1
|
Mizutani Y, Kinoshita M, Lin YC, Fukaya S, Kato S, Hisano T, Hida H, Iwata S, Saitoh S, Iwata O. Temporal inversion of the acid-base equilibrium in newborns: an observational study. PeerJ 2021; 9:e11240. [PMID: 33954050 PMCID: PMC8052977 DOI: 10.7717/peerj.11240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/17/2021] [Indexed: 11/20/2022] Open
Abstract
Background A considerable fraction of newborn infants experience hypoxia-ischaemia and metabolic acidosis at birth. However, little is known regarding the biological response of newborn infants to the pH drift from the physiological equilibrium. The aim of this study was to investigate the relationship between the pH drift at birth and postnatal acid-base regulation in newborn infants. Methods Clinical information of 200 spontaneously breathing newborn infants hospitalised at a neonatal intensive care centre were reviewed. Clinical variables associated with venous blood pH on days 5-7 were assessed. Results The higher blood pH on days 5-7 were explained by lower cord blood pH (-0.131, -0.210 to -0.052; regression coefficient, 95% confidence interval), greater gestational age (0.004, 0.002 to 0.005) and lower partial pressure of carbon dioxide on days 5-7 (-0.005, -0.006 to -0.004) (adjusted for sex, postnatal age and lactate on days 5-7). Conclusion In relatively stable newborn infants, blood pH drift from the physiological equilibrium at birth might trigger a system, which reverts and over-corrects blood pH within the first week of life. Given that the infants within the study cohort was spontaneously breathing, the observed phenomenon might be a common reaction of newborn infants to pH changes at birth.
Collapse
Affiliation(s)
- Yuko Mizutani
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Masahiro Kinoshita
- Department of Paediatrics and Child Health, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Yung-Chieh Lin
- Department of Pediatrics, National Cheng-Kung University, Tainan, Taiwan
| | - Satoko Fukaya
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Shin Kato
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Tadashi Hisano
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Hideki Hida
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Sachiko Iwata
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Osuke Iwata
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| |
Collapse
|
2
|
Sisa C, Agha-Shah Q, Sanghera B, Carno A, Stover C, Hristova M. Properdin: A Novel Target for Neuroprotection in Neonatal Hypoxic-Ischemic Brain Injury. Front Immunol 2019; 10:2610. [PMID: 31849925 PMCID: PMC6902041 DOI: 10.3389/fimmu.2019.02610] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 10/21/2019] [Indexed: 11/14/2022] Open
Abstract
Background: Hypoxic-ischemic (HI) encephalopathy is a major cause of neonatal mortality and morbidity, with a global incidence of 3 per 1,000 live births. Intrauterine or perinatal complications, including maternal infection, constitute a major risk for the development of neonatal HI brain damage. During HI, inflammatory response and oxidative stress occur, causing subsequent cell death. The presence of an infection sensitizes the neonatal brain, making it more vulnerable to the HI damage. Currently, therapeutic hypothermia is the only clinically approved treatment available for HI encephalopathy, however it is only partially effective in HI alone and its application in infection-sensitized HI is debatable. Therefore, there is an unmet clinical need for the development of novel therapeutic interventions for the treatment of HI. Such an alternative is targeting the complement system. Properdin, which is involved in stabilization of the alternative pathway convertases, is the only known positive regulator of alternative complement activation. Absence of the classical pathway in the neonatal HI brain is neuroprotective. However, there is a paucity of data on the participation of the alternative pathway and in particular the role of properdin in HI brain damage. Objectives: Our study aimed to validate the effect of global properdin deletion in two mouse models: HI alone and LPS-sensitized HI, thus addressing two different clinical scenarios. Results: Our results indicate that global properdin deletion in a Rice-Vannucci model of neonatal HI and LPS-sensitized HI brain damage, in the short term, clearly reduced forebrain cell death and microglial activation, as well as tissue loss. In HI alone, deletion of properdin reduced TUNEL+ cell death and microglial post-HI response at 48 h post insult. Under the conditions of LPS-sensitized HI, properdin deletion diminished TUNEL+ cell death, tissue loss and microglial activation at 48 h post-HI. Conclusion: Overall, our data suggests a critical role for properdin, and possibly also a contribution in neonatal HI alone and in infection-sensitized HI brain damage. Thus, properdin can be considered a novel target for treatment of neonatal HI brain damage.
Collapse
Affiliation(s)
- Claudia Sisa
- Perinatal Brain Repair Group, UCL Institute for Women's Health, Maternal & Fetal Medicine, London, United Kingdom
| | - Qudsiyah Agha-Shah
- Perinatal Brain Repair Group, UCL Institute for Women's Health, Maternal & Fetal Medicine, London, United Kingdom
| | - Balpreet Sanghera
- Perinatal Brain Repair Group, UCL Institute for Women's Health, Maternal & Fetal Medicine, London, United Kingdom
| | - Ariela Carno
- Perinatal Brain Repair Group, UCL Institute for Women's Health, Maternal & Fetal Medicine, London, United Kingdom
| | - Cordula Stover
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Mariya Hristova
- Perinatal Brain Repair Group, UCL Institute for Women's Health, Maternal & Fetal Medicine, London, United Kingdom
| |
Collapse
|
3
|
Rocha-Ferreira E, Sisa C, Bright S, Fautz T, Harris M, Contreras Riquelme I, Agwu C, Kurulday T, Mistry B, Hill D, Lange S, Hristova M. Curcumin: Novel Treatment in Neonatal Hypoxic-Ischemic Brain Injury. Front Physiol 2019; 10:1351. [PMID: 31798458 PMCID: PMC6863777 DOI: 10.3389/fphys.2019.01351] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a major cause of mortality and morbidity in neonates, with an estimated global incidence of 3/1,000 live births. HIE brain damage is associated with an inflammatory response and oxidative stress, resulting in the activation of cell death pathways. At present, therapeutic hypothermia is the only clinically approved treatment available for HIE. This approach, however, is only partially effective. Therefore, there is an unmet clinical need for the development of novel therapeutic interventions for the treatment of HIE. Curcumin is an antioxidant reactive oxygen species scavenger, with reported anti-tumor and anti-inflammatory activity. Curcumin has been shown to attenuate mitochondrial dysfunction, stabilize the cell membrane, stimulate proliferation, and reduce injury severity in adult models of spinal cord injury, cancer, and cardiovascular disease. The role of curcumin in neonatal HIE has not been widely studied due to its low bioavailability and limited aqueous solubility. The aim of this study was to investigate the effect of curcumin treatment in neonatal HIE, including time of administration and dose-dependent effects. Our results indicate that curcumin administration prior to HIE in neonatal mice elevated cell and tissue loss, as well as glial activation compared to HI alone. However, immediate post-treatment with curcumin was significantly neuroprotective, reducing grey and white matter tissue loss, TUNEL+ cell death, microglia activation, reactive astrogliosis, and iNOS oxidative stress when compared to vehicle-treated littermates. This effect was dose-dependent, with 200 μg/g body weight as the optimal dose-regimen, and was maintained when curcumin treatment was delayed by 60 or 120 min post-HI. Cell proliferation measurements showed no changes between curcumin and HI alone, suggesting that the protective effects of curcumin on the neonatal brain following HI are most likely due to curcumin’s anti-inflammatory and antioxidant properties, as seen in the reduced glial and iNOS activity. In conclusion, this study suggests curcumin as a potent neuroprotective agent with potential for the treatment of HIE. The delayed application of curcumin further increases its clinical relevance.
