1
|
Darwish T, Al-Khulaifi A, Ali M, Mowafy R, Arredouani A, Doi SA, Emara MM. Assessing the consistency of iPSC and animal models in cystic fibrosis modelling: A meta-analysis. PLoS One 2022; 17:e0272091. [PMID: 35944004 PMCID: PMC9362911 DOI: 10.1371/journal.pone.0272091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 07/12/2022] [Indexed: 12/09/2022] Open
Abstract
INTRODUCTION Cystic fibrosis (CF) is a hereditary autosomal recessive disorder caused by a range of mutations in the CF Transmembrane Conductance Regulator (CFTR) gene. This gene encodes the CFTR protein, which acts as a chloride channel activated by cyclic AMP (cAMP). This meta-analysis aimed to compare the responsiveness of induced pluripotent stem cells (iPSCs) to cAMP analogues to that of commonly used animal models. METHODS Databases searched included PubMed, Scopus, and Medline from inception to January 2020. A total of 8 and 3 studies, respectively, for animal models and iPSCs, were analyzed. Studies were extracted for investigating cAMP-stimulated anion transport by measuring the short circuit current (Isc) of chloride channels in different animal models and iPSC systems We utilized an inverse variance heterogeneity model for synthesis. RESULTS Our analysis showed considerable heterogeneity in the mean Isc value in both animal models and iPSCs studies (compared to their WT counterparts), and both suffer from variable responsiveness based on the nature of the underlying model. There was no clear advantage of one over the other. CONCLUSIONS Studies on both animal and iPSCs models generated considerable heterogeneity. Given the potential of iPSC-derived models to study different diseases, we recommend paying more attention to developing reproducible models of iPSC as it has potential if adequately developed.
Collapse
Affiliation(s)
- Toqa Darwish
- Basic Medical Sciences Department, College of Medicine, Qatar University, Doha, Qatar
| | - Azhar Al-Khulaifi
- Basic Medical Sciences Department, College of Medicine, Qatar University, Doha, Qatar
| | - Menatalla Ali
- Basic Medical Sciences Department, College of Medicine, Qatar University, Doha, Qatar
| | - Rana Mowafy
- Basic Medical Sciences Department, College of Medicine, Qatar University, Doha, Qatar
| | - Abdelilah Arredouani
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, Doha, Qatar
| | - Suhail A. Doi
- Department of Population Medicine, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Mohamed M. Emara
- Basic Medical Sciences Department, College of Medicine, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Martinovich KM, Kicic A, Stick SM, Johnsen RD, Fletcher S, Wilton SD. Investigating the Implications of CFTR Exon Skipping Using a Cftr Exon 9 Deleted Mouse Model. Front Pharmacol 2022; 13:868863. [PMID: 35392567 PMCID: PMC8981082 DOI: 10.3389/fphar.2022.868863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Severity and disease progression in people with Cystic Fibrosis (CF) is typically dependent on their genotype. One potential therapeutic strategy for people with specific mutations is exon skipping with antisense oligonucleotides (AO). CFTR exon 9 is an in-frame exon and hence the exclusion of this exon would excise only 31 amino acids but not alter the reading frame of the remaining mRNA. Splice mutations 1209 + 1 G > C and 1209 + 2 T > G were documented to cause CFTR exon 9 skipping and these variants were reported to manifest as a milder CF disease, therefore exon 9 skipping could be beneficial for people with class I mutations that affect exon 9 such as p.Trp401X. While the impact of exon 9 skipping on gene expression and cellular pathways can be studied in cells in vitro, trace amount of full-length normal or mutated material could confound the evaluation. To overcome this limitation, the impact of CFTR exon 9 skipping on disease phenotype and severity is more effectively evaluated in a small animal model. It was hypothesised that antisense oligonucleotide-mediated skipping this particular exon could result in a "mild mouse CF phenotype". Methods: Cftr exon 9 deleted mice were generated using homologous recombination. Survival of homozygous (Cftr Δ9/Δ9 ) and heterozygous (Cftr Δ9/+ ) mice was compared to that of other CF mouse models, and lung and intestinal organ histology examined for any pathologies. Primary airway epithelial cells (pAECs) were harvested from Cftr Δ9/Δ9 mice and cultured at the Air Liquid Interface for CFTR functional assessment using Ussing Chamber analysis. Results: A Cftr Δ9/Δ9 mouse model presented with intestinal obstructions, and at time of weaning (21 days). Cftr Δ9/Δ9 mice had a survival rate of 83% that dropped to 38% by day 50. Histological sections of the small intestine from Cftr Δ9/Δ9 mice showed more goblet cells and mucus accumulation than samples from the Cftr Δ9/+ littermates. Airway epithelial cell cultures established from Cftr Δ9/Δ9 mice were not responsive to forskolin stimulation. Summary: The effect of Cftr exon 9 deletion on Cftr function was assessed and it was determined that the encoded Cftr isoform did not result in a milder "mouse CF disease phenotype," suggesting that Cftr exon 9 is not dispensable, although further investigation in human CF pAECs would be required to confirm this observation.
