 1 (GLUT1) is the primary glucose transport protein of the cardiovascular system and astroglia. A recent study proposes that caffeine uncompetitive inhibition of GLUT1 results from interactions at an exofacial GLUT1 site. Intracellular ATP is also an uncompetitive GLUT1 inhibitor and shares structural similarities with caffeine, suggesting that caffeine acts at the previously characterized endofacial GLUT1 nucleotide-binding site. We tested this by confirming that caffeine uncompetitively inhibits GLUT1-mediated 3-O-methylglucose uptake in human erythrocytes [Vmax and Km for transport are reduced fourfold; Ki(app) = 3.5 mM caffeine]. ATP and AMP antagonize caffeine inhibition of 3-O-methylglucose uptake in erythrocyte ghosts by increasing Ki(app) for caffeine inhibition of transport from 0.9 ± 0.3 mM in the absence of intracellular nucleotides to 2.6 ± 0.6 and 2.4 ± 0.5 mM in the presence of 5 mM intracellular ATP or AMP, respectively. Extracellular ATP has no effect on sugar uptake or its inhibition by caffeine. Caffeine and ATP displace the fluorescent ATP derivative, trinitrophenyl-ATP, from the GLUT1 nucleotide-binding site, but d-glucose and the transport inhibitor cytochalasin B do not. Caffeine, but not ATP, inhibits cytochalasin B binding to GLUT1. Like ATP, caffeine renders the GLUT1 carboxy-terminus less accessible to peptide-directed antibodies, but cytochalasin B and d-glucose do not. These results suggest that the caffeine-binding site bridges two nonoverlapping GLUT1 endofacial sites-the regulatory, nucleotide-binding site and the cytochalasin B-binding site. Caffeine binding to GLUT1 mimics the action of ATP but not cytochalasin B on sugar transport. Molecular docking studies support this hypothesis.
Collapse
Affiliation(s)
- Jay M Sage
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts; and
| | - Anthony J Cura
- Diabetes Center For Excellence, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Kenneth P Lloyd
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts; and
| | - Anthony Carruthers
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts; and
| |
Collapse
|
9
|
Pascual JM, Liu P, Mao D, Kelly DI, Hernandez A, Sheng M, Good LB, Ma Q, Marin-Valencia I, Zhang X, Park JY, Hynan LS, Stavinoha P, Roe CR, Lu H. Triheptanoin for glucose transporter type I deficiency (G1D): modulation of human ictogenesis, cerebral metabolic rate, and cognitive indices by a food supplement. JAMA Neurol 2015; 71:1255-65. [PMID: 25110966 DOI: 10.1001/jamaneurol.2014.1584] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Disorders of brain metabolism are multiform in their mechanisms and manifestations, many of which remain insufficiently understood and are thus similarly treated. Glucose transporter type I deficiency (G1D) is commonly associated with seizures and with electrographic spike-waves. The G1D syndrome has long been attributed to energy (ie, adenosine triphosphate synthetic) failure such as that consequent to tricarboxylic acid (TCA) cycle intermediate depletion. Indeed, glucose and other substrates generate TCAs via anaplerosis. However, TCAs are preserved in murine G1D, rendering energy-failure inferences premature and suggesting a different hypothesis, also grounded on our work, that consumption of alternate TCA precursors is stimulated and may be detrimental. Second, common ketogenic diets lead to a therapeutically counterintuitive reduction in blood glucose available to the G1D brain and prove ineffective in one-third of patients. OBJECTIVE To identify the most helpful outcomes for treatment evaluation and to uphold (rather than diminish) blood glucose concentration and stimulate the TCA cycle, including anaplerosis, in G1D using the medium-chain, food-grade triglyceride triheptanoin. DESIGN, SETTING, AND PARTICIPANTS Unsponsored, open-label cases series conducted in an academic setting. Fourteen children and adults with G1D who were not receiving a ketogenic diet were selected on a first-come, first-enrolled basis. INTERVENTION Supplementation of the regular diet with food-grade triheptanoin. MAIN OUTCOMES AND MEASURES First, we show that, regardless of electroencephalographic spike-waves, most seizures are rarely visible, such that perceptions by patients or others are inadequate for treatment evaluation. Thus, we used quantitative electroencephalographic, neuropsychological, blood analytical, and magnetic resonance imaging cerebral metabolic rate measurements. RESULTS One participant (7%) did not manifest spike-waves; however, spike-waves promptly decreased by 70% (P = .001) in the other participants after consumption of triheptanoin. In addition, the neuropsychological performance and cerebral metabolic rate increased in most patients. Eleven patients (78%) had no adverse effects after prolonged use of triheptanoin. Three patients (21%) experienced gastrointestinal symptoms, and 1 (7%) discontinued the use of triheptanoin. CONCLUSIONS AND RELEVANCE Triheptanoin can favorably influence cardinal aspects of neural function in G1D. In addition, our outcome measures constitute an important framework for the evaluation of therapies for encephalopathies associated with impaired intermediary metabolism.
