1
|
Puzone S, Diplomatico M, Caredda E, Maietta A, Miraglia Del Giudice E, Montaldo P. Hypoglycaemia and hyperglycaemia in neonatal encephalopathy: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed 2023; 109:18-25. [PMID: 37316160 DOI: 10.1136/archdischild-2023-325592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
IMPORTANCE Although hypoglycaemia and hyperglycaemia represent the most common metabolic problem in neonates, there is still uncertainty regarding the effects of glucose homoeostasis on the neurological outcomes of infants with neonatal encephalopathy (NE). OBJECTIVE To systematically investigate the association between neonatal hypoglycaemia and hyperglycaemia with adverse outcome in children who suffered from NE. STUDY SELECTION We searched Pubmed, Embase and Web of Science databases to identify studies which reported prespecified outcomes and compared infants with NE who had been exposed to neonatal hypoglycaemia or hyperglycaemia with infants not exposed. DATA ANALYSIS We assessed the risk of bias (ROBINS-I), quality of evidence (Grading of Recommendations, Assessment, Development and Evaluation (GRADE)) for each of the studies. RevMan was used for meta-analysis (inverse variance, fixed effects). MAIN OUTCOME Death or neurodevelopmental outcomes at 18 months of age or later. RESULTS 82 studies were screened, 28 reviewed in full and 12 included. Children who were exposed to neonatal hypoglycaemia had higher odds of neurodevelopmental impairment or death (6 studies, 685 infants; 40.6% vs 25.4%; OR=2.17, 95% CI 1.46 to 3.25; p=0.0001). Neonatal exposure to hyperglycaemia was associated with death or neurodisability at 18 months or later (7 studies, 807 infants; 46.1% vs 28.0%; OR=3.07, 95% CI 2.17 to 4.35; p<0.00001). These findings were confirmed in the subgroup analysis, which included only the infants who underwent therapeutic hypothermia. CONCLUSIONS These data suggest that neonatal hypoglycaemia and hyperglycaemia may be associated with the neurodevelopmental outcome later on in infants with NE. Further studies with long-term follow-up are needed to optimise the metabolic management of these high-risk infants. PROSPERO REGISTRATION NUMBER CRD42022368870.
Collapse
Affiliation(s)
- Simona Puzone
- Department of Neonatal Intensive Care, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Mario Diplomatico
- Department of Neonatal Intensive Care, AORN San Giuseppe Moscati, Avellino, Italy
| | - Elisabetta Caredda
- Department of Neonatal Intensive Care, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Anna Maietta
- Department of Neonatal Intensive Care, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Paolo Montaldo
- Imperial Neonatal Service, Centre for Perinatal Neuroscience, Department of Paediatrics, Imperial College London, London, UK
| |
Collapse
|
2
|
Improda N, Capalbo D, Poloniato A, Garbetta G, Dituri F, Penta L, Aversa T, Sessa L, Vierucci F, Cozzolino M, Vigone MC, Tronconi GM, del Pistoia M, Lucaccioni L, Tuli G, Munarin J, Tessaris D, de Sanctis L, Salerno M. Perinatal asphyxia and hypothermic treatment from the endocrine perspective. Front Endocrinol (Lausanne) 2023; 14:1249700. [PMID: 37929024 PMCID: PMC10623321 DOI: 10.3389/fendo.2023.1249700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Perinatal asphyxia is one of the three most important causes of neonatal mortality and morbidity. Therapeutic hypothermia represents the standard treatment for infants with moderate-severe perinatal asphyxia, resulting in reduction in the mortality and major neurodevelopmental disability. So far, data in the literature focusing on the endocrine aspects of both asphyxia and hypothermia treatment at birth are scanty, and many aspects are still debated. Aim of this narrative review is to summarize the current knowledge regarding the short- and long-term effects of perinatal asphyxia and of hypothermia treatment on the endocrine system, thus providing suggestions for improving the management of asphyxiated children. Results Involvement of the endocrine system (especially glucose and electrolyte disturbances, adrenal hemorrhage, non-thyroidal illness syndrome) can occur in a variable percentage of subjects with perinatal asphyxia, potentially affecting mortality as well as neurological outcome. Hypothermia may also affect endocrine homeostasis, leading to a decreased incidence of hypocalcemia and an increased risk of dilutional hyponatremia and hypercalcemia. Conclusions Metabolic abnormalities in the context of perinatal asphyxia are important modifiable factors that may be associated with a worse outcome. Therefore, clinicians should be aware of the possible occurrence of endocrine complication, in order to establish appropriate screening protocols and allow timely treatment.