Collapse
Affiliation(s)
- Eridan Rocha-Ferreira
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom.,Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claudia Sisa
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Sarah Bright
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Tessa Fautz
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Michael Harris
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Ingrid Contreras Riquelme
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Chinedu Agwu
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Tugce Kurulday
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom.,Department of Molecular Biology and Genetics, Izmir Institute of Technology, İzmir, Turkey
| | - Beenaben Mistry
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| | - Daniel Hill
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom.,Department of Visual Neuroscience, Glaucoma and Retinal Neurodegeneration Group, UCL Institute of Ophthalmology, London, United Kingdom
| | - Sigrun Lange
- School of Life Sciences, Tissue Architecture and Regeneration Research Group, University of Westminster, London, United Kingdom
| | - Mariya Hristova
- Department of Maternal and Fetal Medicine, Perinatal Brain Repair Group, UCL Institute for Women's Health, London, United Kingdom
| |
Collapse
|
4
|
Sisa C, Kholia S, Naylor J, Herrera Sanchez MB, Bruno S, Deregibus MC, Camussi G, Inal JM, Lange S, Hristova M. Mesenchymal Stromal Cell Derived Extracellular Vesicles Reduce Hypoxia-Ischaemia Induced Perinatal Brain Injury. Front Physiol 2019; 10:282. [PMID: 30941062 PMCID: PMC6433879 DOI: 10.3389/fphys.2019.00282] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/04/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Neonatal hypoxic-ischemic (HI) insult is a leading cause of disability and death in newborns, with therapeutic hypothermia being the only currently available clinical intervention. Thus there is a great need for adjunct and novel treatments for enhanced or alternative post-HI neuroprotection. Extracellular vesicles (EVs) derived from mesenchymal stromal/stem cells (MSCs) have recently been shown to exhibit regenerative effects in various injury models. Here we present findings showing neuroprotective effects of MSC-derived EVs in the Rice-Vannucci model of severe HI-induced neonatal brain insult. METHODS Mesenchymal stromal/stem cell-derived EVs were applied intranasally immediately post HI-insult and behavioral outcomes were observed 48 h following MSC-EV treatment, as assessed by negative geotaxis. Brains were thereafter excised and assessed for changes in glial responses, cell death, and neuronal loss as markers of damage at 48 h post HI-insult. RESULTS Brains of the MSC-EV treated group showed a significant decrease in microglial activation, cell death, and percentage tissue volume loss in multiple brain regions, compared to the control-treated groups. Furthermore, negative geotaxis test showed improved behavioral outcomes at 48 h following MSC-EV treatment. CONCLUSION Our findings highlight the clinical potential of using MSC-derived EVs following neonatal hypoxia-ischaemia.
Collapse
Affiliation(s)
- Claudia Sisa
- Perinatal Brain Protection and Repair Group, EGA Institute for Women’s Health, University College London, London, United Kingdom
| | - Sharad Kholia
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Jordan Naylor
- Perinatal Brain Protection and Repair Group, EGA Institute for Women’s Health, University College London, London, United Kingdom
| | | | - Stefania Bruno
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Maria Chiara Deregibus
- 2i3T, Incubator and Technology Transfer, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Jameel M. Inal
- Extracellular Vesicle Research Unit and Bioscience Research Group, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Mariya Hristova
- Perinatal Brain Protection and Repair Group, EGA Institute for Women’s Health, University College London, London, United Kingdom
| |
Collapse
|
5
|
Thei L, Rocha-Ferreira E, Peebles D, Raivich G, Hristova M. Extracellular signal-regulated kinase 2 has duality in function between neuronal and astrocyte expression following neonatal hypoxic-ischaemic cerebral injury. J Physiol 2018; 596:6043-6062. [PMID: 29873394 PMCID: PMC6265549 DOI: 10.1113/jp275649] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/29/2018] [Indexed: 01/08/2023] Open
Abstract
Key points This study identifies phosphorylated extracellular signal‐regulated kinase (ERK) to be immediately diminished followed by a rapid if transient increase for up to 4 h following hypoxic–ischaemic insult (HI) in the neonatal mouse. Phosphorylated ERK up‐regulation was prevented with systemic injection of the mitogen‐activated protein kinase kinase (MEK) inhibitor SL327. Treatment with SL327 both pre‐ and post‐HI gave a strong reduction in the number of dying cells and microgliosis. By utilising transgenic mouse mutations, we observe that neuronal ERK2 significantly contributes to tissue damage, while ERK1 and astrocytic ERK2 are neuroprotective. Compared to global inactivation, selective cell‐specific interference with ERK activity could result in stronger neuroprotection.
Abstract Hypoxia–ischaemia (HI) is a major cause of neonatal brain injury resulting in cerebral palsy, epilepsy, cognitive impairment and other neurological disabilities. The role of extracellular signal‐regulated kinase (ERK) isoforms and their mitogen‐activated protein kinase kinase (MEK)‐dependent phosphorylation in HI has previously been explored but remains unresolved at cellular level. This is pertinent given the growing awareness of the role of non‐neuronal cells in neuroprotection. Using a modified Rice–Vannucci model of HI in the neonatal mouse we observed time‐ and cell‐dependent ERK phosphorylation (pERK), with strongly up‐regulated pERK immunoreactivity first in periventricular white matter axons within 15–45 min of HI, followed by forebrain astrocytes and neurons (1–4 h post‐HI), and return to baseline by 16 h. We explored the effects of pharmacological ERK blockade through the MEK inhibitor SL327 on neonatal HI‐brain damage following HI alone (30 or 60 min) or lipopolysaccharide (LPS)‐sensitised HI insult (30 min). Global inhibition of ERK phosphorylation with systemically applied SL327 abolished forebrain pERK immunoreactivity, and significantly reduced cell death and associated microglial activation at 48 h post‐HI. We then explored the effects of cell‐specific ERK2 deletion alone or in combination with global ERK1 knockout under the same conditions of HI insult. Neuronal ERK2 deletion strongly decreased infarct size, neuronal cell death and microglial activation in grey matter following both HI alone or LPS‐sensitised HI. ERK1 deletion attenuated the protective effect of neuronal ERK2 deletion. Removal of astroglial ERK2 produced a reverse response, with a 3‐ to 4‐fold increase in microglial activation and cell death. Our data suggest a cell‐specific and time‐dependent role of ERK in neonatal HI, with a predominant, neurotoxic effect of neuronal ERK2, which is counteracted by neuroprotection by ERK1 and astrocytic ERK2. Overall, global pharmacological inhibition of ERK phosphorylation is strongly neuroprotective. This study identifies phosphorylated extracellular signal‐regulated kinase (ERK) to be immediately diminished followed by a rapid if transient increase for up to 4 h following hypoxic–ischaemic insult (HI) in the neonatal mouse. Phosphorylated ERK up‐regulation was prevented with systemic injection of the mitogen‐activated protein kinase kinase (MEK) inhibitor SL327. Treatment with SL327 both pre‐ and post‐HI gave a strong reduction in the number of dying cells and microgliosis. By utilising transgenic mouse mutations, we observe that neuronal ERK2 significantly contributes to tissue damage, while ERK1 and astrocytic ERK2 are neuroprotective. Compared to global inactivation, selective cell‐specific interference with ERK activity could result in stronger neuroprotection.