Collapse
Affiliation(s)
- Kelly M Martinovich
- School of Medicine, The University of Western Australia, Perth, WA, Australia.,Telethon Kids Institute, Wal-yan Respiratory Research Centre, Perth, WA, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Anthony Kicic
- School of Medicine, The University of Western Australia, Perth, WA, Australia.,Telethon Kids Institute, Wal-yan Respiratory Research Centre, Perth, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Perth, WA, Australia.,Department of Respiratory and Sleep Medicine, Perth Childrens Hospital, Nedlands, WA, Australia.,School of Population Health, Curtin University, Bentley, WA, Australia
| | - Stephen M Stick
- School of Medicine, The University of Western Australia, Perth, WA, Australia.,Telethon Kids Institute, Wal-yan Respiratory Research Centre, Perth, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Perth, WA, Australia.,Department of Respiratory and Sleep Medicine, Perth Childrens Hospital, Nedlands, WA, Australia
| | - Russell D Johnsen
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.,Perron Institute for Neurological and Translational Sciences, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.,Perron Institute for Neurological and Translational Sciences, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia.,PYC Therapeutics, Perth, WA, Australia
| | - Steve D Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.,Perron Institute for Neurological and Translational Sciences, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
3
|
Ikpa PT, Meijsen KF, Nieuwenhuijze ND, Dulla K, de Jonge HR, Bijvelds MJ. Transcriptome analysis of the distal small intestine of Cftr null mice. Genomics 2020; 112:1139-1150. [DOI: 10.1016/j.ygeno.2019.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 12/22/2022]
|
4
|
Hepatobiliary Involvement in Cystic Fibrosis. Respir Med 2020. [DOI: 10.1007/978-3-030-42382-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Dreano E, Bacchetta M, Simonin J, Galmiche L, Usal C, Slimani L, Sadoine J, Tesson L, Anegon I, Concordet J, Hatton A, Vignaud L, Tondelier D, Sermet‐Gaudelus I, Chanson M, Cottart C. Characterization of two rat models of cystic fibrosis-KO and F508del CFTR-Generated by Crispr-Cas9. Animal Model Exp Med 2019; 2:297-311. [PMID: 31942562 PMCID: PMC6930998 DOI: 10.1002/ame2.12091] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/22/2019] [Accepted: 11/03/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Genetically engineered animals are essential for gaining a proper understanding of the disease mechanisms of cystic fibrosis (CF). The rat is a relevant laboratory model for CF because of its zootechnical capacity, size, and airway characteristics, including the presence of submucosal glands. METHODS We describe the generation of a CF rat model (F508del) homozygous for the p.Phe508del mutation in the transmembrane conductance regulator (Cftr) gene. This model was compared to new Cftr -/- rats (CFTR KO). Target organs in CF were examined by histological staining of tissue sections and tooth enamel was quantified by micro-computed tomography. The activity of CFTR was evaluated by nasal potential difference (NPD) and short-circuit current measurements. The effect of VX-809 and VX-770 was analyzed on nasal epithelial primary cell cultures from F508del rats. RESULTS Both newborn F508del and Knock out (KO) animals developed intestinal obstruction that could be partly compensated by special diet combined with an osmotic laxative. The two rat models exhibited CF phenotypic anomalies such as vas deferens agenesis and tooth enamel defects. Histology of the intestine, pancreas, liver, and lungs was normal. Absence of CFTR function in KO rats was confirmed ex vivo by short-circuit current measurements on colon mucosae and in vivo by NPD, whereas residual CFTR activity was observed in F508del rats. Exposure of F508del CFTR nasal primary cultures to a combination of VX-809 and VX-770 improved CFTR-mediated Cl- transport. CONCLUSIONS The F508del rats reproduce the phenotypes observed in CFTR KO animals and represent a novel resource to advance the development of CF therapeutics.