Collapse
Affiliation(s)
- Nicola Improda
- Department of Translational Medical Sciences, Paediatric Endocrinology Unit, University “Federico II”, Naples, Italy
- Department of Emergency, Santobono-Pausilipon Children’s Hospital, Naples, Italy
| | - Donatella Capalbo
- Department of Mother and Child, Paediatric Endocrinology Unit, University Hospital “Federico II”, Naples, Italy
| | - Antonella Poloniato
- Neonatal Intensive Care Unit, San Raffaele University Hospital, Milan, Italy
| | - Gisella Garbetta
- Neonatal Intensive Care Unit, San Raffaele University Hospital, Milan, Italy
| | - Francesco Dituri
- Pediatric and Neonatal Unit, San Paolo Hospital, Civitavecchia, Italy
| | - Laura Penta
- Department of Pediatrics, University of Perugia, Perugia, Italy
| | - Tommaso Aversa
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - Linda Sessa
- Maternal and Child Department, Neonatal Intensive Care Unit (NICU) of University Hospital San Giovanni di Dio e Ruggi d’Aragona, Salerno, Italy
| | | | | | - Maria Cristina Vigone
- Endocrine Unit, Department of Pediatrics, University Hospital San Raffaele, Milan, Italy
| | | | - Marta del Pistoia
- Division of Neonatology and Neonatal Intensive Care Unit (NICU), Department of Clinical and Experimental Medicine, Santa Chiara University Hospital, Pisa, Italy
| | - Laura Lucaccioni
- Pediatric Unit, Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Gerdi Tuli
- Pediatric Endocrinology Unit, Regina Margherita Children’s Hospital, Turin, Italy
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Jessica Munarin
- Pediatric Endocrinology Unit, Regina Margherita Children’s Hospital, Turin, Italy
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Daniele Tessaris
- Pediatric Endocrinology Unit, Regina Margherita Children’s Hospital, Turin, Italy
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Luisa de Sanctis
- Pediatric Endocrinology Unit, Regina Margherita Children’s Hospital, Turin, Italy
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Mariacarolina Salerno
- Department of Translational Medical Sciences, Paediatric Endocrinology Unit, University “Federico II”, Naples, Italy
| |
Collapse
|
3
|
Mota-Rojas D, Villanueva-García D, Solimano A, Muns R, Ibarra-Ríos D, Mota-Reyes A. Pathophysiology of Perinatal Asphyxia in Humans and Animal Models. Biomedicines 2022; 10:347. [PMID: 35203556 PMCID: PMC8961792 DOI: 10.3390/biomedicines10020347] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/16/2022] Open
Abstract
Perinatal asphyxia is caused by lack of oxygen delivery (hypoxia) to end organs due to an hypoxemic or ischemic insult occurring in temporal proximity to labor (peripartum) or delivery (intrapartum). Hypoxic-ischemic encephalopathy is the clinical manifestation of hypoxic injury to the brain and is usually graded as mild, moderate, or severe. The search for useful biomarkers to precisely predict the severity of lesions in perinatal asphyxia and hypoxic-ischemic encephalopathy (HIE) is a field of increasing interest. As pathophysiology is not fully comprehended, the gold standard for treatment remains an active area of research. Hypothermia has proven to be an effective neuroprotective strategy and has been implemented in clinical routine. Current studies are exploring various add-on therapies, including erythropoietin, xenon, topiramate, melatonin, and stem cells. This review aims to perform an updated integration of the pathophysiological processes after perinatal asphyxia in humans and animal models to allow us to answer some questions and provide an interim update on progress in this field.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Dina Villanueva-García
- Division of Neonatology, National Institute of Health Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - Alfonso Solimano
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 3V4, Canada;
| | - Ramon Muns
- Livestock Production Sciences Unit, Agri-Food and Biosciences Institute, Hillsborough BT26 6DR, UK;
| | - Daniel Ibarra-Ríos
- Division of Neonatology, National Institute of Health Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - Andrea Mota-Reyes
- School of Medicine and Health Sciences, TecSalud, Instituto Tecnológico y de Estudios Superiores de Monterrey (ITESM), Monterrey 64849, Mexico;
| |
Collapse
|
4
|