Collapse
Affiliation(s)
- Juan M Pascual
- Rare Brain Disorders Program, Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas2Department of Physiology, The University of Texas Southwestern Medical Center, Dallas3Department of Pediatrics, The Un
| | - Peiying Liu
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas
| | - Deng Mao
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas
| | - Dorothy I Kelly
- Rare Brain Disorders Program, Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas
| | - Ana Hernandez
- Department of Psychology, Children's Medical Center Dallas, Dallas, Texas
| | - Min Sheng
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas
| | - Levi B Good
- Rare Brain Disorders Program, Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas
| | - Qian Ma
- Rare Brain Disorders Program, Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas
| | - Isaac Marin-Valencia
- Rare Brain Disorders Program, Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas3Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas
| | - Xuchen Zhang
- Rare Brain Disorders Program, Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas
| | - Jason Y Park
- Eugene McDermott Center for Human Growth and Development/Center for Human Genetics, The University of Texas Southwestern Medical Center, Dallas7Advanced Diagnostics Laboratory, Children's Medical Center, Dallas, Texas8Department of Pathology, The Universi
| | - Linda S Hynan
- Department of Clinical Sciences (Biostatistics), The University of Texas Southwestern Medical Center, Dallas10Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas
| | - Peter Stavinoha
- Department of Psychology, Children's Medical Center Dallas, Dallas, Texas10Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas
| | - Charles R Roe
- Rare Brain Disorders Program, Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas
| | - Hanzhang Lu
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas10Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
10
|
Pascual JM. Glut1 Deficiency (G1D). Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00050-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
11
|
Cura AJ, Carruthers A. Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis. Compr Physiol 2013; 2:863-914. [PMID: 22943001 DOI: 10.1002/cphy.c110024] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The facilitated diffusion of glucose, galactose, fructose, urate, myoinositol, and dehydroascorbicacid in mammals is catalyzed by a family of 14 monosaccharide transport proteins called GLUTs. These transporters may be divided into three classes according to sequence similarity and function/substrate specificity. GLUT1 appears to be highly expressed in glycolytically active cells and has been coopted in vitamin C auxotrophs to maintain the redox state of the blood through transport of dehydroascorbate. Several GLUTs are definitive glucose/galactose transporters, GLUT2 and GLUT5 are physiologically important fructose transporters, GLUT9 appears to be a urate transporter while GLUT13 is a proton/myoinositol cotransporter. The physiologic substrates of some GLUTs remain to be established. The GLUTs are expressed in a tissue specific manner where affinity, specificity, and capacity for substrate transport are paramount for tissue function. Although great strides have been made in characterizing GLUT-catalyzed monosaccharide transport and mapping GLUT membrane topography and determinants of substrate specificity, a unifying model for GLUT structure and function remains elusive. The GLUTs play a major role in carbohydrate homeostasis and the redistribution of sugar-derived carbons among the various organ systems. This is accomplished through a multiplicity of GLUT-dependent glucose sensing and effector mechanisms that regulate monosaccharide ingestion, absorption,distribution, cellular transport and metabolism, and recovery/retention. Glucose transport and metabolism have coevolved in mammals to support cerebral glucose utilization.
Collapse
Affiliation(s)
- Anthony J Cura
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
12
|
Sun L, Zeng X, Yan C, Sun X, Gong X, Rao Y, Yan N. Crystal structure of a bacterial homologue of glucose transporters GLUT1-4. Nature 2012; 490:361-6. [PMID: 23075985 DOI: 10.1038/nature11524] [Citation(s) in RCA: 356] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 08/17/2012] [Indexed: 12/22/2022]
Abstract
Glucose transporters are essential for metabolism of glucose in cells of diverse organisms from microbes to humans, exemplified by the disease-related human proteins GLUT1, 2, 3 and 4. Despite rigorous efforts, the structural information for GLUT1-4 or their homologues remains largely unknown. Here we report three related crystal structures of XylE, an Escherichia coli homologue of GLUT1-4, in complex with d-xylose, d-glucose and 6-bromo-6-deoxy-D-glucose, at resolutions of 2.8, 2.9 and 2.6 Å, respectively. The structure consists of a typical major facilitator superfamily fold of 12 transmembrane segments and a unique intracellular four-helix domain. XylE was captured in an outward-facing, partly occluded conformation. Most of the important amino acids responsible for recognition of D-xylose or d-glucose are invariant in GLUT1-4, suggesting functional and mechanistic conservations. Structure-based modelling of GLUT1-4 allows mapping and interpretation of disease-related mutations. The structural and biochemical information reported here constitutes an important framework for mechanistic understanding of glucose transporters and sugar porters in general.
Collapse
Affiliation(s)
- Linfeng Sun
- State Key Laboratory of Bio-membrane and Membrane Biotechnology, Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Ojeda P, Pérez A, Ojeda L, Vargas-Uribe M, Rivas CI, Salas M, Vera JC, Reyes AM. Noncompetitive blocking of human GLUT1 hexose transporter by methylxanthines reveals an exofacial regulatory binding site. Am J Physiol Cell Physiol 2012; 303:C530-9. [DOI: 10.1152/ajpcell.00145.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glucose transporter (GLUT)1 has become an attractive target to block glucose uptake in malignant cells since most cancer cells overexpress GLUT1 and are sensitive to glucose deprivation. Methylxanthines are natural compounds that inhibit glucose uptake; however, the mechanism of inhibition remains unknown. Here, we used a combination of binding and glucose transport kinetic assays to analyze in detail the effects of caffeine, pentoxifylline, and theophylline on hexose transport in human erythrocytes. The displacement of previously bound cytochalasin B revealed a direct interaction between the methylxanthines and GLUT1. Methylxanthines behave as noncompetitive blockers (inhibition constant values of 2–3 mM) in exchange and zero- trans efflux assays, whereas mixed inhibition with a notable uncompetitive component is observed in zero- trans influx assays (inhibition constant values of 5–12 mM). These results indicate that methylxanthines do not bind to either exofacial or endofacial d-glucose-binding sites but instead interact at a different site accessible by the external face of the transporter. Additionally, infinite- cis exit assays (Sen-Widdas assays) showed that only pentoxifylline disturbed d-glucose for binding to the exofacial substrate site. Interestingly, coinhibition assays showed that methylxanthines bind to a common site on the transporter. We concluded that there is a methylxanthine regulatory site on the external surface of the transporter, which is close but distinguishable from the d-glucose external site. Therefore, the methylxanthine moiety may become an attractive framework for the design of novel specific noncompetitive facilitative GLUT inhibitors.
Collapse
Affiliation(s)
- Paola Ojeda
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; and
| | - Alejandra Pérez
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; and
| | - Lorena Ojeda
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; and
| | - Mauricio Vargas-Uribe
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; and
| | - Coralia I. Rivas
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Monica Salas
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; and
| | - Juan Carlos Vera
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Alejandro M. Reyes
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; and
| |
Collapse
|
14
|
Noh GJ, Jane Tavyev Asher Y, Graham JM. Clinical review of genetic epileptic encephalopathies. Eur J Med Genet 2012; 55:281-98. [PMID: 22342633 DOI: 10.1016/j.ejmg.2011.12.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 12/27/2011] [Indexed: 11/29/2022]
Abstract
Seizures are a frequently encountered finding in patients seen for clinical genetics evaluations. The differential diagnosis for the cause of seizures is quite diverse and complex, and more than half of all epilepsies have been attributed to a genetic cause. Given the complexity of such evaluations, we highlight the more common causes of genetic epileptic encephalopathies and emphasize the usefulness of recent technological advances. The purpose of this review is to serve as a practical guide for clinical geneticists in the evaluation and counseling of patients with genetic epileptic encephalopathies. Common syndromes will be discussed, in addition to specific seizure phenotypes, many of which are refractory to anti-epileptic agents. Divided by etiology, we overview the more common causes of infantile epileptic encephalopathies, channelopathies, syndromic, metabolic, and chromosomal entities. For each condition, we will outline the diagnostic evaluation and discuss effective treatment strategies that should be considered.
