1
|
Riché R, Liao M, Pena IA, Leung KY, Lepage N, Greene NDE, Sarafoglou K, Schimmenti LA, Drapeau P, Samarut É. Glycine decarboxylase deficiency-induced motor dysfunction in zebrafish is rescued by counterbalancing glycine synaptic level. JCI Insight 2018; 3:124642. [PMID: 30385710 DOI: 10.1172/jci.insight.124642] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/19/2018] [Indexed: 11/17/2022] Open
Abstract
Glycine encephalopathy (GE), or nonketotic hyperglycinemia (NKH), is a rare recessive genetic disease caused by defective glycine cleavage and characterized by increased accumulation of glycine in all tissues. Here, based on new case reports of GLDC loss-of-function mutations in GE patients, we aimed to generate a zebrafish model of severe GE in order to unravel the molecular mechanism of the disease. Using CRISPR/Cas9, we knocked out the gldc gene and showed that gldc-/- fish recapitulate GE on a molecular level and present a motor phenotype reminiscent of severe GE symptoms. The molecular characterization of gldc-/- mutants showed a broad metabolic disturbance affecting amino acids and neurotransmitters other than glycine, with lactic acidosis at stages preceding death. Although a transient imbalance was found in cell proliferation in the brain of gldc-/- zebrafish, the main brain networks were not affected, thus suggesting that GE pathogenicity is mainly due to metabolic defects. We confirmed that the gldc-/- hypotonic phenotype is due to NMDA and glycine receptor overactivation, and demonstrated that gldc-/- larvae depict exacerbated hyperglycinemia at these synapses. Remarkably, we were able to rescue the motor dysfunction of gldc-/- larvae by counterbalancing pharmacologically or genetically the level of glycine at the synapse.
Collapse
Affiliation(s)
- Raphaëlle Riché
- Research Center of the University of Montreal Hospital Center (CRCHUM), Department of Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | - Meijiang Liao
- Research Center of the University of Montreal Hospital Center (CRCHUM), Department of Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | - Izabella A Pena
- Children's Hospital of Eastern Ontario Research Institute and Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | - Kit-Yi Leung
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Nathalie Lepage
- Children's Hospital of Eastern Ontario Research Institute and Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | - Nicolas DE Greene
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Kyriakie Sarafoglou
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lisa A Schimmenti
- Department of Otorhinolaryngology.,Department of Pediatrics, and.,Department of Clinical Genomics, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Pierre Drapeau
- Research Center of the University of Montreal Hospital Center (CRCHUM), Department of Neurosciences, Université de Montréal, Montreal, Quebec, Canada.,DanioDesign Inc., Montréal, Quebec, Canada
| | - Éric Samarut
- Research Center of the University of Montreal Hospital Center (CRCHUM), Department of Neurosciences, Université de Montréal, Montreal, Quebec, Canada.,DanioDesign Inc., Montréal, Quebec, Canada
| |
Collapse
|
2
|
Reddy N, Calloni SF, Vernon HJ, Boltshauser E, Huisman TAGM, Soares BP. Neuroimaging Findings of Organic Acidemias and Aminoacidopathies. Radiographics 2018; 38:912-931. [PMID: 29757724 DOI: 10.1148/rg.2018170042] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although individual cases of inherited metabolic disorders are rare, overall they account for a substantial number of disorders affecting the central nervous system. Organic acidemias and aminoacidopathies include a variety of inborn errors of metabolism that are caused by defects in the intermediary metabolic pathways of carbohydrates, amino acids, and fatty acid oxidation. These defects can lead to the abnormal accumulation of organic acids and amino acids in multiple organs, including the brain. Early diagnosis is mandatory to initiate therapy and prevent permanent long-term neurologic impairments or death. Neuroimaging findings can be nonspecific, and metabolism- and genetics-based laboratory investigations are needed to confirm the diagnosis. However, neuroimaging has a key role in guiding the diagnostic workup. The findings at conventional and advanced magnetic resonance imaging may suggest the correct diagnosis, help narrow the differential diagnosis, and consequently facilitate early initiation of targeted metabolism- and genetics-based laboratory investigations and treatment. Neuroimaging may be especially helpful for distinguishing organic acidemias and aminoacidopathies from other more common diseases with similar manifestations, such as hypoxic-ischemic injury and neonatal sepsis. Therefore, it is important that radiologists, neuroradiologists, pediatric neuroradiologists, and clinicians are familiar with the neuroimaging findings of organic acidemias and aminoacidopathies. ©RSNA, 2018.