Lear CA, Davidson JO, Dhillon SK, King VJ, Lear BA, Magawa S, Maeda Y, Ikeda T, Gunn AJ, Bennet L. Effects of antenatal dexamethasone and hyperglycemia on cardiovascular adaptation to asphyxia in preterm fetal sheep. Am J Physiol Regul Integr Comp Physiol 2020; 319:R653-R665. [PMID: 33074015 DOI: 10.1152/ajpregu.00216.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Antenatal glucocorticoids improve outcomes among premature infants but are associated with hyperglycemia, which can exacerbate hypoxic-ischemic injury. It is still unclear how antenatal glucocorticoids or hyperglycemia modulate fetal cardiovascular adaptations to severe asphyxia. In this study, preterm fetal sheep received either saline or 12 mg im maternal dexamethasone, followed 4 h later by complete umbilical cord occlusion (UCO) for 25 min. An additional cohort of fetuses received titrated glucose infusions followed 4 h later by UCO to control for the possibility that hyperglycemia contributed to the cardiovascular effects of dexamethasone. Fetuses were studied for 7 days after UCO. Maternal dexamethasone was associated with fetal hyperglycemia (P < 0.001), increased arterial pressure (P < 0.001), and reduced femoral (P < 0.005) and carotid (P < 0.05) vascular conductance before UCO. UCO was associated with bradycardia, femoral vasoconstriction, and transient hypertension. For the first 5 min of UCO, fetal blood pressure in the dexamethasone-asphyxia group was greater than saline-asphyxia (P < 0.001). However, the relative increase in arterial pressure was not different from saline-asphyxia. Fetal heart rate and femoral vascular conductance fell to similar nadirs in both saline and dexamethasone-asphyxia groups. Dexamethasone did not affect the progressive decline in femoral vascular tone or arterial pressure during continuing UCO. By contrast, there were no effects of glucose infusions on the response to UCO. In summary, maternal dexamethasone but not fetal hyperglycemia increased fetal arterial pressure before and for the first 5 min of prolonged UCO but did not augment the cardiovascular adaptations to acute asphyxia.
Collapse
Affiliation(s)
- Christopher A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Simerdeep K Dhillon
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Victoria J King
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Benjamin A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Shoichi Magawa
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Yoshiki Maeda
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Alistair J Gunn
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Frasch MG, Nygard KL. Location, Location, Location: Appraising the Pleiotropic Function of HMGB1 in Fetal Brain. J Neuropathol Exp Neurol 2019; 76:332-334. [PMID: 28340120 PMCID: PMC5965030 DOI: 10.1093/jnen/nlx004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Martin G Frasch
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Karen L Nygard
- Integrated Microscopy@ Biotron, Western University, London, ON, Canada
| |
Collapse
|
6
|
Dhillon SK, Lear CA, Galinsky R, Wassink G, Davidson JO, Juul S, Robertson NJ, Gunn AJ, Bennet L. The fetus at the tipping point: modifying the outcome of fetal asphyxia. J Physiol 2018; 596:5571-5592. [PMID: 29774532 DOI: 10.1113/jp274949] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/13/2018] [Indexed: 12/13/2022] Open
Abstract
Brain injury around birth is associated with nearly half of all cases of cerebral palsy. Although brain injury is multifactorial, particularly after preterm birth, acute hypoxia-ischaemia is a major contributor to injury. It is now well established that the severity of injury after hypoxia-ischaemia is determined by a dynamic balance between injurious and protective processes. In addition, mothers who are at risk of premature delivery have high rates of diabetes and antepartum infection/inflammation and are almost universally given treatments such as antenatal glucocorticoids and magnesium sulphate to reduce the risk of death and complications after preterm birth. We review evidence that these common factors affect responses to fetal asphyxia, often in unexpected ways. For example, glucocorticoid exposure dramatically increases delayed cell loss after acute hypoxia-ischaemia, largely through secondary hyperglycaemia. This critical new information is important to understand the effects of clinical treatments of women whose fetuses are at risk of perinatal asphyxia.
Collapse
Affiliation(s)
| | - Christopher A Lear
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Robert Galinsky
- The Department of Physiology, University of Auckland, Auckland, New Zealand.,The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - Guido Wassink
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Sandra Juul
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Alistair J Gunn
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- The Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Mandelbaum DE, Arsenault A, Stonestreet BS, Kostadinov S, de la Monte SM. Neuroinflammation-Related Encephalopathy in an Infant Born Preterm Following Exposure to Maternal Diabetic Ketoacidosis. J Pediatr 2018; 197:286-291.e2. [PMID: 29555093 PMCID: PMC6091875 DOI: 10.1016/j.jpeds.2018.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/01/2017] [Accepted: 01/18/2018] [Indexed: 11/30/2022]
Abstract
A pregnant woman with new-onset type 1 diabetes and ketoacidosis delivered an infant at 28 weeks of gestation who died with multiple organ failure and severe cerebral vasculopathy with extensive hemorrhage, diffuse microgliosis, and edema. This illustrates that antenatal metabolic and inflammatory stressors may be associated with neonatal encephalopathy and cerebral hemorrhage.