Collapse
Affiliation(s)
- Laura Thei
- UCL Institute for Women's Health, Maternal and Fetal Medicine, Perinatal Brain Repair Group, London, WC1E 6HX, UK.,School of Pharmacy, University of Reading, Reading, RG6 6UA, UK
| | - Eridan Rocha-Ferreira
- UCL Institute for Women's Health, Maternal and Fetal Medicine, Perinatal Brain Repair Group, London, WC1E 6HX, UK.,Institute of Clinical Sciences, University of Gothenburg, Gothenburg, SE 416 85, Sweden
| | - Donald Peebles
- UCL Institute for Women's Health, Maternal and Fetal Medicine, Perinatal Brain Repair Group, London, WC1E 6HX, UK
| | - Gennadij Raivich
- UCL Institute for Women's Health, Maternal and Fetal Medicine, Perinatal Brain Repair Group, London, WC1E 6HX, UK
| | - Mariya Hristova
- UCL Institute for Women's Health, Maternal and Fetal Medicine, Perinatal Brain Repair Group, London, WC1E 6HX, UK
| |
Collapse
|
6
|
Rocha-Ferreira E, Vincent A, Bright S, Peebles DM, Hristova M. The duration of hypothermia affects short-term neuroprotection in a mouse model of neonatal hypoxic ischaemic injury. PLoS One 2018; 13:e0199890. [PMID: 29969470 PMCID: PMC6029790 DOI: 10.1371/journal.pone.0199890] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 06/15/2018] [Indexed: 11/18/2022] Open
Abstract
Neonatal hypoxic-ischaemic encephalopathy (HIE) is major cause of neonatal mortality and morbidity. Therapeutic hypothermia is standard clinical care for moderate hypoxic-ischaemic (HI) brain injury, however it reduces the risk of death and disability only by 11% and 40% of the treated infants still develop disabilities. Thus it is necessary to develop supplementary therapies to complement therapeutic hypothermia in the treatment of neonatal HIE. The modified Rice-Vannucci model of HI in the neonatal mouse is well developed and widely applied with different periods of hypothermia used as neuroprotective strategy in combination with other agents. However, different studies use different periods, time of initiation and duration of hypothermia following HI, with subsequent varying degrees of neuroprotection. So far most rodent data is obtained using exposure to 5-6h of therapeutic hypothermia. Our aim was to compare the effect of exposure to three different short periods of hypothermia (1h, 1.5h and 2h) following HI insult in the postnatal day 7 C57/Bl6 mouse, and to determine the shortest period providing neuroprotection. Our data suggests that 1h and 1.5h of hypothermia delayed by 20min following a 60min exposure to 8%O2 do not prove neuroprotective. However, 2h of hypothermia significantly reduced tissue loss, TUNEL+ cell death and microglia and astroglia activation. We also observed improved functional outcome 7 days after HI. We suggest that the minimal period of cooling necessary to provide moderate short term neuroprotection and appropriate for the development and testing of combined treatment is 2h.
Collapse
Affiliation(s)
- Eridan Rocha-Ferreira
- UCL Institute for Women’s Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London, United Kingdom
| | - Amy Vincent
- UCL Institute for Women’s Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London, United Kingdom
| | - Sarah Bright
- UCL Institute for Women’s Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London, United Kingdom
| | - Donald M. Peebles
- UCL Institute for Women’s Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London, United Kingdom
| | - Mariya Hristova
- UCL Institute for Women’s Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London, United Kingdom
| |
Collapse
|
7
|
Neuroprotection of the hypoxic-ischemic mouse brain by human CD117 +CD90 +CD105 + amniotic fluid stem cells. Sci Rep 2018; 8:2425. [PMID: 29402914 PMCID: PMC5799160 DOI: 10.1038/s41598-018-20710-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/23/2018] [Indexed: 01/23/2023] Open
Abstract
Human amniotic fluid contains two morphologically-distinct sub-populations of stem cells with regenerative potential, spindle-shaped (SS-hAFSCs) and round-shaped human amniotic fluid stem cells (RS-hAFSCs). However, it is unclear whether morphological differences correlate with functionality, and this lack of knowledge limits their translational applications. Here, we show that SS-hAFSCs and RS-hAFSCs differ in their neuro-protective ability, demonstrating that a single contralateral injection of SS-hAFSCs into hypoxic-ischemic P7 mice conferred a 47% reduction in hippocampal tissue loss and 43–45% reduction in TUNEL-positive cells in the hippocampus and striatum 48 hours after the insult, decreased microglial activation and TGFβ1 levels, and prevented demyelination. On the other hand, RS-hAFSCs failed to show such neuro-protective effects. It is possible that SS-hAFSCs exert their neuroprotection via endoglin-dependent inhibition of TGFβ1 signaling in target cells. These findings identify a sub-population of CD117+CD90+CD105+ stem cells as a promising source for the neuro-protection of the developing brain.
Collapse
|
8
|
Immediate Remote Ischemic Postconditioning Reduces Brain Nitrotyrosine Formation in a Piglet Asphyxia Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5763743. [PMID: 27379176 PMCID: PMC4917706 DOI: 10.1155/2016/5763743] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/21/2016] [Accepted: 03/27/2016] [Indexed: 11/18/2022]
Abstract
Remote ischemic postconditioning (RIPostC) is a promising therapeutic intervention that could be administered as an alternative to cooling in cases of perinatal hypoxia-ischemia (HI). In the current study we hypothesized that RIPostC in the piglet model of birth asphyxia confers protection by reducing nitrosative stress and subsequent nitrotyrosine formation, as well as having an effect on glial immunoreactivity. Postnatal day 1 (P1) piglets underwent HI brain injury and were randomised to HI (control) or HI + RIPostC. Immunohistochemistry assessment 48 hours after HI revealed a significant decrease in brain nitrotyrosine deposits in the RIPostC-treated group (p = 0.02). This was accompanied by a significant increase in eNOS expression (p < 0.0001) and decrease in iNOS (p = 0.010), with no alteration in nNOS activity. Interestingly, RIPostC treatment was associated with a significant increase in GFAP (p = 0.002) and IBA1 (p = 0.006), markers of astroglial and microglial activity, respectively. The current study demonstrates a beneficial effect of RIPostC therapy in the preclinical piglet model of neonatal asphyxia, which appears to be mediated by modulation of nitrosative stress, despite glial activation.
Collapse
|
9
|
Wang P, Li L, Zhang Z, Kan Q, Gao F, Chen S. Time-dependent activity of Na+/H+ exchanger isoform 1 and homeostasis of intracellular pH in astrocytes exposed to CoCl2 treatment. Mol Med Rep 2016; 13:4443-50. [PMID: 27035646 DOI: 10.3892/mmr.2016.5067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 02/11/2016] [Indexed: 11/06/2022] Open
Abstract
Hypoxia causes injury to the central nervous system during stroke and has significant effects on pH homeostasis. Na+/H+ exchanger isoform 1 (NHE1) is important in the mechanisms of hypoxia and intracellular pH (pHi) homeostasis. As a well-established hypoxia-mimetic agent, CoCl2 stabilizes and increases the expression of hypoxia inducible factor‑1α (HIF-1α), which regulates several genes involved in pH balance, including NHE1. However, it is not fully understood whether NHE1 is activated in astrocytes under CoCl2 treatment. In the current study, pHi and NHE activity were analyzed using the pHi‑sensitive dye BCECF‑AM. Using cariporide (an NHE1‑specific inhibitor) and EIPA (an NHE nonspecific inhibitor), the current study demonstrated that it was NHE1, not the other NHE isoforms, that was important in regulating pHi homeostasis in astrocytes during CoCl2 treatment. Additionally, the present study observed that, during the early period of CoCl2 treatment (the first 2 h), NHE1 activity and pHi dropped immediately, and NHE1 mRNA expression was reduced compared with control levels, whereas expression levels of the NHE1 protein had not yet changed. In the later period of CoCl2 treatment, NHE1 activity and pHi significantly increased compared with the control levels, as did the mRNA and protein expression levels of NHE1. Furthermore, the cell viability and injury of astrocytes was not changed during the initial 8 h of CoCl2 treatment; their deterioration was associated with the higher levels of pHi and NHE1 activity. The current study concluded that NHE1 activity and pHi homeostasis are regulated by CoCl2 treatment in a time-dependent manner in astrocytes, and may be responsible for the changes in cell viability and injury observed under hypoxia-mimetic conditions induced by CoCl2 treatment.