Collapse
Affiliation(s)
- Nihaal Reddy
- From the Division of Pediatric Radiology and Pediatric Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science (N.R., S.F.C., T.A.G.M.H., B.P.S.), and McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics (H.J.V.), The Johns Hopkins University School of Medicine, Charlotte R. Bloomberg Children's Center Bldg, Sheikh Zayed Tower, Room 4174, 1800 Orleans St, Baltimore, MD 21287-0842; Università degli Studi di Milano, Postgraduation School in Radiodiagnostics, Milan, Italy (S.F.C.); Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Md (H.J.V.); and Department of Pediatric Neurology, University Children's Hospital of Zurich, Zurich, Switzerland (E.B.)
| | - Sonia F Calloni
- From the Division of Pediatric Radiology and Pediatric Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science (N.R., S.F.C., T.A.G.M.H., B.P.S.), and McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics (H.J.V.), The Johns Hopkins University School of Medicine, Charlotte R. Bloomberg Children's Center Bldg, Sheikh Zayed Tower, Room 4174, 1800 Orleans St, Baltimore, MD 21287-0842; Università degli Studi di Milano, Postgraduation School in Radiodiagnostics, Milan, Italy (S.F.C.); Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Md (H.J.V.); and Department of Pediatric Neurology, University Children's Hospital of Zurich, Zurich, Switzerland (E.B.)
| | - Hilary J Vernon
- From the Division of Pediatric Radiology and Pediatric Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science (N.R., S.F.C., T.A.G.M.H., B.P.S.), and McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics (H.J.V.), The Johns Hopkins University School of Medicine, Charlotte R. Bloomberg Children's Center Bldg, Sheikh Zayed Tower, Room 4174, 1800 Orleans St, Baltimore, MD 21287-0842; Università degli Studi di Milano, Postgraduation School in Radiodiagnostics, Milan, Italy (S.F.C.); Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Md (H.J.V.); and Department of Pediatric Neurology, University Children's Hospital of Zurich, Zurich, Switzerland (E.B.)
| | - Eugen Boltshauser
- From the Division of Pediatric Radiology and Pediatric Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science (N.R., S.F.C., T.A.G.M.H., B.P.S.), and McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics (H.J.V.), The Johns Hopkins University School of Medicine, Charlotte R. Bloomberg Children's Center Bldg, Sheikh Zayed Tower, Room 4174, 1800 Orleans St, Baltimore, MD 21287-0842; Università degli Studi di Milano, Postgraduation School in Radiodiagnostics, Milan, Italy (S.F.C.); Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Md (H.J.V.); and Department of Pediatric Neurology, University Children's Hospital of Zurich, Zurich, Switzerland (E.B.)
| | - Thierry A G M Huisman
- From the Division of Pediatric Radiology and Pediatric Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science (N.R., S.F.C., T.A.G.M.H., B.P.S.), and McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics (H.J.V.), The Johns Hopkins University School of Medicine, Charlotte R. Bloomberg Children's Center Bldg, Sheikh Zayed Tower, Room 4174, 1800 Orleans St, Baltimore, MD 21287-0842; Università degli Studi di Milano, Postgraduation School in Radiodiagnostics, Milan, Italy (S.F.C.); Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Md (H.J.V.); and Department of Pediatric Neurology, University Children's Hospital of Zurich, Zurich, Switzerland (E.B.)
| | - Bruno P Soares
- From the Division of Pediatric Radiology and Pediatric Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science (N.R., S.F.C., T.A.G.M.H., B.P.S.), and McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics (H.J.V.), The Johns Hopkins University School of Medicine, Charlotte R. Bloomberg Children's Center Bldg, Sheikh Zayed Tower, Room 4174, 1800 Orleans St, Baltimore, MD 21287-0842; Università degli Studi di Milano, Postgraduation School in Radiodiagnostics, Milan, Italy (S.F.C.); Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Md (H.J.V.); and Department of Pediatric Neurology, University Children's Hospital of Zurich, Zurich, Switzerland (E.B.)
| |
Collapse
|
3
|
Neuroimaging of Pediatric Metabolic Disorders with Emphasis on Diffusion-Weighted Imaging and MR Spectroscopy: A Pictorial Essay. CURRENT RADIOLOGY REPORTS 2017. [DOI: 10.1007/s40134-017-0251-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
4
|
Mohammad SA, Abdelkhalek HS. Nonketotic hyperglycinemia: spectrum of imaging findings with emphasis on diffusion-weighted imaging. Neuroradiology 2017; 59:1155-1163. [PMID: 28864914 DOI: 10.1007/s00234-017-1913-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/22/2017] [Indexed: 11/26/2022]
Abstract
PURPOSE The purpose of this study was to explore brain abnormalities in nonketotic hyperglycinemia (NKH) using diffusion-weighted imaging (DWI) and when feasible, diffusion tensor imaging (DTI) and tractography. METHODS Seven patients with confirmed diagnosis of NKH (8 days-2 years) underwent brain MRI. Conventional T1 and T2WI were acquired in all patients, DWI in six and DTI and tractography in two (4 months and 2 years). Measurements of fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity (AD) and Trace from eight white matter regions were compared between the two patients and age-matched controls. Tractography of corpus callosum, superior longitudinal fasciculus and corticospinal tracts was performed with extraction of their FA and diffusivity indices. RESULTS MRI showed nonspecific brain atrophy in three children. Corpus callosum atrophy was found as a part of these atrophic changes. Cerebellar vermian hypoplasia and supratentorial hydrocephalus were seen in one patient. The topographic distribution of diffusion restriction was different among patients. The affected white matter regions were not predominantly following the expected areas of myelination according to patients' age. Deep grey matter nuclei were affected in one patient. DTI revealed lower FA with higher RD in most of the measured white matter regions and tracts. These changes were more appreciated in the 2-year-old patient. However, Trace was higher in the 2-year-old patient and lower in the 4-month-old one. The extracted tracts were decreased in volume. CONCLUSION DWI, DTI and tractography with FA and diffusivity measurements can give insights into white matter microstructural alterations that can occur in NKH.