Collapse
Affiliation(s)
- David E Mandelbaum
- Alpert Medical School of Brown University, Providence, RI; Department of Neurology, Hasbro Children's Hospital, Providence, RI; Department of Pediatrics, Hasbro Children's Hospital, Providence, RI
| | - Amanda Arsenault
- Alpert Medical School of Brown University, Providence, RI; Department of Pediatrics, Women and Infants Hospital of Rhode Island, Providence, RI
| | - Barbara S Stonestreet
- Alpert Medical School of Brown University, Providence, RI; Department of Pediatrics, Women and Infants Hospital of Rhode Island, Providence, RI
| | - Stefan Kostadinov
- Alpert Medical School of Brown University, Providence, RI; Department of Pathology at the Women and Infants Hospital of Rhode Island, Providence, RI
| | - Suzanne M de la Monte
- Alpert Medical School of Brown University, Providence, RI; Division of Neuropathology, Rhode Island Hospital, Providence, RI; Department of Pathology, Rhode Island Hospital, Providence, RI; Department of Neurology, Rhode Island Hospital, Providence, RI; Department of Neurosurgery, Rhode Island Hospital, Providence, RI.
| |
Collapse
|
8
|
Lear CA, Davidson JO, Mackay GR, Drury PP, Galinsky R, Quaedackers JS, Gunn AJ, Bennet L. Antenatal dexamethasone before asphyxia promotes cystic neural injury in preterm fetal sheep by inducing hyperglycemia. J Cereb Blood Flow Metab 2018; 38:706-718. [PMID: 28387144 PMCID: PMC5888852 DOI: 10.1177/0271678x17703124] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Antenatal glucocorticoid therapy significantly improves the short-term systemic outcomes of prematurely born infants, but there is limited information available on their impact on neurodevelopmental outcomes in at-risk preterm babies exposed to perinatal asphyxia. Preterm fetal sheep (0.7 of gestation) were exposed to a maternal injection of 12 mg dexamethasone or saline followed 4 h later by asphyxia induced by 25 min of complete umbilical cord occlusion. In a subsequent study, fetuses received titrated glucose infusions followed 4 h later by asphyxia to examine the hypothesis that hyperglycemia mediated the effects of dexamethasone. Post-mortems were performed 7 days after asphyxia for cerebral histology. Maternal dexamethasone before asphyxia was associated with severe, cystic brain injury compared to diffuse injury after saline injection, with increased numbers of seizures, worse recovery of brain activity, and increased arterial glucose levels before, during, and after asphyxia. Glucose infusions before asphyxia replicated these adverse outcomes, with a strong correlation between greater increases in glucose before asphyxia and greater neural injury. These findings strongly suggest that dexamethasone exposure and hyperglycemia can transform diffuse injury into cystic brain injury after asphyxia in preterm fetal sheep.
Collapse
Affiliation(s)
- Christopher A Lear
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Georgia R Mackay
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Paul P Drury
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Robert Galinsky
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | | | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Bennet L, Dhillon S, Lear CA, van den Heuij L, King V, Dean JM, Wassink G, Davidson JO, Gunn AJ. Chronic inflammation and impaired development of the preterm brain. J Reprod Immunol 2018; 125:45-55. [DOI: 10.1016/j.jri.2017.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 11/13/2017] [Accepted: 11/24/2017] [Indexed: 12/17/2022]
|
10
|
Chen X, Hovanesian V, Naqvi S, Lim YP, Tucker R, Donahue JE, Stopa EG, Stonestreet BS. Systemic infusions of anti-interleukin-1β neutralizing antibodies reduce short-term brain injury after cerebral ischemia in the ovine fetus. Brain Behav Immun 2018; 67:24-35. [PMID: 28780000 PMCID: PMC5696097 DOI: 10.1016/j.bbi.2017.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/14/2017] [Accepted: 08/02/2017] [Indexed: 01/27/2023] Open
Abstract
Perinatal hypoxic-ischemic reperfusion (I/R)-related brain injury is a leading cause of neurologic morbidity and life-long disability in children. Infants exposed to I/R brain injury develop long-term cognitive and behavioral deficits, placing a large burden on parents and society. Therapeutic strategies are currently not available for infants with I/R brain damage, except for hypothermia, which can only be used in full term infants with hypoxic-ischemic encephalopathy (HIE). Moreover, hypothermia is only partially protective. Pro-inflammatory cytokines are key contributors to the pathogenesis of perinatal I/R brain injury. Interleukin-1β (IL-1β) is a critical pro-inflammatory cytokine, which has been shown to predict the severity of HIE in infants. We have previously shown that systemic infusions of mouse anti-ovine IL-1β monoclonal antibody (mAb) into fetal sheep resulted in anti-IL-1β mAb penetration into brain, reduced I/R-related increases in IL-1β expression and blood-brain barrier (BBB) dysfunction in fetal brain. The purpose