Collapse
Affiliation(s)
- Grace J Noh
- Clinical Genetics and Dysmorphology, Medical Genetics Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | | | | |
Collapse
|
15
|
Leturque A, Brot-Laroche E, Le Gall M. Carbohydrate intake. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 108:113-27. [PMID: 22656375 DOI: 10.1016/b978-0-12-398397-8.00005-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Carbohydrates represent more than 50% of the energy sources present in most human diets. Sugar intake is regulated by metabolic, neuronal, and hedonic factors, and gene polymorphisms are involved in determining sugar preference. Nutrigenomic adaptations to carbohydrate availability have been evidenced in metabolic diseases, in the persistence of lactose digestion, and in amylase gene copy number. Furthermore, dietary oligosaccharides, fermentable by gut flora, can modulate the microbiotal diversity to the benefit of the host. Genetic diseases linked to mutations in the disaccharidase genes (sucrase-isomaltase, lactase) and in sugar transporter genes (sodium/glucose cotransporter 1, glucose transporters 1 and 2) severely impact carbohydrate intake. These diseases are revealed upon exposure to food containing the offending sugar, and withdrawal of this sugar from the diet prevents disease symptoms, failure to thrive, and premature death. Tailoring the sugar composition of diets to optimize wellness and to prevent the chronic occurrence of metabolic diseases is a future goal that may yet be realized through continued development of nutrigenetics and nutrigenomics approaches.
Collapse
Affiliation(s)
- Armelle Leturque
- Department of Physiology, Metabolism, Differentiation, Centre de Recherche des Cordeliers, Paris, France
| | | | | |
Collapse
|
16
|
Amann T, Hellerbrand C. GLUT1 as a therapeutic target in hepatocellular carcinoma. Expert Opin Ther Targets 2010; 13:1411-27. [PMID: 19874261 DOI: 10.1517/14728220903307509] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Primary hepatocellular carcinoma (HCC) is one of the most fatal cancers in humans with rising incidence in many regions around the world. Currently, no satisfactory curative pharmacological treatment is available, and the outcome is mostly poor. Recently, we have shown that the glucose transporter GLUT1 is increased in a subset of patients with HCC and functionally affects tumorigenicity. GLUT1 is a rate-limiting transporter for glucose uptake, and its expression correlates with anaerobic glycolysis. This phenomenon is also known as the Warburg effect and recently became of great interest, since it affects not only glucose uptake and utilization but also has an influence on tumorigenic features like metastasis, chemoresistance and escape from immune surveillance. Consistent with this, RNA-interference-mediated inhibition of GLUT1 expression in HCC cells resulted in reduced tumorigenicity. Together, these findings indicate that GLUT1 is a novel and attractive therapeutic target for HCC. This review summarizes our current knowledge on the expression and function of GLUT1 in HCC, available drugs/strategies to inhibit GLUT1 expression or function, and potential side effects of such therapeutic strategies.
Collapse
Affiliation(s)
- Thomas Amann
- University Hospital Regensburg, Department of Internal Medicine I, D-93042 Regensburg, Germany
| | | |
Collapse
|
17
|
Abstract
Transport of glucose from the bloodstream across the blood-brain barrier to the central nervous system is facilitated by glucose transport protein type 1 (GLUT1), the first member of the solute carrier family 2 (SLC2). Heterozygous mutations in the GLUT1/SLC2A1 gene, occurring de novo or inherited as an autosomal dominant trait, result in cerebral energy failure and a clinical condition termed GLUT1-deficiency syndrome (GLUT1-DS). Clinical features usually comprise motor and mental developmental delay, seizures with infantile onset, deceleration of head growth often resulting in acquired microcephaly, and a movement disorder with ataxia, dystonia, and spasticity. Subsequent to the delineation of this classic phenotype the variability of signs and symptoms in GLUT1-DS is being recognized. Patients with (i) carbohydrate-responsive symptoms, with (ii) predominant ataxia or dystonia, but without seizures, and with (iii) paroxysmal exertion-induced dyskinesia and seizures have been reported. Common laboratory hallmark in all phenotypes is the reduced glucose level in cerebrospinal fluid with lowered CSF-to-blood glucose ratio. Treatment with a ketogenic diet results in marked improvement of seizures and movement disorders.
Collapse
Affiliation(s)
- Knut Brockmann
- Department of Pediatrics and Pediatric Neurology, Faculty of Medicine, Georg August University, Robert-Koch-Str. 40, 37075 Göttingen, Germany.
| |
Collapse
|
18
|
New GLUT-1 mutation in a child with treatment-resistant epilepsy. Epilepsy Res 2009; 84:254-6. [DOI: 10.1016/j.eplepsyres.2009.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 01/14/2009] [Accepted: 01/19/2009] [Indexed: 11/22/2022]
|
19
|
Matsuo H, Chiba T, Nagamori S, Nakayama A, Domoto H, Phetdee K, Wiriyasermkul P, Kikuchi Y, Oda T, Nishiyama J, Nakamura T, Morimoto Y, Kamakura K, Sakurai Y, Nonoyama S, Kanai Y, Shinomiya N. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am J Hum Genet 2008; 83:744-51. [PMID: 19026395 DOI: 10.1016/j.ajhg.2008.11.001] [Citation(s) in RCA: 283] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Revised: 10/27/2008] [Accepted: 11/04/2008] [Indexed: 11/16/2022] Open
Abstract
Renal hypouricemia is an inherited disorder characterized by impaired renal urate (uric acid) reabsorption and subsequent low serum urate levels, with severe complications such as exercise-induced acute renal failure and nephrolithiasis. We previously identified SLC22A12, also known as URAT1, as a causative gene of renal hypouricemia. However, hypouricemic patients without URAT1 mutations, as well as genome-wide association studies between urate and SLC2A9 (also called GLUT9), imply that GLUT9 could be another causative gene of renal hypouricemia. With a large human database, we identified two loss-of-function heterozygous mutations in GLUT9, which occur in the highly conserved "sugar transport proteins signatures 1/2." Both mutations result in loss of positive charges, one of which is reported to be an important membrane topology determinant. The oocyte expression study revealed that both GLUT9 isoforms showed high urate transport activities, whereas the mutated GLUT9 isoforms markedly reduced them. Our findings, together with previous reports on GLUT9 localization, suggest that these GLUT9 mutations cause renal hypouricemia by their decreased urate reabsorption on both sides of the renal proximal tubules. These findings also enable us to propose a physiological model of the renal urate reabsorption in which GLUT9 regulates serum urate levels in humans and can be a promising therapeutic target for gout and related cardiovascular diseases.