Collapse
Affiliation(s)
- Shaimaa Abdelsattar Mohammad
- Radiodiagnosis Department, Faculty of Medicine, Ain-Shams University, 9 Lotfi Elsayed St. Ain-Shams University Staff Buildings, Cairo, 11657, Egypt.
| | - Heba Salah Abdelkhalek
- Medical Genetics Unit, Pediatric Department, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Abstract
Nonketotic hyperglycinemia (NKH) is a rare metabolic disorder caused by a defect in the glycine cleavage enzyme system, resulting in high glycine concentrations in the brain. We report a neonate in which proton magnetic resonance spectroscopy provided biochemical evidence of elevated brain glycine levels and facilitated early diagnosis of NKH and guided clinical management.
Collapse
|
6
|
Story L, Rutherford M. Advances and applications in fetal magnetic resonance imaging. ACTA ACUST UNITED AC 2015. [DOI: 10.1111/tog.12203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lisa Story
- London Deanery; Darent Valley Hospital; Darenth Wood Road Dartford Kent DA2 8DA UK
| | - Mary Rutherford
- King's College London; Perinatal Imaging Unit; St Thomas's Hospital; Westminster Bridge Road London SE1 7EH UK
| |
Collapse
|
7
|
Yang E, Prabhu SP. Imaging manifestations of the leukodystrophies, inherited disorders of white matter. Radiol Clin North Am 2014; 52:279-319. [PMID: 24582341 DOI: 10.1016/j.rcl.2013.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The leukodystrophies are a diverse set of inherited white matter disorders and are uncommonly encountered by radiologists in everyday practice. As a result, it is challenging to recognize these disorders and to provide a useful differential for the referring physician. In this article, leukodystrophies are reviewed from the perspective of 4 imaging patterns: global myelination delay, periventricular/deep white matter predominant, subcortical white matter predominant, and mixed white/gray matter involvement patterns. Special emphasis is placed on pattern recognition and unusual combinations of findings that may suggest a specific diagnosis.
Collapse
Affiliation(s)
- Edward Yang
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Sanjay P Prabhu
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
8
|
Mailath-Pokorny M, Kasprian G, Mitter C, Schöpf V, Nemec U, Prayer D. Magnetic resonance methods in fetal neurology. Semin Fetal Neonatal Med 2012; 17:278-84. [PMID: 22749691 DOI: 10.1016/j.siny.2012.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Fetal magnetic resonance imaging (MRI) has become an established clinical adjunct for the in-vivo evaluation of human brain development. Normal fetal brain maturation can be studied with MRI from the 18th week of gestation to term and relies primarily on T2-weighted sequences. Recently diffusion-weighted sequences have gained importance in the structural assessment of the fetal brain. Diffusion-weighted imaging provides quantitative information about water motion and tissue microstructure and has applications for both developmental and destructive brain processes. Advanced magnetic resonance techniques, such as spectroscopy, might be used to demonstrate metabolites that are involved in brain maturation, though their development is still in the early stages. Using fetal MRI in addition to prenatal ultrasound, morphological, metabolic, and functional assessment of the fetus can be achieved. The latter is not only based on observation of fetal movements as an indirect sign of activity of the fetal brain but also on direct visualization of fetal brain activity, adding a new component to fetal neurology. This article provides an overview of the MRI methods used for fetal neurologic evaluation, focusing on normal and abnormal early brain development.
Collapse
Affiliation(s)
- M Mailath-Pokorny
- Medical University of Vienna, Department of Obstetrics and Gynecology, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
9
|
Shin JH, Ahn SY, Shin JH, Sung SI, Jung JM, Kim JK, Kim ES, Park HD, Kim JH, Chang YS, Park WS. Sequential magnetic resonance spectroscopic changes in a patient with nonketotic hyperglycinemia. KOREAN JOURNAL OF PEDIATRICS 2012; 55:301-5. [PMID: 22977444 PMCID: PMC3433568 DOI: 10.3345/kjp.2012.55.8.301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 11/04/2011] [Accepted: 03/20/2012] [Indexed: 11/27/2022]
Abstract
Nonketotic hyperglycinemia (NKH) is a rare inborn error of amino acid metabolism. A defect in the glycine cleavage enzyme system results in highly elevated concentrations of glycine in the plasma, urine, cerebrospinal fluid, and brain, resulting in glycine-induced encephalopathy and neuropathy. The prevalence of NKH in Korea is very low, and no reports of surviving patients are available, given the scarcity and poor prognosis of this disease. In the current study, we present a patient with NKH diagnosed on the basis of clinical features, biochemical profiles, and genetic analysis. Magnetic resonance spectroscopy (MRS) allowed the measurement of absolute glycine concentrations in different parts of the brain that showed a significantly increased glycine peak, consolidating the diagnosis of NKH. In additional, serial MRS follow-up showed changes in the glycine/creatinine ratios in different parts of the brain. In conclusion, MRS is an effective, noninvasive diagnostic tool for NKH that can be used to distinguish this disease from other glycine metabolism disorders. It may also be useful for monitoring NKH treatment.