Collapse
Affiliation(s)
- Peng Wang
- Department of Basic Medicine, Nursing College, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ling Li
- Department of Palliative and Hospice Care, The Ninth People's Hospital of Zhengzhou, Zhengzhou, Henan 450053, P.R. China
| | - Zhenxiang Zhang
- Department of Basic Medicine, Nursing College, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Quancheng Kan
- Clinical Pharmacology Base, Department of Infectious Disease, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Feng Gao
- Department of Neuroimmunology, Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Suyan Chen
- Department of Basic Medicine, Nursing College, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
10
|
Leng TD, Si HF, Li J, Yang T, Zhu M, Wang B, Simon RP, Xiong ZG. Amiloride Analogs as ASIC1a Inhibitors. CNS Neurosci Ther 2016; 22:468-76. [PMID: 26890278 DOI: 10.1111/cns.12524] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 12/30/2015] [Accepted: 01/16/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND ASIC1a, the predominant acid-sensing ion channels (ASICs), is implicated in neurological disorders including stroke, traumatic spinal cord injury, and ALS. Potent ASIC1a inhibitors should have promising therapeutic potential for ASIC1a-related diseases. AIMS We examined the inhibitory effects of a number of amiloride analogs on ASIC1a currents, aimed at understanding the structure-activity relationship and identifying potent ASIC1a inhibitors for stroke intervention. METHODS Whole-cell patch-clamp techniques and a mouse model of middle cerebral artery occlusion (MCAO)-induced focal ischemia were used. Surflex-Dock was used to dock the analogs into the pocket with default parameters. RESULTS Amiloride and its analogs inhibit ASIC1a currents expressed in Chinese hamster ovary cells with a potency rank order of benzamil > phenamil > 5-(N,N-dimethyl)amiloride (DMA) > amiloride > 5-(N,N-hexamethylene)amiloride (HMA) ≥ 5-(N-methyl-N-isopropyl)amiloride (MIA) > 5-(N-ethyl-N-isopropyl)amiloride (EIPA). In addition, amiloride and its analogs inhibit ASIC currents in cortical neurons with the same potency rank order. In mice, benzamil and EIPA decreased MCAO-induced infarct volume. Similar to its effect on the ASIC current, benzamil showed a much higher potency than EIPA. CONCLUSION Addition of a benzyl group to the terminal guanidinyl group resulted in enhanced inhibitory activity on ASIC1a. On the other hand, the bulky groups added to the 5-amino residues slightly decreased the activity. Among the tested amiloride analogs, benzamil is the most potent ASIC1a inhibitor.
Collapse
Affiliation(s)
- Tian-Dong Leng
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Hong-Fang Si
- Anhui Medical University, School of Pharmacy, Hefei, Anhui, China
| | - Jun Li
- Anhui Medical University, School of Pharmacy, Hefei, Anhui, China
| | - Tao Yang
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Mengyuan Zhu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Roger P Simon
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Zhi-Gang Xiong
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
11
|
Hristova M, Rocha-Ferreira E, Fontana X, Thei L, Buckle R, Christou M, Hompoonsup S, Gostelow N, Raivich G, Peebles D. Inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) reduces neonatal hypoxic-ischaemic brain damage. J Neurochem 2016; 136:981-94. [PMID: 26669927 PMCID: PMC4843952 DOI: 10.1111/jnc.13490] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/08/2015] [Accepted: 12/04/2015] [Indexed: 01/01/2023]
Abstract
Hypoxic‐ischaemic encephalopathy is a leading cause of child death, with high mortality and morbidity, including cerebral palsy, epilepsy and cognitive disabilities. Hypoxia‐ischaemia (HI) strongly up‐regulates Signal Transducer and Activator of Transcription 3 (STAT3) in the immature brain. Our aim was to establish whether STAT3 up‐regulation is associated with neonatal HI‐brain damage and evaluate the phosphorylated STAT3‐contribution from different cell types in eliciting damage. We subjected postnatal day seven mice to unilateral carotid artery ligation followed by 60 min hypoxia. Neuronal STAT3‐deletion reduced cell death, tissue loss, microglial and astroglial activation in all brain regions. Astroglia‐specific STAT3‐deletion also reduced cell death, tissue loss and microglial activation, although not as strongly as the deletion in neurons. Systemic pre‐insult STAT3‐blockade at tyrosine 705 (Y705) with JAK2‐inhibitor WP1066 reduced microglial and astroglial activation to a more moderate degree, but in a pattern similar to the one produced by the cell‐specific deletions. Our results suggest that STAT3 is a crucial factor in neonatal HI‐brain damage and its removal in neurons or astrocytes, and, to some extent, inhibition of its phosphorylation via JAK2‐blockade reduces inflammation and tissue loss. Overall, the protective effects of STAT3 inactivation make it a possible target for a therapeutic strategy in neonatal HI.
Current data show that neuronal and astroglial STAT3 molecules are involved in the pathways underlying cell death, tissue loss and gliosis following neonatal hypoxia‐ischaemia, but differ with respect to the target of their effect. Y705‐phosphorylation contributes to hypoxic‐ischaemic histopathology. Protective effects of STAT3 inactivation make it a possible target for a therapeutic strategy in neonatal hypoxia‐ischaemia.
Collapse
Affiliation(s)
- Mariya Hristova
- UCL Institute for Women's Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London WC1E 6HX, UK
| | - Eridan Rocha-Ferreira
- UCL Institute for Women's Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London WC1E 6HX, UK
| | - Xavier Fontana
- Cell Growth and Regeneration Lab, MRC Laboratory for Molecular Cell Biology, University College London, WC1E 6BT, UK
| | - Laura Thei
- UCL Institute for Women's Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London WC1E 6HX, UK
| | - Rheanan Buckle
- UCL Institute for Women's Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London WC1E 6HX, UK
| | - Melina Christou
- UCL Institute for Women's Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London WC1E 6HX, UK
| | - Supanida Hompoonsup
- UCL Institute for Women's Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London WC1E 6HX, UK
| | - Naomi Gostelow
- UCL Institute for Women's Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London WC1E 6HX, UK
| | - Gennadij Raivich
- UCL Institute for Women's Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London WC1E 6HX, UK
| | - Donald Peebles
- UCL Institute for Women's Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London WC1E 6HX, UK
| |
Collapse
|
12
|
Rocha-Ferreira E, Phillips E, Francesch-Domenech E, Thei L, Peebles DM, Raivich G, Hristova M. The role of different strain backgrounds in bacterial endotoxin-mediated sensitization to neonatal hypoxic-ischemic brain damage. Neuroscience 2015; 311:292-307. [PMID: 26515746 PMCID: PMC4675086 DOI: 10.1016/j.neuroscience.2015.10.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 10/15/2015] [Accepted: 10/15/2015] [Indexed: 12/22/2022]
Abstract
Strain background plays a role in the response to hypoxia–ischemia. LPS sensitizes the immature brain to hypoxia–ischemia across several mouse strains. Vehicle injection may induce immune response and sensitization to hypoxia–ischemia.