of the current study was to examine the effects of systemic infusions of anti-IL-1β mAb on short-term I/R-related parenchymal brain injury in the fetus by examining: 1) histopathological changes, 2) apoptosis and caspase-3 activity, 3) neuronal degeneration 4) reactive gliosis and 5) myelin basic protein (MBP) immunohistochemical staining. The study groups included non-ischemic controls, placebo-treated ischemic, and anti-IL-1β mAb treated ischemic fetal sheep at 127days of gestation. The systemic intravenous infusions of anti-IL-1β mAb were administered at fifteen minutes and four hours after in utero brain ischemia. The duration of each infusion was two hours. Parenchymal brain injury was evaluated by determining pathological injury scores, ApopTag® positive cells/mm2, caspase-3 activity, Fluoro-Jade B positive cells/mm2, glial fibrillary acidic protein (GFAP) and MBP staining in the brains of fetal sheep 24h after 30min of ischemia. Treatment with anti-IL-1β mAb reduced (P<0.05) the global pathological injury scores, number of apoptotic positive cells/mm2, and caspase-3 activity after ischemia in fetal sheep. The regional pathological scores and Fluoro-Jade B positive cells/mm2 did not differ between the placebo- and anti-IL-1β mAb treated ischemic fetal sheep. The percent of the cortical area stained for GFAP was lower (P<0.05) in the placebo ischemic treated than in the non-ischemic group, but did not differ between the placebo- and anti-IL-1β mAb treated ischemic groups. MBP immunohistochemical expression did not differ among the groups. In conclusion, infusions of anti-IL-1β mAb attenuate short-term I/R-related histopathological tissue injury, apoptosis, and reduce I/R-related increases in caspase-3 activity in ovine fetal brain. Therefore, systemic infusions of anti-IL-1β mAb attenuate short-term I/R-related parenchymal brain injury in the fetus.
Collapse
Affiliation(s)
- Xiaodi Chen
- Department of Pediatrics, the Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI
| | - Virginia Hovanesian
- Core Research Laboratories, the Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI
| | - Syed Naqvi
- Department of Pediatrics, the Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI
| | | | - Richard Tucker
- Department of Pediatrics, the Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI
| | - John E. Donahue
- Department of Pathology and Neurosurgery, the Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI
| | - Edward G. Stopa
- Department of Pathology and Neurosurgery, the Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI
| | - Barbara S. Stonestreet
- Department of Pediatrics, the Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI
| |
Collapse
|
11
|
Basu SK, Kaiser JR, Guffey D, Minard CG, Guillet R, Gunn AJ. Hypoglycaemia and hyperglycaemia are associated with unfavourable outcome in infants with hypoxic ischaemic encephalopathy: a post hoc analysis of the CoolCap Study. Arch Dis Child Fetal Neonatal Ed 2016; 101:F149-55. [PMID: 26283669 DOI: 10.1136/archdischild-2015-308733] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 07/29/2015] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To investigate the association of neonatal hypoglycaemia and hyperglycaemia with outcomes in infants with hypoxic ischaemic encephalopathy (HIE). DESIGN Post hoc analysis of the CoolCap Study. SETTING 25 perinatal centres in the UK, the USA and New Zealand during 1999-2002. PATIENTS 234 infants at ≥36 weeks' gestation with moderate-to-severe HIE enrolled in the CoolCap Study. 214 (91%) infants had documented plasma glucose and follow-up outcome data. INTERVENTION Infants were randomised to head cooling for 72 h starting within 6 h of birth, or standard care. Plasma glucose levels were measured at predetermined time intervals after randomisation. MAIN OUTCOME MEASURE The unfavourable primary outcome of the study was death and/or severe neurodevelopmental disability at 18 months. Hypoglycaemia (≤40 mg/dL, ≤2.2 mmol/L) and hyperglycaemia (>150 mg/dL, >8.3 mmol/L) during the first 12 h after randomisation were investigated for univariable and multivariable associations with unfavourable primary outcome. RESULTS 121 (57%) infants had abnormal plasma glucose values within 12 h of randomisation. Unfavourable outcome was observed in 126 (60%) infants and was more common among subjects with hypoglycaemia (81%, p=0.004), hyperglycaemia (67%, p=0.01) and any glucose derangement within the first 12 h (67%, p=0.002) compared with normoglycaemic infants (48%) in univariable analysis. These associations remained significant after adjusting for birth weight, Apgar score, pH, Sarnat stage and hypothermia therapy. CONCLUSIONS Both hypoglycaemia and hyperglycaemia in infants with moderate-to-severe HIE were independently associated with unfavourable outcome. Future studies are needed to investigate the prognostic significance of these associations and their role as biomarkers of brain injury. TRIAL REGISTRATION NUMBER (ClinicalTrials.gov NCT00383305).