Collapse
Affiliation(s)
- Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Disturbance of cellular glucose transport by two prevalently used fluoroquinolone antibiotics ciprofloxacin and levofloxacin involves glucose transporter type 1. Toxicol Lett 2008; 184:81-4. [PMID: 19022360 DOI: 10.1016/j.toxlet.2008.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 10/20/2008] [Accepted: 10/21/2008] [Indexed: 11/21/2022]
Abstract
Dysglycemia and central nervous system (CNS) complications are the known adverse effects of fluoroquinolone antibiotics. Ciprofloxacin and levofloxacin are among the most prescribed antibiotics. In this study we demonstrate that ciprofloxacin and levofloxacin disturb glucose transport into HepG2 cells and such inhibition is associated with inhibited glucose transporter type 1 (GLUT1) function. When exposed to ciprofloxacin or levofloxacin at maximum plasma concentrations (C(max)) and 5x of C(max) concentrations, GLUT1 mRNA expression, cell surface GLUT1 protein expression and glucose uptake were significantly reduced. These findings imply that disturbed cellular glucose transport and GLUT1 function may underlie the dysglycemic and CNS effects of ciprofloxacin and levofloxacin.
Collapse
|
21
|
Takahashi S, Ohinata J, Suzuki N, Amamiya S, Kajihama A, Sugai R, Araki A, Fujieda K, Tanaka H. Molecular analysis and anticonvulsant therapy in two patients with glucose transporter 1 deficiency syndrome: A successful use of zonisamide for controlling the seizures. Epilepsy Res 2008; 80:18-22. [DOI: 10.1016/j.eplepsyres.2008.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 12/26/2007] [Accepted: 03/05/2008] [Indexed: 10/22/2022]
|
22
|
Araujo JR, Goncalves P, Martel F. Modulation of Glucose Uptake in a Human Choriocarcinoma Cell Line (BeWo) by Dietary Bioactive Compounds and Drugs of Abuse. J Biochem 2008; 144:177-86. [DOI: 10.1093/jb/mvn054] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
23
|
Abstract
GLUT1 deficiency syndrome (GLUT1DS, OMIM 606777) is a treatable epileptic encephalopathy resulting from impaired glucose transport into the brain. The essential biochemical finding is a low glucose concentration in the cerebrospinal fluid (CSF; hypoglycorrhachia; mean 1.7 [SD 0.3mmol/L]) in the setting of normoglycaemia. CSF lactate is normal. Patients present with an early-onset epilepsy resistant to anticonvulsants, developmental delay, and a complex movement disorder. Hypotonic, ataxic, and dystonic features are most prominent. Speech is often severely affected. Some patients develop spasticity and secondary microcephaly. The phenotype is highly variable ranging from severe impairment to children without seizures. Electroencephalography (EEG) may show 2.5-4Hz spike-waves improving on food intake. Neuroimaging is uninformative. Most patients carry heterozygous de novo mutations in the GLUT1 gene (OMIM 138140, gene map locus 1p35-31.3). Autosomal dominant transmission and several mutational hot spots have been identified, but phenotype-genotype correlations are not yet apparent. Homozygous GLUT1 mutations presumably are lethal. The ketogenic diet is the treatment of choice as it provides an alternative fuel to the brain. It should be introduced early and maintained into puberty. Seizures are effectively controlled with the onset of ketosis, but might recur and require comedication. The effect on neurodevelopment appears less impressive. The increasing number of patients, molecular and biochemical analysis, recent research into ketogenic diet mechanisms, and the development of animal models for GLUT1DS have brought substantial insights in disease manifestations and mechanisms. This review summarizes data on 84 published cases and highlights recent advances in understanding this entity.
Collapse
|
24
|
Abstract
Several heritable disorders of glucose transport across cellular membranes have been recently characterized both genetically and pathophysiologically. Diseases such as glucose-galactose malabsorption, Fanconi-Bickel syndrome and GLUT1 deficiency syndrome are caused by mutation of transporters located in bowel, liver and brain, respectively. For example, the glucose transporter type 1 deficiency syndrome, a prototypical neurometabolic disease, combines manifestations such as epilepsy and hypoglycorrhachia, and is caused by heritable mutation of the SLC2A1 gene. All known glucose transporter mutations induce loss of membrane function at important cellular interfaces, limiting glucose uptake by energy-consuming cells. The fundamental role served by glucose transport allows these pleomorphic conditions to cross the boundaries of traditional clinical disciplines.