Genetic background is known to influence the outcome in mouse models of human disease, and previous experimental studies have shown strain variability in the neonatal mouse model of hypoxia–ischemia. To further map out this variability, we compared five commonly used mouse strains: C57BL/6, 129SVJ, BALB/c, CD1 and FVB in a pure hypoxic–ischemic setup and following pre-sensitization with lipopolysaccharide (LPS). Postnatal day 7 pups were subjected to unilateral carotid artery occlusion followed by continuous 30 min 8% oxygen exposure at 36 °C. Twelve hours prior, a third of the pups received a single intraperitoneal LPS (0.6 μg/g) or a saline (vehicle) administration, respectively; a further third underwent hypoxia–ischemia alone without preceding injection. Both C57BL/6 and 129SVJ strains showed minimal response to 30 min hypoxia–ischemia alone, BALB/c demonstrated a moderate response, and both CD1 and FVB revealed the highest brain damage. LPS pre-sensitization led to substantial increase in overall brain infarction, microglial and astrocyte response and cell death in four of the five strains, with exception of BALB/c that only showed a significant effect with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). Saline administration prior to hypoxia–ischemia resulted in an increase in inflammatory-associated markers, particularly in the astroglial activation of C57BL/6 mice, and in combined microglial activation and neuronal cell loss in FVB mice. Finally, two of the four strongly affected strains – C57BL/6 and CD1 – revealed pronounced contralateral astrogliosis with a neuroanatomical localization similar to that observed on the occluded hemisphere. Overall, the current findings demonstrate strain differences in response to hypoxia–ischemia alone, to stress associated with vehicle injection, and to LPS-mediated pre-sensitization, which partially explains the high variability seen in the neonatal mouse models of hypoxia–ischemia. These results can be useful in future studies of fetal/neonatal response to inflammation and reduced oxygen–blood supply.
Collapse
Affiliation(s)
- E Rocha-Ferreira
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX London, UK.
| | - E Phillips
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX London, UK
| | - E Francesch-Domenech
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX London, UK
| | - L Thei
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX London, UK
| | - D M Peebles
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX London, UK
| | - G Raivich
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX London, UK
| | - M Hristova
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX London, UK
| |
Collapse
|
13
|
Lange S, Rocha-Ferreira E, Thei L, Mawjee P, Bennett K, Thompson PR, Subramanian V, Nicholas AP, Peebles D, Hristova M, Raivich G. Peptidylarginine deiminases: novel drug targets for prevention of neuronal damage following hypoxic ischemic insult (HI) in neonates. J Neurochem 2014; 130:555-62. [PMID: 24762056 PMCID: PMC4185393 DOI: 10.1111/jnc.12744] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 04/07/2014] [Accepted: 04/22/2014] [Indexed: 11/29/2022]
Abstract
Neonatal hypoxic ischaemic (HI) injury frequently causes neural impairment in surviving infants. Our knowledge of the underlying molecular mechanisms is still limited. Protein deimination is a post-translational modification caused by Ca+2-regulated peptidylarginine deiminases (PADs), a group of five isozymes that display tissue-specific expression and different preference for target proteins. Protein deimination results in altered protein conformation and function of target proteins, and is associated with neurodegenerative diseases, gene regulation and autoimmunity. In this study, we used the neonatal HI and HI/infection [lipopolysaccharide (LPS) stimulation] murine models to investigate changes in protein deimination. Brains showed increases in deiminated proteins, cell death, activated microglia and neuronal loss in affected brain areas at 48 h after hypoxic ischaemic insult. Upon treatment with the pan-PAD inhibitor Cl-amidine, a significant reduction was seen in microglial activation, cell death and infarct size compared with control saline or LPS-treated animals. Deimination of histone 3, a target protein of the PAD4 isozyme, was increased in hippocampus and cortex specifically upon LPS stimulation and markedly reduced following Cl-amidine treatment. Here, we demonstrate a novel role for PAD enzymes in neural impairment in neonatal HI Encephalopathy, highlighting their role as promising new candidates for drug-directed intervention in neurotrauma. Hypoxic Ischaemic Insult (HI) results in activation of peptidylarginine deiminases (PADs) because of calcium dysregulation. Target proteins undergo irreversible changes of protein bound arginine to citrulline, resulting in protein misfolding. Infection in synergy with HI causes up-regulation of TNFα, nuclear translocation of PAD4 and change in gene regulation as a result of histone deimination. Pharmacological PAD inhibition significantly reduced HI brain damage.
Collapse
Affiliation(s)
- Sigrun Lange
- UCL Institute for Women's Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London, UK; UCL School of Pharmacy, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Uria-Avellanal C, Robertson NJ. Na⁺/H⁺ exchangers and intracellular pH in perinatal brain injury. Transl Stroke Res 2014; 5:79-98. [PMID: 24452957 PMCID: PMC3913853 DOI: 10.1007/s12975-013-0322-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/23/2013] [Accepted: 12/30/2013] [Indexed: 12/12/2022]
Abstract
Encephalopathy consequent on perinatal hypoxia–ischemia occurs in 1–3 per 1,000 term births in the UK and frequently leads to serious and tragic consequences that devastate lives and families, with huge financial burdens for society. Although the recent introduction of cooling represents a significant advance, only 40 % survive with normal neurodevelopmental function. There is thus a significant unmet need for novel, safe, and effective therapies to optimize brain protection following brain injury around birth. The Na+/H+ exchanger (NHE) is a membrane protein present in many mammalian cell types. It is involved in regulating intracellular pH and cell volume. NHE1 is the most abundant isoform in the central nervous system and plays a role in cerebral damage after hypoxia–ischemia. Excessive NHE activation during hypoxia–ischemia leads to intracellular Na+ overload, which subsequently promotes Ca2+ entry via reversal of the Na+/Ca2+ exchanger. Increased cytosolic Ca2+ then triggers the neurotoxic cascade. Activation of NHE also leads to rapid normalization of pHi and an alkaline shift in pHi. This rapid recovery of brain intracellular pH has been termed pH paradox as, rather than causing cells to recover, this rapid return to normal and overshoot to alkaline values is deleterious to cell survival. Brain pHi changes are closely involved in the control of cell death after injury: an alkalosis enhances excitability while a mild acidosis has the opposite effect. We have observed a brain alkalosis in 78 babies with neonatal encephalopathy serially studied using phosphorus-31 magnetic resonance spectroscopy during the first year after birth (151 studies throughout the year including 56 studies of 50 infants during the first 2 weeks after birth). An alkaline brain pHi was associated with severely impaired outcome; the degree of brain alkalosis was related to the severity of brain injury on MRI and brain lactate concentration; and a persistence of an alkaline brain pHi was associated with cerebral atrophy on MRI. Experimental animal models of hypoxia–ischemia show that NHE inhibitors are neuroprotective. Here, we review the published data on brain pHi in neonatal encephalopathy and the experimental studies of NHE inhibition and neuroprotection following hypoxia–ischemia.