Collapse
Affiliation(s)
- Sudeepta K Basu
- Baylor College of Medicine, Houston, Texas, USA Children's National Medical Center, Washington, DC, USA
| | | | - Danielle Guffey
- Dan L. Duncan Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, USA
| | - Charles G Minard
- Dan L. Duncan Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, USA
| | - Ronnie Guillet
- University of Rochester Medical Center, Rochester, Texas, New York, USA
| | | | | |
Collapse
|
12
|
Hemodynamic and metabolic correlates of perinatal white matter injury severity. PLoS One 2013; 8:e82940. [PMID: 24416093 PMCID: PMC3886849 DOI: 10.1371/journal.pone.0082940] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/07/2013] [Indexed: 11/21/2022] Open
Abstract
Background and Purpose Although the spectrum of perinatal white matter injury (WMI) in preterm infants is shifting from cystic encephalomalacia to milder forms of WMI, the factors that contribute to this changing spectrum are unclear. We hypothesized that the variability in WMI quantified by immunohistochemical markers of inflammation could be correlated with the severity of impaired blood oxygen, glucose and lactate. Methods We employed a preterm fetal sheep model of in utero moderate hypoxemia and global severe but not complete cerebral ischemia that reproduces the spectrum of human WMI. Since there is small but measurable residual brain blood flow during occlusion, we sought to determine if the metabolic state of the residual arterial blood was associated with severity of WMI. Near the conclusion of hypoxia-ischemia, we recorded cephalic arterial blood pressure, blood oxygen, glucose and lactate levels. To define the spectrum of WMI, an ordinal WMI rating scale was compared against an unbiased quantitative image analysis protocol that provided continuous histo-pathological outcome measures for astrogliosis and microgliosis derived from the entire white matter. Results A spectrum of WMI was observed that ranged from diffuse non-necrotic lesions to more severe injury that comprised discrete foci of microscopic or macroscopic necrosis. Residual arterial pressure, oxygen content and blood glucose displayed a significant inverse association with WMI and lactate concentrations were directly related. Elevated glucose levels were the most significantly associated with less severe WMI. Conclusions Our results suggest that under conditions of hypoxemia and severe cephalic hypotension, WMI severity measured using unbiased immunohistochemical measurements correlated with several physiologic parameters, including glucose, which may be a useful marker of fetal response to hypoxia or provide protection against energy failure and more severe WMI.
Collapse
|
13
|
Chen X, Threlkeld SW, Cummings EE, Sadowska GB, Lim YP, Padbury JF, Sharma S, Stonestreet BS. In-vitro validation of cytokine neutralizing antibodies by testing with ovine mononuclear splenocytes. J Comp Pathol 2012; 148:252-8. [PMID: 22819013 DOI: 10.1016/j.jcpa.2012.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 05/26/2012] [Accepted: 06/04/2012] [Indexed: 02/08/2023]
Abstract
Cytokines have gained increasing attention as therapeutic targets in inflammation-related disorders and inflammatory conditions have been investigated in sheep. Monoclonal antibodies (mAbs) specific for the ovine pro-inflammatory cytokines interleukin (IL)-1β and IL-6 could be used to study the effects of blocking pro-inflammatory cytokines in sheep. Ovine-specific IL-1β and IL-6 proteins and mAbs specific for these molecules were produced and the ability of the mAbs to neutralize the proteins was tested in cultures of ovine splenic mononuclear cells. Expression of nuclear factor (NF)-κβ and signal transducer and activator of transcription (STAT)-3 was evaluated by western blotting and densitometric quantification. Treatment with purified IL-1β and IL-6 proteins increased NF-κβ (P < 0.001) and STAT-3 (P < 0.01) expression, respectively, in cell culture. Treatment with these proteins that were pre-incubated with IL-1β and IL-6 mAbs attenuated (P < 0.01) these effects. These results confirm the bioactivity of ovine IL-1β and IL-6 proteins and the neutralizing capacity of anti-ovine-IL-1β and -IL-6 mAbs in vitro. These mAbs could be used to investigate anti-inflammatory strategies for attenuation of the effects of these pro-inflammatory cytokines in sheep.