Collapse
Affiliation(s)
- Juan M Pascual
- Department of Neurology, Neurological Institute of New York, Children's Hospital of New York, College of Physicians and Surgeons, Columbia University, New York, New York, USA.
| |
Collapse
|
25
|
Wong HY, Law PY, Ho YY. Disease-associated Glut1 single amino acid substitute mutations S66F, R126C, and T295M constitute Glut1-deficiency states in vitro. Mol Genet Metab 2007; 90:193-8. [PMID: 17052934 DOI: 10.1016/j.ymgme.2006.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 09/05/2006] [Indexed: 11/17/2022]
Abstract
Glucose transporter type 1 deficiency syndrome (Glut1DS) is the result of autosomal-dominant loss-of-function mutation of the glucose transporter type 1 gene (GLUT1) leading to brain energy failure and epileptic encephalopathy. In this study, the protein products of the Glut1DS-associated GLUT1 missense mutations, S66F, R126C, and T295M, were characterized using the Glut1-green fluorescent protein (GFP) fusion expressed in CHO cells. Glut1-GFP expression was confirmed by Western blot and confocal microscopy. The applicability of this Glut1-GFP expression model in reporting Glut1 functional deficits was validated by re-confirming the glucose transport defects of the previously reported pathogenic mutations R126H, R126L, and R333W. While S66F, R126C, and T295M mutants were expressed and targeted to the cell membrane, these Glut1 mutants have significantly diminished membrane association and glucose transport activity (p<0.05) relative to the wild-type Glut1 protein. Consistent with the reduced Glut1 membrane association, glucose transport kinetics studies showed that S66F, R126C, and T295M mutants have significantly reduced (p<0.05) Vmax but not Km. Thus, Glut1 single amino acid substitute mutants S66F, R126C, and T295M impair glucose transport function and constitute Glut1-deficiency states in vitro. These results support the pathogenicity of Glut1 S66F, R126C, and T295M in vivo.
Collapse
Affiliation(s)
- H Y Wong
- Molecular Biotechnology Program, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | | | | |
Collapse
|
26
|
Coman DJ, Sinclair KG, Burke CJ, Appleton DB, Pelekanos JT, O'Neil CM, Wallace GB, Bowling FG, Wang D, De Vivo DC, McGill JJ. Seizures, ataxia, developmental delay and the general paediatrician: glucose transporter 1 deficiency syndrome. J Paediatr Child Health 2006; 42:263-7. [PMID: 16712556 DOI: 10.1111/j.1440-1754.2006.00852.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM Glucose transporter 1 deficiency syndrome (GLUT1-DS) is an important condition for the general paediatrician's differential armamentarium. We describe a case series of eight patients in order to raise awareness of this treatable neurometabolic condition. The diagnosis of GLUT1-DS is suggested by a decreased absolute cerebrospinal fluid (CSF) glucose value (<2.2 mmol/L) or lowered CSF: plasma glucose ratio (<0.4). METHODS This is a review of eight Queensland patients with GLUT1-DS. The clinical presentation, clinical course, laboratory investigations and treatment outcomes are discussed. RESULTS The clinical features noted in our patient cohort include combinations of ataxia, developmental delay and a severe seizure disorder that is refractory to anticonvulsant medications. Seizures are the most common clinical manifestation and may be exacerbated by phenobarbitone. The paired CSF: plasma glucose results ranged from 0.2 to 0.39 (normal <0.6) with an average of 0.33. 3-O-Methyl-D-Glucose uptake and GLUT1 Genotyping analysis have been performed on five patients thus far. Rapid and impressive seizure control was observed in 100% of our patients once the ketogenic diet was instituted, with half of the cohort being able to wean completely from anticonvulsants. CONCLUSION Children presenting with a clinical phenotype consisting of a refractory seizure disorder, ataxia and developmental delay should prompt the consideration of Glucose transporter 1 deficiency syndrome. While the diagnostic test of lumbar puncture is an invasive manoeuvre, the diagnosis provides a viable treatment option, the ketogenic diet. GLUT1-DS displays clinical heterogeneity, but the value of early diagnosis and treatment is demonstrated by our patient cohort.
Collapse
Affiliation(s)
- David J Coman
- Department of Metabolic Medicine, The Royal Children's Hospital, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang D, Pascual JM, Yang H, Engelstad K, Mao X, Cheng J, Yoo J, Noebels JL, De Vivo DC. A mouse model for Glut-1 haploinsufficiency. Hum Mol Genet 2006; 15:1169-79. [PMID: 16497725 DOI: 10.1093/hmg/ddl032] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glut-1 deficiency syndrome (Glut-1 DS, OMIM #606777) is characterized by infantile seizures, developmental delay, acquired microcephaly and hypoglycorrhachia. It is caused by haploinsufficiency of the blood-brain barrier hexose carrier. Heterozygous mutations or hemizygosity of the GLUT-1 gene cause Glut-1 DS. We generated a heterozygous haploinsufficient mouse model by targeted disruption of the promoter and exon 1 regions of the mouse GLUT-1 gene. GLUT-1+/- mice have epileptiform discharges on electroencephalography (EEG), impaired motor activity, incoordination, hypoglycorrhachia, microencephaly, decreased brain glucose uptake as measured by positron emission tomography (PET) scan and decreased brain Glut-1 expression by western blot (66%). The GLUT-1+/- murine phenotype mimics the classical human presentation of Glut-1 DS. This GLUT-1+/- mouse model creates an opportunity to investigate Glut-1 function, to examine the pathophysiology of Glut-1 DS in vivo and to evaluate new treatment strategies.
Collapse
Affiliation(s)
- Dong Wang
- Colleen Giblin Laboratories for Pediatric Neurology Research, Department of Neurology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wong HY, Chu TS, Lai JC, Fung KP, Fok TF, Fujii T, Ho YY. Sodium valproate inhibits glucose transport and exacerbates Glut1-deficiency in vitro. J Cell Biochem 2006; 96:775-85. [PMID: 16149077 DOI: 10.1002/jcb.20555] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Anticonvulsant sodium valproate interferes with brain glucose metabolism. The mechanism underlying such metabolic disturbance is unclear. We tested the hypothesis that sodium valproate interferes with cellular glucose transport with a focus on Glut1 since glucose transport across the blood-brain barrier relies on this transporter. Cell types enriched with Glut1 expression including human erythrocytes, human skin fibroblasts, and rat astrocytes were used to study the effects of sodium valproate on glucose transport. Sodium valproate significantly inhibited Glut1 activity in normal and Glut1-deficient erythrocytes by 20%-30%, causing a corresponding reduction of Vmax of glucose transport. Similarly, in primary astrocytes as well as in normal and Glut1-deficient fibroblasts, sodium valproate inhibited glucose transport by 20%-40% (P < 0.05), accompanied by an up to 60% downregulation of GLUT1 mRNA expression (P < 0.05). In conclusion, sodium valproate inhibits glucose transport and exacerbates Glut1 deficiency in vitro. Our findings imply the importance of prudent use of sodium valproate for patients with compromised Glut1 function.