Collapse
Affiliation(s)
- Ji Hun Shin
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Chang YT, Lin WD, Chin ZN, Wang CS, Chou IC, Kuo HT, Tsai FJ. Nonketotic hyperglycinemia: A case report and brief review. Biomedicine (Taipei) 2012. [DOI: 10.1016/j.biomed.2012.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
11
|
Poretti A, Blaser SI, Lequin MH, Fatemi A, Meoded A, Northington FJ, Boltshauser E, Huisman TAGM. Neonatal neuroimaging findings in inborn errors of metabolism. J Magn Reson Imaging 2012; 37:294-312. [PMID: 22566357 DOI: 10.1002/jmri.23693] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/03/2012] [Indexed: 12/22/2022] Open
Abstract
Individually, metabolic disorders are rare, but overall they account for a significant number of neonatal disorders affecting the central nervous system. The neonatal clinical manifestations of inborn errors of metabolism (IEMs) are characterized by nonspecific systemic symptoms that may mimic more common acute neonatal disorders like sepsis, severe heart insufficiency, or neonatal hypoxic-ischemic encephalopathy. Certain IEMs presenting in the neonatal period may also be complicated by sepsis and cardiomyopathy. Early diagnosis is mandatory to prevent death and permanent long-term neurological impairments. Although neuroimaging findings are rarely specific, they play a key role in suggesting the correct diagnosis, limiting the differential diagnosis, and may consequently allow early initiation of targeted metabolic and genetic laboratory investigations and treatment. Neuroimaging may be especially helpful to distinguish metabolic disorders from other more common causes of neonatal encephalopathy, as a newborn may present with an IEM prior to the availability of the newborn screening results. It is therefore important that neonatologists, pediatric neurologists, and pediatric neuroradiologists are familiar with the neuroimaging findings of metabolic disorders presenting in the neonatal time period.
Collapse
Affiliation(s)
- Andrea Poretti
- Division of Pediatric Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
|
14
|
Proton magnetic resonance spectroscopy in the fetus. Eur J Obstet Gynecol Reprod Biol 2010; 158:3-8. [PMID: 20413207 DOI: 10.1016/j.ejogrb.2010.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/23/2009] [Accepted: 03/04/2010] [Indexed: 11/22/2022]
Abstract
Magnetic Resonance Imaging (MRI) has become an established technique in fetal medicine, providing complementary information to ultrasound in studies of the brain. MRI can provide detailed structural information irrespective of the position of the fetal head or maternal habitus. Proton Magnetic Resonance Spectroscopy ((1)HMRS) is based on the same physical principles as MRI but data are collected as a spectrum, allowing the biochemical and metabolic status of in vivo tissue to be studied in a non-invasive manner. (1)HMRS has been used to assess metabolic function in the neonatal brain but fetal studies have been limited, primarily due to fetal motion. This review will assess the technique and findings from fetal studies to date.
Collapse
|
15
|
Righi V, Andronesi OC, Mintzopoulos D, Black PM, Tzika AA. High-resolution magic angle spinning magnetic resonance spectroscopy detects glycine as a biomarker in brain tumors. Int J Oncol 2010; 36:301-6. [PMID: 20043062 PMCID: PMC3715372 DOI: 10.3892/ijo_00000500] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The non-essential amino acid neurotransmitter glycine (Gly) may serve as a biomarker for brain tumors. Using 36 biopsies from patients with brain tumors [12 glioblastoma multiforme (GBM); 10 low-grade (LG), including 7 schwannoma and 3 pylocytic astrocytoma; 7 meningioma (MN); 7 brain metastases (MT), including 3 adenocarcinoma and 4 breast cancer] and 9 control biopsies from patients undergoing surgery for epilepsy, we tested the hypothesis that the presence of glycine may distinguish among these brain tumor types. Using high-resolution magic angle spinning (HRMAS) 1H magnetic resonance spectroscopy (MRS), we determined a theoretically optimum echo time (TE) of 50 ms for distinguishing Gly signals from overlapping myo-inositol (Myo) signals and tested our methodology in phantom and biopsy specimens. Quantitative analysis revealed higher levels of Gly in tumor biopsies (all combined) relative to controls; Gly levels were significantly elevated in LG, MT and GBM biopsies (P≤0.05). Residual Myo levels were elevated in LG and MT and reduced in MN and GBM (P<0.05 vs. control levels). We observed higher levels of Gly in GBM as compared to LG tumors (P=0.05). Meanwhile, although Gly levels in GBM and MT did not differ significantly from each other, the Gly:Myo ratio did distinguish GBM from MT (P<0.003) and from all other groups, a distinction that has not been adequately made previously. We conclude from these findings that Gly can serve as a biomarker for brain tumors and that the Gly:Myo ratio may be a useful index for brain tumor classification.