Collapse
Affiliation(s)
- Cristina Uria-Avellanal
- Neonatology, Institute for Women's Health, University College London, 74 Huntley Street, 4th floor, Room 401, London, WC1E 6AU, UK
| | | |
Collapse
|
15
|
Proton-sensitive cation channels and ion exchangers in ischemic brain injury: new therapeutic targets for stroke? Prog Neurobiol 2014; 115:189-209. [PMID: 24467911 DOI: 10.1016/j.pneurobio.2013.12.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/28/2013] [Accepted: 12/24/2013] [Indexed: 12/13/2022]
Abstract
Ischemic brain injury results from complicated cellular mechanisms. The present therapy for acute ischemic stroke is limited to thrombolysis with the recombinant tissue plasminogen activator (rtPA) and mechanical recanalization. Therefore, a better understanding of ischemic brain injury is needed for the development of more effective therapies. Disruption of ionic homeostasis plays an important role in cell death following cerebral ischemia. Glutamate receptor-mediated ionic imbalance and neurotoxicity have been well established in cerebral ischemia after stroke. However, non-NMDA receptor-dependent mechanisms, involving acid-sensing ion channel 1a (ASIC1a), transient receptor potential melastatin 7 (TRPM7), and Na(+)/H(+) exchanger isoform 1 (NHE1), have recently emerged as important players in the dysregulation of ionic homeostasis in the CNS under ischemic conditions. These H(+)-sensitive channels and/or exchangers are expressed in the majority of cell types of the neurovascular unit. Sustained activation of these proteins causes excessive influx of cations, such as Ca(2+), Na(+), and Zn(2+), and leads to ischemic reperfusion brain injury. In this review, we summarize recent pre-clinical experimental research findings on how these channels/exchangers are regulated in both in vitro and in vivo models of cerebral ischemia. The blockade or transgenic knockdown of these proteins was shown to be neuroprotective in these ischemia models. Taken together, these non-NMDA receptor-dependent mechanisms may serve as novel therapeutic targets for stroke intervention.
Collapse
|
16
|
Robertson NJ, Kato T, Bainbridge A, Chandrasekaran M, Iwata O, Kapetanakis A, Faulkner S, Cheong J, Iwata S, Hristova M, Cady E, Raivich G. Methyl-isobutyl amiloride reduces brain Lac/NAA, cell death and microglial activation in a perinatal asphyxia model. J Neurochem 2012; 124:645-57. [DOI: 10.1111/jnc.12097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/07/2012] [Accepted: 11/05/2012] [Indexed: 01/12/2023]
Affiliation(s)
| | - Takenori Kato
- Institute for Women's Health; University College London; London UK
- Nagoya City University; Nagoya Japan
| | - Alan Bainbridge
- Medical Physics and Bioengineering; University College London Hospitals; London UK
| | | | - Osuke Iwata
- Institute for Women's Health; University College London; London UK
| | | | - Stuart Faulkner
- Institute for Women's Health; University College London; London UK
| | - Jeanie Cheong
- Institute for Women's Health; University College London; London UK
| | - Sachiko Iwata
- Institute for Women's Health; University College London; London UK
| | - Mariya Hristova
- Institute for Women's Health; University College London; London UK
| | - Ernest Cady
- Medical Physics and Bioengineering; University College London Hospitals; London UK
| | - Gennadij Raivich
- Institute for Women's Health; University College London; London UK
| |
Collapse
|
17
|
Helmy MM, Ruusuvuori E, Watkins PV, Voipio J, Kanold PO, Kaila K. Acid extrusion via blood-brain barrier causes brain alkalosis and seizures after neonatal asphyxia. ACTA ACUST UNITED AC 2012; 135:3311-9. [PMID: 23125183 PMCID: PMC3501974 DOI: 10.1093/brain/aws257] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Birth asphyxia is often associated with a high seizure burden that is predictive of poor neurodevelopmental outcome. The mechanisms underlying birth asphyxia seizures are unknown. Using an animal model of birth asphyxia based on 6-day-old rat pups, we have recently shown that the seizure burden is linked to an increase in brain extracellular pH that consists of the recovery from the asphyxia-induced acidosis, and of a subsequent plateau level well above normal extracellular pH. In the present study, two-photon imaging of intracellular pH in neocortical neurons in vivo showed that pH changes also underwent a biphasic acid–alkaline response, resulting in an alkaline plateau level. The mean alkaline overshoot was strongly suppressed by a graded restoration of normocapnia after asphyxia. The parallel post-asphyxia increase in extra- and intracellular pH levels indicated a net loss of acid equivalents from brain tissue that was not attributable to a disruption of the blood–brain barrier, as demonstrated by a lack of increased sodium fluorescein extravasation into the brain, and by the electrophysiological characteristics of the blood–brain barrier. Indeed, electrode recordings of pH in the brain and trunk demonstrated a net efflux of acid equivalents from the brain across the blood–brain barrier, which was abolished by the Na/H exchange inhibitor, N-methyl-isobutyl amiloride. Pharmacological inhibition of Na/H exchange also suppressed the seizure activity associated with the brain-specific alkalosis. Our findings show that the post-asphyxia seizures are attributable to an enhanced Na/H exchange-dependent net extrusion of acid equivalents across the blood–brain barrier and to consequent brain alkalosis. These results suggest targeting of blood–brain barrier-mediated pH regulation as a novel approach in the prevention and therapy of neonatal seizures.
Collapse
Affiliation(s)
- Mohamed M Helmy
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
18
|
Kendall GS, Hristova M, Zbarsky V, Clements A, Peebles DM, Robertson NJ, Raivich G. Distribution of pH changes in mouse neonatal hypoxic-ischaemic insult. Dev Neurosci 2012; 33:505-18. [PMID: 22343485 DOI: 10.1159/000333850] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 09/26/2011] [Indexed: 11/19/2022] Open
Abstract
We assessed the distribution in brain pH after neonatal hypoxic-ischaemic insult and its correlation with local injury. Postnatal day 7 mice were injected with neutral red and underwent left carotid occlusion and exposure to 8% oxygen. Images captured from the cut surface of snap-frozen brain were used to calculate the pH from the blue-green absorbance ratios. Carotid occlusion alone had no effect, but combined with hypoxia caused rapid, biphasic pH decline, with the first plateau at 15-30 min, and the second at 60-90 min. The ipsilateral dorsal cortex, hippocampus, striatum and thalamus were most affected. Contralateral pH initially showed only 30% of the ipsilateral decline, becoming more acidotic with increasing duration. Systemic blood analysis revealed, compared with hypoxia alone, that combined insult caused a 63% decrease in blood glucose (1.3 ± 0.2 mM), a 2-fold increase in circulating lactate (17.7 ± 2.9 mM), a reduction in CO(2) to 1.9 ± 0.1 kPa and a drop in pH (7.26 ± 0.06). Re-oxygenation resulted in the normalisation of systemic changes, as well as a global alkaline rebound in brain pH at 4-6 h. A topographic comparison of brain injury showed only a partial correlation with pH changes, with the severest injury occurring in the ipsilateral hippocampus and sparing acidic parts of the contralateral cortex.
Collapse
Affiliation(s)
- Giles S Kendall
- Centre for Perinatal Brain Protection and Repair, Department of Obstetrics and Gynaecology, University College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
19
|
Na+/H+ Exchangers as Therapeutic Targets for Cerebral Ischemia. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Akhtar M, Pillai KK, Najmi AK, Vohora D. Effect of amiloride: An Na / H exchange inhibitor in the middle cerebral artery occlusion model of focal cerebral ischemia in rats. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2011; 3:519-524. [PMID: 22219585 PMCID: PMC3249699 DOI: 10.4103/0975-7406.90105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/26/2011] [Accepted: 05/06/2011] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The effect of pretreatment with amiloride (AML), an Na(+) / H(+) exchange inhibitor was studied in the middle cerebral artery occlusion (MCAO) model of focal cerebral ischemia in rats. MATERIALS AND METHODS Male wistar rats were subjected to 2 hr of MCAO followed by 22-hr reperfusion. Grip strength, locomotor activity, and spontaneous alternation performance were assessed after 24 hr. Immediately after behavioral activities, animals were sacrificed and the oxidative stress markers were estimated in brains. RESULTS An elevation of thiobarbituric acid reactive substances (TBARS), reduction in glutathione, and antioxidant enzymes activities, namely glutathione-S-transferase, glutathione peroxidase (GPx), glutathione reductase (GR), and superoxide dismutase (SOD) were observed following MCA occluded rats. Pretreatment with AML (0.91 and 1.82 mg/kg p.o) significantly reversed the MCAO-induced elevation in TBARS but could not reverse the other parameters. Paradoxically, AML further reduced the levels of GPx, GR, and SOD, but no significant changes were observed in the catalase activity, grip strength, and spontaneous alternation behavior of rats. Locomotor activity was reduced slightly but reversed on pretreatment with AML. CONCLUSIONS Although pretreatment with single dose of AML showed reduction in oxidative stress markers, further multiple doses of AML as pre- and post-treatments are required to establish its potential to be used in cerebral ischemia.