Collapse
Affiliation(s)
- X Chen
- Department of Pediatrics, The Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, 101 Dudley Street, Providence, RI 02905, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Threlkeld SW, Lynch JL, Lynch KM, Sadowska GB, Banks WA, Stonestreet BS. Ovine proinflammatory cytokines cross the murine blood-brain barrier by a common saturable transport mechanism. Neuroimmunomodulation 2010; 17:405-10. [PMID: 20516722 PMCID: PMC2914440 DOI: 10.1159/000288265] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 01/23/2010] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES The cytokines interleukin (IL)-1beta and IL-6 are modulators of the neuroimmune axis and have been implicated in neuronal cell death cascades after ischemia or infection. Previous work has shown that some cross-species conservation exists between human and rodent blood-brain barrier (BBB) transport systems. To further assess cross-species conservation of cytokine transport across the BBB, the current studies investigated permeability and inhibition of ovine IL-1beta and IL-6 in the mouse. METHODS IL-1beta or IL-6 was radioactively labeled with (131)I and injected into the jugular vein at time zero. A subset of mice received 1 or 3 microg/mouse of an unlabeled ovine or murine cytokine (IL-1beta or IL-6) to assess self- and/or cross-inhibition of transport. Permeability was assessed using multiple-regression analysis. RESULTS There was a significant linear relationship for both ovine (131)I-IL-1beta and (131)I-IL-6 between brain/serum ratios and exposure time, indicating BBB permeability. Inclusion of 3 microg/mouse unlabeled ovine IL-1beta or IL-6 significantly reduced the transport of ovine (131)I-IL-1beta or (131)I-IL-6, respectively, across the BBB. Transport of both ovine (131)I-IL-1beta and (131)I-IL-6 was significantly inhibited by 1 microg/mouse of murine IL-1beta or IL-6, respectively. In contrast, 1 microg/mouse of unlabeled ovine IL-1beta or IL-6 did not inhibit the transport of murine (131)I-IL-1beta or (131)I-IL-6. CONCLUSIONS Ovine IL-1beta and IL-6 cross the mouse BBB by saturable transport. Inhibition of transport by murine homologs indicates that both species use the same transport mechanisms. Conversely, an inability of ovine cytokines to significantly inhibit the transport of murine cytokines indicates that mouse BBB has a lower affinity for ovine than murine cytokines. Knowledge of species-conserved BBB transport mechanisms may facilitate the development of novel animal models of central nervous system pathogenesis.
Collapse
Affiliation(s)
- Steven W. Threlkeld
- Warren Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, R.I., USA
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Providence, R.I., USA
| | - Jessica L. Lynch
- GRECC, Veterans Affairs Medical Center and Division of Geriatrics, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Mo., USA
| | - Kristin M. Lynch
- GRECC, Veterans Affairs Medical Center and Division of Geriatrics, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Mo., USA
| | - Grazyna B. Sadowska
- Warren Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, R.I., USA
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Providence, R.I., USA
| | - William A. Banks
- GRECC, Veterans Affairs Medical Center and Division of Geriatrics, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Mo., USA
| | - Barbara S. Stonestreet
- Warren Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, R.I., USA
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Providence, R.I., USA
- *Barbara S. Stonestreet, MD, Warren Alpert Medical School of Brown University, Department of Pediatrics, Women and Infants Hospital of Rhode Island, 101 Dudley Street, Providence, RI 02905-2499 (USA), Tel. +1 401 274 1122, ext. 1229, Fax +1 401 453 7571, E-Mail
| |
Collapse
|
15
|
Treatment of intrauterine growth restriction with maternal growth hormone supplementation in sheep. Am J Obstet Gynecol 2008; 199:559.e1-9. [PMID: 18599015 DOI: 10.1016/j.ajog.2008.04.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 01/20/2008] [Accepted: 04/17/2008] [Indexed: 11/21/2022]
Abstract
OBJECTIVE This study was undertaken to investigate whether maternal growth hormone supplementation in pregnant sheep could reverse intrauterine growth restriction (IUGR) induced by placental embolization. STUDY DESIGN Animals were randomized into control, intrauterine growth restriction + saline or intrauterine growth restriction + growth hormone (twice daily injections of 0.1 mg/kg growth hormone) groups. Intrauterine growth restriction was induced by twice daily placental embolization between 93 and 99 days' gestation, and treatment was from 100-128 days' gestation (term = 147 days' gestation). RESULTS Embolization reduced fetal growth rate and body weight but increased brain-to-liver weight ratio. Growth hormone treatment significantly increased fetal growth rates and fat deposition, and improved fetal body weight and length, but not liver weight. Growth hormone treatment produced hydranencephalic brain lesions in some fetuses. CONCLUSION Maternal growth hormone treatment partially reversed intrauterine growth restriction caused by placental insufficiency. However, the possible connection between growth hormone treatment and fetal brain injury requires further investigation.