Collapse
Affiliation(s)
- Valeria Righi
- NMR Surgical Laboratory, Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
16
|
Kaufman MJ, Prescot AP, Ongur D, Evins AE, Barros TL, Medeiros CL, Covell J, Wang L, Fava M, Renshaw PF. Oral glycine administration increases brain glycine/creatine ratios in men: a proton magnetic resonance spectroscopy study. Psychiatry Res 2009; 173:143-9. [PMID: 19556112 PMCID: PMC2713375 DOI: 10.1016/j.pscychresns.2009.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Revised: 03/05/2009] [Accepted: 03/10/2009] [Indexed: 11/30/2022]
Abstract
Oral high-dose glycine administration has been used as an adjuvant treatment for schizophrenia to enhance glutamate neurotransmission and mitigate glutamate system hypofunction thought to contribute to the disorder. Prior studies in schizophrenia subjects documented clinical improvements after 2 weeks of oral glycine administration, suggesting that brain glycine levels are sufficiently elevated to evoke a clinical response within that time frame. However, no human study has reported on brain glycine changes induced by its administration. We utilized a noninvasive proton magnetic resonance spectroscopy ((1)H-MRS) technique termed echo time-averaged (TEAV) (1)H-MRS, which permits noninvasive quantification of brain glycine in vivo, to determine whether 2 weeks of oral glycine administration (peak dose of 0.8 g/kg/day) increased brain glycine/creatine (Gly/Cr) ratios in 11 healthy adult men. In scans obtained 17 h after the last glycine dose, brain (Gly/Cr) ratios were significantly increased. The data indicate that it is possible to measure brain glycine changes with proton spectroscopy. Developing a more comprehensive understanding of human brain glycine dynamics may lead to optimized use of glycine site agonists and glycine transporter inhibitors to treat schizophrenia, and possibly to treat other disorders associated with glutamate system dysfunction.
Collapse
Affiliation(s)
- Marc J. Kaufman
- Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA 02478,Address Correspondence to: Marc J. Kaufman, Ph.D., Brain Imaging Center, McLean Hospital, 115 Mill St., Belmont, MA 02478 USA, 617-855-3469 (office), 617-855-2770 (FAX),
| | - Andrew P. Prescot
- Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA 02478
| | - Dost Ongur
- Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA 02478
| | | | - Tanya L. Barros
- Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA 02478
| | - Carissa L. Medeiros
- Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA 02478
| | - Julie Covell
- Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA 02478
| | - Liqun Wang
- Translational Medicine and Genetics, GlaxoSmithKline, Greenford, United Kingdom
| | | | - Perry F. Renshaw
- Brain Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA 02478
| |
Collapse
|
17
|
Pugash D, Krssak M, Kulemann V, Prayer D. Magnetic resonance spectroscopy of the fetal brain. Prenat Diagn 2009; 29:434-41. [DOI: 10.1002/pd.2248] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Demirel N, Bas AY, Zenciroglu A, Aydemir C, Kalkanoglu S, Coskun T. Neonatal non-ketotic hyperglycinemia: report of five cases. Pediatr Int 2008; 50:121-3. [PMID: 18279221 DOI: 10.1111/j.1442-200x.2007.02513.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nihal Demirel
- Department of Neonatology, Dr Sami Ulus Children's Hospital, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Nonketotic hyperglycinemia has variable phenotypic expressions and a poor prognosis. We report a case of severe neonatal nonketotic hyperglycinemia, who started convulsing immediately after birth. His glycine index was 0.38 and he did not respond to treatment with sodium benzoate and dextromethorphan. Hypotonia, transient hyperammonemia and metabolic acidosis were associated findings.