Collapse
Affiliation(s)
- Mohammad Akhtar
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard, Hamdard University, New Delhi, India
| | - K. K. Pillai
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard, Hamdard University, New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard, Hamdard University, New Delhi, India
| | - Divya Vohora
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard, Hamdard University, New Delhi, India
| |
Collapse
|
21
|
Cengiz P, Kleman N, Uluc K, Kendigelen P, Hagemann T, Akture E, Messing A, Ferrazzano P, Sun D. Inhibition of Na+/H+ exchanger isoform 1 is neuroprotective in neonatal hypoxic ischemic brain injury. Antioxid Redox Signal 2011; 14:1803-13. [PMID: 20712402 PMCID: PMC3078509 DOI: 10.1089/ars.2010.3468] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We investigated the role of Na(+)/H(+) exchanger isoform 1 (NHE-1) in neonatal hypoxia/ischemia (HI). HI was induced by unilateral ligation of the left common carotid artery in postnatal day 9 (P9) mice, and subsequent exposure of animals to 8% O(2) for 55 min. A pre/posttreatment group received a selective and potent NHE-1 inhibitor HOE 642 (0.5 mg/kg, intraperitoneally) 5 min before HI, then at 24 and 48 h after HI. A posttreatment group received HOE 642 (0.5 mg/kg) at 10 min, 24 h, and 48 h after HI. Saline injections were used as vehicle controls. The vehicle-control brains at 72 h after HI exhibited neuronal degeneration in the ipsilateral hippocampus, striatum, and thalamus, as identified with Fluoro-Jade C positive staining and loss of microtubule-associated protein 2 (MAP2) expression. NHE-1 protein was upregulated in glial fibrillary acidic protein-positive reactive astrocytes. In HOE 642-treated brains, the morphologic hippocampal structures were better preserved and displayed less neurodegeneration and a higher level of MAP2 expression. Motor-learning deficit was detected at 4 weeks of age after HI in the vehicle control group. Inhibition of NHE-1 in P9 mice not only reduced neurodegeneration during the acute stage of HI but also improved the striatum-dependent motor learning and spatial learning at 8 weeks of age after HI. These findings suggest that NHE-1-mediated disruption of ionic homeostasis contributes to striatal and CA1 pyramidal neuronal injury after neonatal HI.
Collapse
Affiliation(s)
- Pelin Cengiz
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kendall GS, Hristova M, Hirstova M, Horn S, Dafou D, Acosta-Saltos A, Almolda B, Zbarsky V, Rumajogee P, Heuer H, Castellano B, Pfeffer K, Nedospasov SA, Peebles DM, Raivich G. TNF gene cluster deletion abolishes lipopolysaccharide-mediated sensitization of the neonatal brain to hypoxic ischemic insult. J Transl Med 2011; 91:328-41. [PMID: 21135813 DOI: 10.1038/labinvest.2010.192] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the current study, we explored the role of TNF cluster cytokines on the lipopolysaccharide (LPS)-mediated, synergistic increase in brain injury after hypoxic ischemic insult in postnatal day 7 mice. Pretreatment with moderate doses of LPS (0.3 μg/g) resulted in particularly pronounced synergistic injury within 12 h. Systemic application of LPS alone resulted in a strong upregulation of inflammation-associated cytokines TNFα, LTβ, interleukin (IL) 1β, IL6, chemokines, such as CXCL1, and adhesion molecules E-Selectin, P-Selectin and intercellular adhesion molecule-1 (ICAM1), as well as a trend toward increased LTα levels in day 7 mouse forebrain. In addition, it was also associated with strong activation of brain blood vessel endothelia and local microglial cells. Here, deletion of the entire TNF gene cluster, removing TNFα, LTβ and LTα completely abolished endotoxin-mediated increase in the volume of cerebral infarct. Interestingly, the same deletion also prevented endothelial and microglial activation following application of LPS alone, suggesting the involvement of these cell types in bringing about the LPS-mediated sensitization to neonatal brain injury.
Collapse
Affiliation(s)
- Giles S Kendall
- Perinatal Brain Repair Group, Centre for Perinatal Brain Protection and Repair, Institute of Women's Health, University College London, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Iwata O, Iwata S. Filling the evidence gap: how can we improve the outcome of neonatal encephalopathy in the next 10 years? Brain Dev 2011; 33:221-8. [PMID: 21185138 DOI: 10.1016/j.braindev.2010.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/26/2010] [Accepted: 11/29/2010] [Indexed: 11/18/2022]
Abstract
Neonatal encephalopathy associated with perinatal hypoxia-ischaemia is one of the most common causes of death and permanent disability worldwide. However, of a wide range of "experimentally neuroprotective treatments" invented so far, only therapeutic hypothermia has been promoted into a standard clinical practice. Such a wide gap in the efficacy of neuroprotective treatments between the experimental setting and clinical practice may be attributed to the strategic flaw in translating basic knowledge into clinical care. When previous clinical studies are carefully reviewed, one may notice that few therapeutic options were chosen based on their track records in experimental studies; protective effects of some drugs had been assumed only based on their pharmacokinetics in adult species; several therapies were chosen merely because clinicians were familiar to these treatments for other purpose; some other therapies were imported too preliminarily from laboratory to clinical practice, potentially ignoring the difference in physiological and pathological backgrounds between rodent models and human patients. When further clinical trials are planned, it is important to ask whether (i) the treatment is supported by pharmacokinetics specific to immature brain, and (ii) the neuroprotective effect of the treatment has consistently been demonstrated using clinically relevant models and study designs. The use of translational large animal models allows the practical simulation and fine-tuning of clinical protocols, which may further assist successful translation of basic knowledge. In addition to the effort to develop alternative therapeutic options, it is important to maximise the effect of the current only neuroprotective option, or therapeutic hypothermia. Independent variables which influence the efficacy of hypothermia have to be elucidated to improve its therapeutic protocol, and to increase the number of patients who will benefit from this treatment.