Collapse
|
16
|
Dean JM, George S, Naylor AS, Mallard C, Gunn AJ, Bennet L. Partial neuroprotection with low-dose infusion of the alpha2-adrenergic receptor agonist clonidine after severe hypoxia in preterm fetal sheep. Neuropharmacology 2008; 55:166-74. [PMID: 18572205 DOI: 10.1016/j.neuropharm.2008.05.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 04/12/2008] [Accepted: 05/07/2008] [Indexed: 10/22/2022]
Abstract
We have previously shown that brief alpha(2)-adrenergic receptor blockade increased neuronal injury after severe hypoxia in preterm fetal sheep. We now examine whether infusion of an alpha(2)-adrenergic receptor agonist, clonidine, is neuroprotective. Preterm fetal sheep (70% gestation) received either saline-vehicle or clonidine at either 10 microg/kg/h (low-dose) or 100 microg/kg/h (high-dose) from 15 min until 4 h after 25 min of umbilical cord occlusion. Both low- and high-dose clonidine infusions after sham-occlusion were associated with transient EEG suppression but no neuronal loss. Low-dose but not high-dose clonidine infusions after umbilical cord occlusion were associated with a significant overall increase in numbers of surviving neurons after three days' recovery. High-dose clonidine was associated with transient hyperglycemia and increased numbers of delayed electrographic seizures. These results provide further evidence that alpha(2)-adrenergic receptor activation shortly after perinatal hypoxia-ischemia can promote neural recovery, but highlight the complex dose-response of exogenous therapy.
Collapse
Affiliation(s)
- Justin M Dean
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
The purpose of this review article is to document from the literature values of blood/plasma glucose concentration and associated clinical signs and conditions in newborn infants (both term and preterm) that indicate a reasonable clinical probability that hypoglycemia is a proximate cause of acute and/or sustained neurological injury and to review the physiological and pathophysiological responses to hypoglycemia that may influence the ultimate outcome of newborns with low blood glucose. Our overall conclusion is that there is inadequate information in the literature to define any one value of glucose below which irreparable hypoglycemic injury to the central nervous system occurs, at any one time or for any defined period of time, in a population of infants or in any given infant. Clinical signs of prolonged and severe neurological disturbance (coma, seizures), extremely and persistently low plasma/blood glucose concentrations (0 to <1.0 mmol/l [0 to <18-20 mg/dl] for more than 1-2 h), and the absence of other obvious central nervous system (CNS) pathology (hypoxia-ischemia, intracranial hemorrhage, infection, etc.) are important for the diagnosis of injury due to glucose deficiency. Specific conditions, such as persistent hyperinsulinemia with severe hypoglycemic episodes that include seizures, also contribute to the diagnosis of hypoglycemic injury. Such lack of definitive measures of injury specific to glucose deficiency indicates that clinicians should be on the alert for infants at risk of hypoglycemia and for clinical signs and conditions that might herald severe hypoglycemia; they should have a low threshold for investigating and diagnosing 'hypoglycemia' with frequent measurements of plasma/blood glucose concentration; and they should treat low glucose concentrations promptly and maintain them in a safe range. Because there is no conclusive evidence or consensus in the literature that defines an absolute value or duration of 'hypoglycemia' that must occur, with our without related clinical complications, to produce neurological injury, clinicians should consider the information currently available, determine a 'target' plasma or blood glucose concentration that is acceptable, and treat infants with glucose concentrations below this value accordingly. Our intent in this review article is to highlight the studies relevant to this issue and help clinicians formulate a safe and, hopefully, effective strategy for the diagnosis and treatment of hypoglycemia.
Collapse
Affiliation(s)
- Paul J Rozance
- Section of Neonatology, Division of Perinatal Medicine, Department of Pediatrics and The Children's Hospital, University of Colorado School of Medicine, Denver, CO, USA
| | | |
Collapse
|