Collapse
Affiliation(s)
- Rahul P Bhamkar
- Department of Pediatrics, MGM Medical College and Hospital, Navi, Mumbai, India
| | | |
Collapse
|
20
|
Leijser LM, de Vries LS, Rutherford MA, Manzur AY, Groenendaal F, de Koning TJ, van der Heide-Jalving M, Cowan FM. Cranial ultrasound in metabolic disorders presenting in the neonatal period: characteristic features and comparison with MR imaging. AJNR Am J Neuroradiol 2007; 28:1223-31. [PMID: 17698520 PMCID: PMC7977655 DOI: 10.3174/ajnr.a0553] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Brain imaging is an integral part of the diagnostic work-up for metabolic disorders, and the bedside availability of cranial ultrasonography (cUS) allows very early brain imaging in symptomatic neonates. Our aim was to investigate the role and range of abnormalities seen on cUS in neonates presenting with metabolic disorders. A secondary aim, when possible, was to address the question of whether brain MR imaging is more informative by comparing cUS to MR imaging findings. MATERIALS AND METHODS Neonates with a metabolic disorder who had at least 1 cUS scan were eligible. cUS images were reviewed for anatomic and maturation features, cysts, calcium, and other abnormalities. When an MR imaging scan had been obtained, both sets of images were compared. RESULTS Fifty-five infants (35 also had MR imaging) were studied. The most frequent findings were in oxidative phosphorylation disorders (21 cUS and 12 MR imaging): ventricular dilation (11 cUS and 6 MR imaging), germinolytic cysts (GLCs; 7 cUS and 5 MR imaging), and abnormal white matter (7 cUS and 6 MR imaging); in peroxisomal biogenesis disorders (13 cUS and 9 MR imaging): GLCs (10 cUS and 6 MR imaging), ventricular dilation (10 cUS and 5 MR imaging), abnormal cortical folding (8 cUS and 7 MR imaging), and lenticulostriate vasculopathy (8 cUS); in amino acid metabolism and urea cycle disorders (14 cUS and 11 MR imaging): abnormal cortical folding (9 cUS and 4 MR imaging), abnormal white matter (8 cUS and 8 MR imaging), and hypoplasia of the corpus callosum (7 cUS and 6 MR imaging); in organic acid disorders (4 cUS and 2 MR imaging): periventricular white matter echogenicity (2 cUS and 1 MR imaging); and in other disorders (3 cUS and 1 MR imaging): ventricular dilation (2 cUS and 1 MR imaging). cUS findings were consistent with MR imaging findings. cUS was better for visualizing GLCs and calcification. MR imaging was more sensitive for subtle tissue signal intensity changes in the white matter and abnormality in areas difficult to visualize with cUS, though abnormalities of cortical folding suggestive of polymicrogyria were seen on cUS. CONCLUSION A wide range of abnormalities is seen using cUS in neonatal metabolic disorders. cUS is a reliable bedside tool for early detection of cysts, calcium, structural brain abnormalities, and white matter echogenicity, all suggestive of metabolic disorders.
Collapse
Affiliation(s)
- L M Leijser
- Department of Paediatrics and Neonatal Medicine, Imperial College, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Galanaud D, Nicoli F, Confort-Gouny S, Le Fur Y, Ranjeva JP, Viola A, Girard N, Cozzone PJ. [Indications for cerebral MR proton spectroscopy in 2007]. Rev Neurol (Paris) 2007; 163:287-303. [PMID: 17404517 DOI: 10.1016/s0035-3787(07)90402-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetic resonance spectroscopy (MRS) is being increasingly performed alongside the more conventional MRI sequences in the exploration of neurological disorders. It is however important to clearly differentiate its clinical applications aiming at improving the differential diagnosis or the prognostic evaluation of the patient, from the research protocols, when MRS can contribute to a better understanding of the pathophysiology of the disease or to the evaluation of new treatments. The most important applications in clinical practice are intracranial space occupying lesions (especially the positive diagnosis of intracranial abscesses and gliomatosis cerebri and the differential diagnosis between edema and tumor infiltration), alcoholic, hepatic, and HIV-related encephalopathies and the exploration of metabolic diseases. Among the research applications, MRS is widely used in multiple sclerosis, ischemia and brain injury, epilepsy and neuro degenerative diseases.
Collapse
Affiliation(s)
- D Galanaud
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR CNRS 6612, Faculté de Médecine et Hôpital La Timone, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Girard N, Gouny SC, Viola A, Le Fur Y, Viout P, Chaumoitre K, D'Ercole C, Gire C, Figarella-Branger D, Cozzone PJ. Assessment of normal fetal brain maturation in utero by proton magnetic resonance spectroscopy. Magn Reson Med 2007; 56:768-75. [PMID: 16964617 DOI: 10.1002/mrm.21017] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cerebral maturation in the normal human fetal brain was investigated by in utero localized proton MR spectroscopy ((1)H MRS). Fifty-eight subjects at 22-39 weeks of gestational age (GA) were explored. A combination of anterior body phased-array coils (four elements) and posterior spinal coils (two to three elements) was used. Four sequences were performed (point-resolved spectroscopy (PRESS) sequence with short and long TEs (30 and 135 ms), with and without water saturation). A significant reduction in myo-inositol (myo-Ins) and choline (Cho) levels, and an increase in N-acetylaspartate (NAA) and creatine (Cr) content were observed with progressing age. A new finding is the detection of NAA as early as 22 weeks of GA. This result is probably related to the fact that oligodendrocytes (whether mature or not) express NAA, as demonstrated by in vitro studies. Cho and myo-inositol were the predominant resonances from 22 to 30 weeks and decreased gradually, probably reflecting the variations in substrate needed for membrane synthesis and myelination. The normal MRS data for the second trimester of gestation (when fetal MRI is usually performed) reported here can help determine whether brain metabolism is altered or not, especially when subtle anatomic changes are observed on conventional images.