Collapse
Affiliation(s)
- Osuke Iwata
- Centre for Developmental & Cognitive Neuroscience, Department of Paediatrics, Kurume University School of Medicine, Kurume City, Fukuoka, Japan.
| | | |
Collapse
|
24
|
Helmy MM, Tolner EA, Vanhatalo S, Voipio J, Kaila K. Brain alkalosis causes birth asphyxia seizures, suggesting therapeutic strategy. Ann Neurol 2011; 69:493-500. [PMID: 21337602 DOI: 10.1002/ana.22223] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 07/12/2010] [Accepted: 08/06/2010] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The mechanisms whereby birth asphyxia leads to generation of seizures remain unidentified. To study the possible role of brain pH changes, we used a rodent model that mimics the alterations in systemic CO(2) and O(2) levels during and after intrapartum birth asphyxia. METHODS Neonatal rat pups were exposed for 1 hour to hypercapnia (20% CO(2) in the inhaled gas), hypoxia (9% O(2)), or both (asphyxic conditions). CO(2) levels of 10% and 5% were used for graded restoration of normocapnia. Seizures were characterized behaviorally and utilizing intracranial electroencephalography. Brain pH and oxygen were measured with intracortical microelectrodes, and blood pH, ionized calcium, carbon dioxide, oxygen, and lactate with a clinical device. The impact of the postexposure changes in brain pH on seizure burden was assessed during 2 hours after restoration of normoxia and normocapnia. N-methyl-isobutyl-amiloride, an inhibitor of Na(+) /H(+) exchange, was given intraperitoneally. RESULTS Whereas hypercapnia or hypoxia alone did not result in an appreciable postexposure seizure burden, recovery from asphyxic conditions was followed by a large seizure burden that was tightly paralleled by a rise in brain pH, but no change in brain oxygenation. By graded restoration of normocapnia after asphyxia, the alkaline shift in brain pH and the seizure burden were strongly suppressed. The seizures were virtually blocked by preapplication of N-methyl-isobutyl-amiloride. INTERPRETATION Our data indicate that brain alkalosis after recovery from birth asphyxia plays a key role in the triggering of seizures. We question the current practice of rapid restoration of normocapnia in the immediate postasphyxic period, and suggest a novel therapeutic strategy based on graded restoration of normocapnia.
Collapse
|
25
|
Li Y, Horiuchi T, Murata T, Hongo K. Mechanism of alkalosis-induced constriction of rat cerebral penetrating arterioles. Neurosci Res 2011; 70:98-103. [PMID: 21256899 DOI: 10.1016/j.neures.2011.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Revised: 12/22/2010] [Accepted: 01/11/2011] [Indexed: 10/18/2022]
Abstract
Cerebral arterioles are in close contact with the supplied tissue and are strong regulators of cerebrovascular tone. Transient ischemia can cause brain intracellular alkalosis producing vasoconstriction. However, the mechanisms of alkalosis-induced cerebral arteriolar constriction are poorly understood. Here, we determined the vascular responses to alkalosis under different conditions by monitoring the internal diameter of pressurized penetrating arterioles isolated from the rat cerebrum with an operating microscope. The roles of Na+/H+ exchanger (NHE), Na+/Ca²+ exchanger (NCX), Na+/K+-adenosine triphosphatase (NKA), and potassium (K+) channels during alkalosis were examined using specific inhibitors. Our results indicated that the extent of constriction of the penetrating arterioles was dependent on alkaline pH. Moreover, the alkalosis-induced vasoconstriction was significantly attenuated by inhibitors of NHE, NCX, and NKA, but not K+ channel inhibitors. Therefore, we concluded that NHE, NKA, and NCX are important regulators involved in alkalosis-induced vasoconstriction of rat cerebral penetrating arterioles.
Collapse
Affiliation(s)
- Yuhui Li
- Department of Neurosurgery, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto 390-8621, Japan
| | | | | | | |
Collapse
|
26
|
Hristova M, Cuthill D, Zbarsky V, Acosta-Saltos A, Wallace A, Blight K, Buckley SMK, Peebles D, Heuer H, Waddington SN, Raivich G. Activation and deactivation of periventricular white matter phagocytes during postnatal mouse development. Glia 2010; 58:11-28. [PMID: 19544386 DOI: 10.1002/glia.20896] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Brain microglia are related to peripheral macrophages but undergo a highly specific process of regional maturation and differentiation inside the brain. Here, we examined this deactivation and morphological differentiation in cerebral cortex and periventricular subcortical white matter, the main "fountain of microglia" site, during postnatal mouse development, 0-28 days after birth (P0-P28). Only macrophages in subcortical white matter but not cortical microglia exhibited strong expression of typical activation markers alpha5, alpha6, alphaM, alphaX, and beta2 integrin subunits and B7.2 at any postnatal time point studied. White matter phagocyte activation was maximal at P0, decreased linearly over P3 and P7 and disappeared at P10. P7 white matter phagocytes also expressed high levels of IGF1 and MCSF, but not TNFalpha mRNA; this expression disappeared at P14. This process of deactivation followed the presence of ingested phagocytic material but correlated only moderately with ramification, and not with the extent of TUNEL+ death in neighboring cells, their ingestion or microglial proliferation. Intravenous fluosphere labeling revealed postnatal recruitment and transformation of circulating leukocytes into meningeal and perivascular macrophages as well as into ramified cortical microglia, but bypassing the white matter areas. In conclusion, this study describes strong and selective activation of postnatally resident phagocytes in the P0-P7 subcortical white matter, roughly equivalent to mid 3rd trimester human fetal development. This presence of highly active and IGF1- and MCSF-expressing phagocytes in the neighborhood of vulnerable white matter could play an important role in the genesis of or protection against axonal damage in the fetus and premature neonate.
Collapse
Affiliation(s)
- Mariya Hristova
- Department of Obstetrics and Gynecology, EGA Institute of Women's Health, University College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang X, Carmichael DW, Cady EB, Gearing O, Bainbridge A, Ordidge RJ, Raivich G, Peebles DM. Greater hypoxia-induced cell death in prenatal brain after bacterial-endotoxin pretreatment is not because of enhanced cerebral energy depletion: a chicken embryo model of the intrapartum response to hypoxia and infection. J Cereb Blood Flow Metab 2008; 28:948-60. [PMID: 18030303 DOI: 10.1038/sj.jcbfm.9600586] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Infection is a risk factor for adult stroke and neonatal encephalopathy. We investigated whether exposure to bacterial endotoxin increases hypoxia-induced brain cell death and impairs cerebral metabolic compensatory responses to hypoxia. Prehatching chicken embryos (incubation day 19) were exposed to bacterial lipopolysaccharide (LPS) (3 mg Salmonella typhimurium LPS per egg) or hypoxia (4% ambient O(2) for 1 h), alone or in combination with LPS, followed 4 h later by hypoxia. Cerebral cell death and glial activation were assessed histologically. Further, chicken embryo brains were studied by magnetic resonance imaging (MRI) and spectroscopy (MRS) to assess haemodynamic and metabolic responses. In most brain areas, combined LPS/hypoxia resulted in a 30- to 100-fold increase in terminal deoxynucleotidyl transferase dUTP nick end labelling -positive cells, compared to control and single-insult groups. Glial activation correlated with the severity of cell death and was significantly greater in the combined-insult group (P<0.05). Hypoxia was associated with a 10-fold increase in lactate/N-acetyl-aspartate (NAA), an approximately 20% increase in total creatine/NAA, rapid decreases in T2 and T2(*), and a reduction in direction-averaged brain-water diffusion (D(av)) by approximately 15%. Liposaccharide pretreatment did not alter the magnitude or timing of these responses, but engendered baseline shifts (increased Cho/NAA, Cr/NAA, and Dav, and reduced T2(*)). In conclusion, LPS greatly increased hypoxia-induced brain damage in this model and induced changes in baseline haemodynamics and metabolism but did not affect the magnitude of the glycolytic response to hypoxia. The damage-enhancing effects of LPS are not because of additional energy depletion but because of a synergistic toxic component.
Collapse
Affiliation(s)
- Xiaolan Wang
- Centre for Perinatal Brain Research, The Institute for Women's Health, University College London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|