Collapse
Affiliation(s)
- Hei Yi Wong
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Wang D, Pascual JM, Yang H, Engelstad K, Jhung S, Sun RP, De Vivo DC. Glut-1 deficiency syndrome: clinical, genetic, and therapeutic aspects. Ann Neurol 2005; 57:111-8. [PMID: 15622525 DOI: 10.1002/ana.20331] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Impaired glucose transport across the blood-brain barrier results in Glut-1 deficiency syndrome (Glut-1 DS, OMIM 606777), characterized by infantile seizures, developmental delay, acquired microcephaly, spasticity, ataxia, and hypoglycorrhachia. We studied 16 new Glut-1 deficiency syndrome patients focusing on clinical and laboratory features, molecular genetics, genotype-phenotype correlation, and treatment. These patients were classified phenotypically into three groups. The mean cerebrospinal fluid glucose concentration was 33.1 +/- 4.9mg/dl equal to 37% of the simultaneous blood glucose concentration. The mean cerebrospinal fluid lactate concentration was 1.0 +/- 0.3mM, which was less than the normal mean value of 1.63mM. The mean V(max) for the 3-O-methyl-D-glucose uptake into erythrocytes was 996 fmol/10(6) red blood cells per second, significantly less (54 +/- 11%; t test, p < 0.05) than the mean control value of 1,847. The mean Km value for the patient group (1.4 +/- 0.5mM) was similar to the control group (1.7 +/- 0.5mM; t test, p > 0.05). We identified 16 rearrangements, including seven missense, one nonsense, one insertion, and seven deletion mutations. Fourteen were novel mutations. There were no obvious correlations between phenotype, genotype, or biochemical measures. The ketogenic diet produced good seizure control.
Collapse
Affiliation(s)
- Dong Wang
- Colleen Giblin Laboratories for Pediatric Neurology Research, Department of Neurology, Columbia University, 710 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Wong HY, Chu TS, Chan YW, Fok TF, Fung LW, Fung KP, Ho YY. The effects of phenytoin and its metabolite 5-(4-hydroxyphenyl)-5-phenylhydantoin on cellular glucose transport. Life Sci 2005; 76:1859-72. [PMID: 15698863 DOI: 10.1016/j.lfs.2004.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Accepted: 10/20/2004] [Indexed: 11/16/2022]
Abstract
Glucose is the principal fuel for brain metabolism and its movement across the blood-brain barrier depends on Glut1. Impaired glucose transport to the brain may have deleterious consequences. For example, Glut1 deficiency syndrome (Glut1DS) is the result of heterozygous loss of function Glut1 mutation leading to energy failure of the brain and subsequently, epileptic encephalopathy. To preserve the integrity of the energy supply to the brain in patients with compromised glucose transport function, consumption of compounds with glucose transport inhibiting properties should be avoided. Phenytoin is a widely used anticonvulsant that affects carbohydrate metabolism. In this study, the hypothesis that phenytoin and its metabolite 5-(4-hydroxyphenyl)-5-phenylhydantoin (HPPH) affect cellular glucose transport was tested. With a focus on Glut1, the effects of phenytoin and HPPH on cellular glucose transport were studied. Glucose uptake assay measuring the zero-trans influx of radioactive-labeled glucose analogues showed that phenytoin and HPPH did not exert immediate effects on erythrocyte Glut1 activity or glucose transport in Hs68 control fibroblasts, Glut1DS primary fibroblasts isolated from two patients, or in rat primary astrocytes. Prolonged exposure to the two compounds could stimulate glucose transport by up to 30-60% over the control level (p <0.05) in Hs68 and Glut1DS fibroblasts as well as in rat astrocytes. The stimulation of glucose transport by HPPH was dose-dependent and accompanied by an up-regulation of GLUT1 mRNA expression (p <0.05). In conclusion, phenytoin and HPPH do not compromise cellular glucose transport. Prolonged exposure to these compounds can modify carbohydrate homeostasis by up-regulating glucose transport in both normal and Glut1DS conditions in vitro.
Collapse
Affiliation(s)
- Hei Yi Wong
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Klepper J. Impaired glucose transport into the brain: the expanding spectrum of glucose transporter type 1 deficiency syndrome. Curr Opin Neurol 2004; 17:193-6. [PMID: 15021248 DOI: 10.1097/00019052-200404000-00018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Glucose transporter type 1 deficiency syndrome (OMIM 606777) is a treatable epileptic encephalopathy resulting from impaired glucose transport into the brain. In recent years, the increasing number of patients has generated substantial insights into the manifestations and mechanisms of this disease. Current understanding of this novel disorder is reviewed, and recent advances in diagnosis and treatment are highlighted. RECENT FINDINGS The syndrome is now understood to be a complex neurological disorder. The clinical spectrum has recently been extended by infants with 'benign' transient hypoglycorrhachia, glucose transporter type 1 deficiency syndrome without seizures, and by adult cases. Other key findings in the last couple of years include (1) the description of electroencephalogram abnormalities, (2) a characteristic cerebral metabolic footprint in positron emission tomography imaging, and (3) the definition of molecular mechanisms and functional domains within the glucose transporter type 1 protein by in-vitro mutagenesis. The disease has also shed a new light on the mechanisms and the effectiveness of the ketogenic diet for seizure control. SUMMARY The syndrome is now well characterized in children and should be considered in any patient with intractable epilepsy. An effective therapy is available. The clinical spectrum and the molecular basis of the disease are increasingly heterogeneous and indicate complex pathogenic mechanisms that will ultimately lead to a classification on clinical, biochemical, and molecular grounds.