Collapse
Affiliation(s)
- Nadine Girard
- Service de Neuroradiologie, Assistance Publique-Hôpitaux de Marseille, Hôpital la Timone, Université de la Méditerranée, Marseille, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Viola A, Saywell V, Villard L, Cozzone PJ, Lutz NW. Metabolic fingerprints of altered brain growth, osmoregulation and neurotransmission in a Rett syndrome model. PLoS One 2007; 2:e157. [PMID: 17237885 PMCID: PMC1766343 DOI: 10.1371/journal.pone.0000157] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 12/20/2006] [Indexed: 01/05/2023] Open
Abstract
Background Rett syndrome (RS) is the leading cause of profound mental retardation of genetic origin in girls. Since RS is mostly caused by mutations in the MECP2 gene, transgenic animal models such as the Mecp2-deleted (“Mecp2-null”) mouse have been employed to study neurological symptoms and brain function. However, an interdisciplinary approach drawing from chemistry, biology and neuroscience is needed to elucidate the mechanistic links between the genotype and phenotype of this genetic disorder. Methodology/Principal Findings We performed, for the first time, a metabolomic study of brain extracts from Mecp2-null mice by using high-resolution magnetic resonance spectroscopy. A large number of individual water-soluble metabolites and phospholipids were quantified without prior selection for specific metabolic pathways. Results were interpreted in terms of Mecp2 gene deletion, brain cell function and brain morphology. This approach provided a “metabolic window” to brain characteristics in Mecp2-null mice (n = 4), revealing (i) the first metabolic evidence of astrocyte involvement in RS (decreased levels of the astrocyte marker, myo-inositol, vs. wild-type mice; p = 0.034); (ii) reduced choline phospholipid turnover in Mecp2-null vs. wild-type mice, implying a diminished potential of cells to grow, paralleled by globally reduced brain size and perturbed osmoregulation; (iii) alterations of the platelet activating factor (PAF) cycle in Mecp2-null mouse brains, where PAF is a bioactive lipid acting on neuronal growth, glutamate exocytosis and other processes; and (iv) changes in glutamine/glutamate ratios (p = 0.034) in Mecp2-null mouse brains potentially indicating altered neurotransmitter recycling. Conclusions/Significance This study establishes, for the first time, detailed metabolic fingerprints of perturbed brain growth, osmoregulation and neurotransmission in a mouse model of Rett syndrome. Combined with morphological and neurological findings, these results are crucial elements in providing mechanistic links between genotype and phenotype of Rett syndrome. Ultimately, this information can be used to identify novel molecular targets for pharmacological RS treatment.
Collapse
Affiliation(s)
- Angèle Viola
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR Centre National de la Recherche Scientifique (CNRS) 6612, Université de la Méditerranée, Faculté de Médecine, Marseille, France
| | - Véronique Saywell
- Institut National de la Santé et de la Recherche Médicale (INSERM) U491, Faculté de Médecine de la Timone, Marseille, France
- Université de la Méditerranée, Faculté de Médecine de la Timone, Marseille, France
| | - Laurent Villard
- Institut National de la Santé et de la Recherche Médicale (INSERM) U491, Faculté de Médecine de la Timone, Marseille, France
- Université de la Méditerranée, Faculté de Médecine de la Timone, Marseille, France
| | - Patrick J. Cozzone
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR Centre National de la Recherche Scientifique (CNRS) 6612, Université de la Méditerranée, Faculté de Médecine, Marseille, France
| | - Norbert W. Lutz
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR Centre National de la Recherche Scientifique (CNRS) 6612, Université de la Méditerranée, Faculté de Médecine, Marseille, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
24
|
Penet MF, Laigle C, Fur YL, Confort-Gouny S, Heurteaux C, Cozzone PJ, Viola A. In vivo Characterization of Brain Morphometric and Metabolic Endophenotypes in Three Inbred Strains of Mice Using Magnetic Resonance Techniques. Behav Genet 2006; 36:732-44. [PMID: 16710778 DOI: 10.1007/s10519-006-9077-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
C57BL6J, FVB/N and 129/SvJ mice are commonly used as background strains to engineer genetic models of brain pathologies and psychiatric disorders. Magnetic resonance imaging (MRI) and spectroscopy provide alternative approaches to neuroanatomy, histology and neurohistochemistry for investigating the correlation between genes and brain neuroanatomy and neurometabolism in vivo. We used these techniques to non-invasively characterize the cerebral morphologic and metabolic endophenotypes of inbred mouse strains commonly used in neurological and behavioral research. We observed a great variability in the volume of ventricles and of structures involved in cognitive function (cerebellum and hippocampus) among these strains. In addition, distinct metabolic profiles were evidenced with variable levels of N-acetylaspartate, a neuronal marker, and of choline, a compound found in membranes and myelin. Besides, significant differences in high-energy phosphates and phospholipids were detected. Our findings demonstrate the great morphologic and metabolic heterogeneity among C57BL/ 6J, FVB/N and 129/SvJ mice. They emphasize the importance of selecting the appropriate genetic background for over-expressing or silencing a gene and provide some directions for modeling symptoms that characterize psychiatric disorders such as autism, schizophrenia and depression.
Collapse
Affiliation(s)
- Marie-France Penet
- Faculté de Médecine, Centre de Résonance Magnétique Biologique et Médicale, UMR CNRS 6612, Université de la Méditérranée, 27 Bd J. Moulin, Marseille 13005, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The application of MR spectroscopy (MRS) in pediatric brain disorders yields valued information on pathologic processes, such as ischemia, demyelination, gliosis, and neurodegeneration. Because these processes manifest in inborn errors of metabolism, the purposes of this article are to (1) describe the spectral changes that are associated with the relatively common metabolic disorders, with summaries of known spectroscopic features of these disorders; (2) offer suggestions for recognition and distinction of disorders; and (3) provide general guidelines for MRS implementation. Although many conditions have a similar presentation, MRS offers valuable information for the individual patient in diagnosis and therapy when integrated fully into the clinical setting.