Collapse
Affiliation(s)
- Jörg Klepper
- Department of Pediatrics and Pediatric Neurology, University of Essen, Essen, Germany.
| |
Collapse
|
32
|
Klepper J, Diefenbach S, Kohlschütter A, Voit T. Effects of the ketogenic diet in the glucose transporter 1 deficiency syndrome. Prostaglandins Leukot Essent Fatty Acids 2004; 70:321-7. [PMID: 14769490 DOI: 10.1016/j.plefa.2003.07.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2003] [Accepted: 07/01/2003] [Indexed: 11/23/2022]
Abstract
The ketogenic diet (KD), established to treat intractable childhood epilepsy, has emerged as the principal treatment of GLUT1 deficiency syndrome (OMIM 606777). This defect of glucose transport into the brain results in hypoglycorrhachia causing epilepsy, developmental delay, and a complex motor disorder in early childhood. Ketones provided by a high-fat, low-carbohydrate diet serve as an alternative fuel to the brain. Glucose, lactate, lipids, and ketones in blood and cerebrospinal fluid were investigated in five GLUT1-deficient patients before and on the KD. Hypoglycorrhachia was detected in the non-ketotic and ketotic state. In ketosis, lactate concentrations in the cerebrospinal fluid increased moderately. The CSF/blood ratio for acetoacetate was higher compared to beta-hydroxybutyrate. Free fatty acids did not enter the brain in significant amounts. Blood concentrations of essential fatty acids determined in 18 GLUT1-deficient patients on the KD were sufficient in all age groups. The effects of the KD in GLUT1 deficiency syndrome, particularly the course of blood lipids, are discussed in an illustrative case. In this syndrome, the KD effectively restores brain energy metabolism. Ketosis does not influence impaired GLUT1-mediated glucose transport into brain: hypoglycorrhachia, the biochemical hallmark of the disease, can be identified in GLUT1-deficient patients on a KD. The effects of ketosis on the concentrations of glucose, lactate, ketones, and fatty acids in blood and cerebrospinal fluid in this entity are discussed in view of previous data on ketosis in man.
Collapse
Affiliation(s)
- Jörg Klepper
- Department of Pediatric Neurology, University of Essen, Hufelandstrasse 55, D-45122 Essen, Germany.
| | | | | | | |
Collapse
|
33
|
Naftalin RJ, Afzal I, Cunningham P, Halai M, Ross C, Salleh N, Milligan SR. Interactions of androgens, green tea catechins and the antiandrogen flutamide with the external glucose-binding site of the human erythrocyte glucose transporter GLUT1. Br J Pharmacol 2003; 140:487-99. [PMID: 12970085 PMCID: PMC1574051 DOI: 10.1038/sj.bjp.0705460] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2003] [Revised: 06/19/2003] [Accepted: 07/17/2003] [Indexed: 11/08/2022] Open
Abstract
This study investigates the effects of androgens, the antiandrogen flutamide and green tea catechins on glucose transport inhibition in human erythrocytes. These effects may relate to the antidiabetogenic effects of green tea. Testosterone, 4-androstene-3,17-dione, dehydroepiandrosterone (DHEA) and DHEA-3-acetate inhibit glucose exit from human erythrocytes with half-maximal inhibitions (Ki) of 39.2+/-8.9, 29.6+/-3.7, 48.1+/-10.2 and 4.8+/-0.98 microM, respectively. The antiandrogen flutamide competitively relieves these inhibitions and of phloretin. Dehydrotestosterone has no effect on glucose transport, indicating the differences between androgen interaction with GLUT1 and human androgen receptor (hAR). Green tea catechins also inhibit glucose exit from erythrocytes. Epicatechin 3-gallate (ECG) has a Ki ECG of 0.14+/-0.01 microM, and epigallocatechin 3-gallate (EGCG) has a Ki EGCG of 0.97+/-0.13 microM. Flutamide reverses these effects. Androgen-screening tests show that the green tea catechins do not act genomically. The high affinities of ECG and EGCG for GLUT1 indicate that this might be their physiological site of action. There are sequence homologies between GLUT1 and the ligand-binding domain (LBD) of hAR containing the amino-acid triads Arg 126, Thr 30 and Asn 288, and Arg 126, Thr 30 and Asn 29, with similar 3D topology to the polar groups binding 3-keto and 17-beta OH steroid groups in hAR LBD. These triads are appropriately sited for competitive inhibition of glucose import at the external opening of the hydrophilic pore traversing GLUT1.
Collapse
Affiliation(s)
- Richard J Naftalin
- New Hunt's House, King's College London, Guys Campus, London SE1 1UL, UK.
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Glucose transporter type1 (GLUT-1) deficiency may be rare, but it is a preventable cause of severe learning difficulties; and therefore there is an urgency in making an early diagnosis. Suspicions must be roused when intractable seizures occur in infancy. These may be associated with acquired microcephaly and developmental delay. The finding of low glucose sugar levels in the cerebrospinal fluid, but not in the blood will identify the condition. The gene encoding the GLUT-1 protein is located on the short arm of chromosome 1, and inheritance is by a dominant trait. Patients with this syndrome can have heterozygous mutations, with one allele being a normal wild type and one being mutant. An efficient transport of glucose across the blood-brain barrier is essential as it is such an important fuel for the brain, and this is provided by glucose transporter type1 in the endothelial cells of the brain capillaries. Another minor contribution to the symptomatology of GLUT-1 may be impaired transport of an oxidised form of vitamin C. Treatment with anti-epileptic drugs may be needed, and the ketogenic diet may reduce symptoms, as ketosis can provide an alternative source of fuel for the brain. It has also been suggested that antioxidant thioctic acid may be of benefit. Substances such as caffeine and phenobarbitone should be avoided as they inhibit glucose transport.
Collapse
Affiliation(s)
- Neil Gordon
- Huntlywood, 3 Styal Road, Wilmslow SK9 4AE, UK.
| | | |
Collapse
|
35
|
Klepper J, De Vivo DC, Webb DW, Klinge L, Voit T. Reversible infantile hypoglycorrhachia: possible transient disturbance in glucose transport? Pediatr Neurol 2003; 29:321-5. [PMID: 14643395 DOI: 10.1016/s0887-8994(03)00268-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Facilitated glucose transporter isoform 1 deficiency syndrome (GLUT1 DS), caused by impaired GLUT1-mediated glucose transport into the brain, is characterized by hypoglycorrhachia. The defect in the facilitative glucose transporter isoform 1 (GLUT1) can be confirmed by functional, quantitative, and molecular analyses. Diagnostic difficulties arise when these analyses are normal and hypoglycorrhachia remains unexplained. Three infants presenting with seizures and hypoglycorrhachia at 2, 4, and 6 weeks of age, which suggests GLUT1 deficiency syndrome, are reported. The seizures responded to a ketogenic diet in Patients 1 and 3 and phenobarbitone in Patient 2. Repeated GLUT1 analyses were normal. When treatment was discontinued, all patients remained seizure-free and developed normally. Subsequent lumbar punctures showed the return to normoglycorrhachia. We conclude that these cases might represent a transient disturbance in GLUT1-mediated glucose transport. The biomolecular basis for this clinical observation remains unknown. Though no treatment is required, clinical follow-up and repeated lumbar punctures are necessary to distinguish this benign condition from the original GLUT1 deficiency syndrome.