Collapse
Affiliation(s)
- Kim M Cecil
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
26
|
Girard N, Fogliarini C, Viola A, Confort-Gouny S, Fur YL, Viout P, Chapon F, Levrier O, Cozzone P. MRS of normal and impaired fetal brain development. Eur J Radiol 2006; 57:217-25. [PMID: 16387464 DOI: 10.1016/j.ejrad.2005.11.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 11/14/2005] [Accepted: 11/16/2005] [Indexed: 10/25/2022]
Abstract
Cerebral maturation in the human fetal brain was investigated by in utero localized proton magnetic resonance spectroscopy (MRS). Spectra were acquired on a clinical MR system operating at 1.5 T. Body phased array coils (four coils) were used in combination with spinal coils (two coils). The size of the nominal volume of interest (VOI) was 4.5 cm(3) (20 mm x 15 mm x 15 mm). The MRS acquisitions were performed using a spin echo sequence at short and long echo times (TE = 30 ms and 135 ms) with a VOI located within the cerebral hemisphere at the level of the centrum semiovale. A significant reduction in myo-inositol and choline and an increase in N-acetylaspartate were observed with progressive age. The normal MR spectroscopy data reported here will help to determine whether brain metabolism is altered, especially when subtle anatomic changes are observed on conventional images. Some examples of impaired fetal brain development studied by MRS are illustrated.
Collapse
Affiliation(s)
- Nadine Girard
- Service de Neuroradiologie, Assistance Publique-Hôpitaux de Marseille, Hôpital la Timone, Université de la Méditerranée, Marseille, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zenciroglu A, Demirel N, Bas AY, Aydemir C, Agildere M, Kalkanoglu S, Coskun T. Two cases of glycine encephalopathy accompanied by pes equinovarus. J Child Neurol 2005; 20:533-5. [PMID: 15996406 DOI: 10.1177/08830738050200061301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Glycine encephalopathy is a rare autosomal recessive metabolic disease characterized by glycine accumulation in body fluids owing to a defect in the glycine cleavage system. There are several forms of glycine encephalopathy. In the classic or neonatal form, symptoms usually develop as neurologic symptoms in the first few days of life. It characteristically presents with hypotonia, lethargy, apnea, and seizures and usually results in death by 1 year of age. In this report, we present two cases of neonatal glycine encephalopathy accompanied by isolated pes equinovarus deformity.
Collapse
Affiliation(s)
- Aysegul Zenciroglu
- Department of Neonatology, Sami Ulus Children's Hospital, Ankara, Turkey.
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Magnetic resonance imaging (MRI) has emerged as a powerful tool in the study of normal and abnormal brain structure, function, and biochemistry. In particular, functional MRI has come into its own as a tool to study normal and abnormal brain functions such as learning, memory, and motor learning, as well as delineation of neurogenetic cognitive phenotypes. White matter microstructure can be studied using diffusion tensor imaging, which may allow abnormal white matter to be visualized prior to abnormalities on anatomic MRI. Magnetic resonance spectroscopy, a noninvasive method to study brain biochemistry, may allow for the delineation of regional metabolic changes as a result of disease progression and/or therapeutic intervention. With MRI techniques, one can investigate the relationship between structure, function, genes, and behavior. This report discusses the research applications of MRI to the study of neurogenetic disorders of childhood.
Collapse
Affiliation(s)
- Andrea Gropman
- Departments of Pediatrics and Neurology, Georgetown University Medical Center, 3800 Reservoir Road NW, 2PHC, Washington, DC 20007, USA.
| |
Collapse
|
29
|
Abstract
We report about a boy with nonketotic hyperglycinemia who was studied at 15 days of life with a follow-up examination at age 6 months. Magnetic resonance (MR) imaging revealed progressive atrophy, callosal thinning, and delayed myelination. Glycine peaks were shown by proton MR spectroscopy at 3.56 ppm with a long echo time (TE, 135 milliseconds; TR, 1500 milliseconds). Echo-planar diffusion MR imaging (TR, 5700 milliseconds; TE, 139 milliseconds) at 15 days of life revealed high-signal lesions in the pyramidal tracts, middle cerebellar pedicles, and dentate nuclei on b = 1000 s/mm2 images associated with low apparent diffusion coefficient (ADC) values. By age 6 months, the lesions became more prominent on b = 1000 s/mm2 images with lower ADC values. Diffusion MR imaging findings likely reflected the histopathologic changes of the disease which consisted of spongiosis of the myelinated brain tissue due to myelin vacuolation.
Collapse
Affiliation(s)
- R Nuri Sener
- Department of Radiology, Ege University Hospital, Bornova, Izmir 35100, Turkey.
| |
Collapse
|
30
|
Current awareness in NMR in biomedicine. NMR IN BIOMEDICINE 2003; 16:56-65. [PMID: 12619641 DOI: 10.1002/nbm.799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|