Collapse
Affiliation(s)
- Jörg Klepper
- Department of Pediatric Neurology, University of Essen, Essen, Germany
| | | | | | | | | |
Collapse
|
36
|
Leary LD, Wang D, Nordli DR, Engelstad K, De Vivo DC. Seizure characterization and electroencephalographic features in Glut-1 deficiency syndrome. Epilepsia 2003; 44:701-7. [PMID: 12752470 DOI: 10.1046/j.1528-1157.2003.05302.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE To characterize seizure types and electroencephalographic features of glucose transporter type 1 deficiency syndrome (Glut-1 DS). METHODS Twenty children with clinical and laboratory features of Glut-1 DS were evaluated. Age at seizure diagnosis, seizure classification, and response to treatment were determined by chart review. Thirty-two continuous 24-h EEG monitoring sessions and reports of 42 routine EEG studies were assessed. RESULTS Age at seizure diagnosis was between 4 weeks and 18 months (mean, 5 months). Seizure types were generalized tonic or clonic (14), absence (10), partial (nine), myoclonic (six), or astatic (four). During 24-h EEGs, background activity showed generalized 2.5- to 4-Hz spike-wave discharges (41%), generalized slowing or attenuation (34%), no abnormalities (34%), focal epileptiform discharges (13%), or focal slowing or attenuation (9%). No seizures were captured during 69% of the studies; the remainder had absence (19%), myoclonic (9%), or partial seizures (3%). On evaluation of routine and 24-h EEG studies, focal epileptiform discharges (24%) and slowing (11%) were more frequent in ages 0-24 months. In older children (2-8 years), generalized epileptiform discharges (37.5%) and slowing (21%) were more common. CONCLUSIONS In all ages, a normal interictal EEG was the most common EEG finding. When abnormalities occurred, focal slowing or epileptiform discharges were more prevalent in the infant. In older children (2 years or older), a generalized 2.5- to 4-Hz spike-wave pattern emerged. Seizure types observed included, absence, myoclonic, partial, and astatic.
Collapse
Affiliation(s)
- Linda D Leary
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York, U.S.A.
| | | | | | | | | |
Collapse
|
37
|
De Vivo DC, Wang D, Pascual JM, Ho YY. Glucose transporter protein syndromes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 51:259-88. [PMID: 12420362 DOI: 10.1016/s0074-7742(02)51008-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Darryl C De Vivo
- Department of Neurology, Colleen Giblin Research Laboratories for Pediatric Neurology, Columbia University, New York 10032, USA
| | | | | | | |
Collapse
|
38
|
Abstract
Neonatal seizures frequently accompany neonatal encephalopathies. Seizures occur in approximately 1.8-5/1,000 live births in this country and are caused by virtually any condition that affects neonatal brain function. This review provides a simple classification of seizures and emphasizes that many abnormal intermittent behaviors in this age group are not accompanied by ictal EEG patterns. Additionally, < or =50% of neonatal seizures are not associated with abnormal clinical behavior. This is a common phenomenon, particularly after anticonvulsant treatment in which the clinical seizures are suppressed but electrographic seizures continue unabated. Seizures also may be caused by genetic disorders, several of which are benign, familial, and caused by channelopathies involving potassium channels. The review also discusses the epileptic syndromes seen in neonates, including early myoclonic encephalopathy, Ohtahara syndrome, pyridoxine dependency, and glucose transporter type 1 syndrome.
Collapse
Affiliation(s)
- Barry R Tharp
- Department of Neurology, School of Medicine, and The M.I.N.D. Institute, University of California Davis, Sacramento 95817, USA.
| |
Collapse
|
39
|
Brockmann K, Wang D, Korenke CG, von Moers A, Ho YY, Pascual JM, Kuang K, Yang H, Ma L, Kranz-Eble P, Fischbarg J, Hanefeld F, De Vivo DC. Autosomal dominant glut-1 deficiency syndrome and familial epilepsy. Ann Neurol 2001; 50:476-85. [PMID: 11603379 DOI: 10.1002/ana.1222] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glut-1 deficiency syndrome was first described in 1991 as a sporadic clinical condition, later shown to be the result of haploinsufficiency. We now report a family with Glut-1 deficiency syndrome affecting 5 members over 3 generations. The syndrome behaves as an autosomal dominant condition. Affected family members manifested mild to severe seizures, developmental delay, ataxia, hypoglycorrhachia, and decreased erythrocyte 3-O-methyl-D-glucose uptake. Seizure frequency and severity were aggravated by fasting, and responded to a carbohydrate load. Glut-1 immunoreactivity in erythrocyte membranes was normal. A heterozygous R126H missense mutation was identified in the 3 patients available for testing, 2 brothers (Generation 3) and their mother (Generation 2). The sister and her father were clinically and genotypically normal. In vitro mutagenesis studies in Xenopus laevis oocytes demonstrated significant decreases in the transport of 3-O-methyl-D-glucose and dehydroascorbic acid. Xenopus oocyte membranes expressed high amounts of the R126H mutant Glut-1. Kinetic analysis indicated that replacement of arginine-126 by histidine in the mutant Glut-1 resulted in a lower Vmax. These studies demonstrate the pathogenicity of the R126H missense mutation and transmission of Glut-1 deficiency syndrome as an autosomal dominant trait.
Collapse
Affiliation(s)
- K Brockmann
- Department of Pediatrics and Neuropediatrics, Children's Hospital, University of Goettingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|