Collapse
Affiliation(s)
| | - Marc Bacchetta
- Département de PédiatrieGynécologie & Obstétrique et Département de Physiologie Cellulaire & MétabolismeUniversité de GenèveGenèveSwitzerland
| | - Juliette Simonin
- Département de PédiatrieGynécologie & Obstétrique et Département de Physiologie Cellulaire & MétabolismeUniversité de GenèveGenèveSwitzerland
| | - Louise Galmiche
- Département de PathologieAPHPCHU Necker‐Enfants MaladesParisFrance
| | - Claire Usal
- Centre de Recherche en Transplantation & ImmunologieUMR 1064INSERMUniversité de NantesNantesFrance
- Plateforme Trangénèse Rat & ImmunoPhénomiqueINSERM 1064 & SFR François BonamyCNRS UMS3556NantesFrance
| | - Lotfi Slimani
- Pathologie, Imagerie & Biothérapies OrofacialesMontrougeFrance
- Plateforme Imageries du vivantFaculté de chirurgie dentaireUniversité de ParisParisFrance
| | - Jérémy Sadoine
- Pathologie, Imagerie & Biothérapies OrofacialesMontrougeFrance
| | - Laurent Tesson
- Centre de Recherche en Transplantation & ImmunologieUMR 1064INSERMUniversité de NantesNantesFrance
- Plateforme Trangénèse Rat & ImmunoPhénomiqueINSERM 1064 & SFR François BonamyCNRS UMS3556NantesFrance
| | - Ignacio Anegon
- Centre de Recherche en Transplantation & ImmunologieUMR 1064INSERMUniversité de NantesNantesFrance
- Plateforme Trangénèse Rat & ImmunoPhénomiqueINSERM 1064 & SFR François BonamyCNRS UMS3556NantesFrance
| | | | | | | | | | - Isabelle Sermet‐Gaudelus
- INSERM 1151INEMUniversité de ParisParisFrance
- AP‐HPCentre Maladie Rare Mucoviscidose et Maladies du CFTRAssistance Publique Hôpitaux de ParisHôpital Necker‐Enfants MaladesParisFrance
- Faculté de Médecine de ParisUniversité de ParisParisFrance
| | - Marc Chanson
- Département de PédiatrieGynécologie & Obstétrique et Département de Physiologie Cellulaire & MétabolismeUniversité de GenèveGenèveSwitzerland
| | - Charles‐Henry Cottart
- INSERM 1151INEMUniversité de ParisParisFrance
- AP‐HPCentre Maladie Rare Mucoviscidose et Maladies du CFTRAssistance Publique Hôpitaux de ParisHôpital Necker‐Enfants MaladesParisFrance
- Faculté de Pharmacie de ParisUniversité de ParisParisFrance
| |
Collapse
|
6
|
Fiorotto R, Strazzabosco M. Pathophysiology of Cystic Fibrosis Liver Disease: A Channelopathy Leading to Alterations in Innate Immunity and in Microbiota. Cell Mol Gastroenterol Hepatol 2019; 8:197-207. [PMID: 31075352 PMCID: PMC6664222 DOI: 10.1016/j.jcmgh.2019.04.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022]
Abstract
Cystic fibrosis (CF) is a monogenic disease caused by mutation of Cftr. CF-associated liver disease (CFLD) is a common nonpulmonary cause of mortality in CF and accounts for approximately 2.5%-5% of overall CF mortality. The peak of the disease is in the pediatric population, but a second wave of liver disease in CF adults has been reported in the past decade in association with an increase in the life expectancy of these patients. New drugs are available to correct the basic defect in CF but their efficacy in CFLD is not known. The cystic fibrosis transmembrane conductance regulator, expressed in the apical membrane of cholangiocytes, is a major determinant for bile secretion and CFLD classically has been considered a channelopathy. However, the recent findings of the cystic fibrosis transmembrane conductance regulator as a regulator of epithelial innate immunity and the possible influence of the intestinal disease with an altered microbiota on the liver complication have opened new mechanistic insights on the pathogenesis of CFLD. This review provides an overview of the current understanding of the pathophysiology of the disease and discusses a potential target for intervention.
Collapse
Affiliation(s)
- Romina Fiorotto
- Section of Digestive Diseases, Yale Liver Center, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut.
| | - Mario Strazzabosco
- Section of Digestive Diseases, Yale Liver Center, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
7
|
Debray D, El Mourabit H, Merabtene F, Brot L, Ulveling D, Chrétien Y, Rainteau D, Moszer I, Wendum D, Sokol H, Housset C. Diet-Induced Dysbiosis and Genetic Background Synergize With Cystic Fibrosis Transmembrane Conductance Regulator Deficiency to Promote Cholangiopathy in Mice. Hepatol Commun 2018; 2:1533-1549. [PMID: 30556040 PMCID: PMC6287479 DOI: 10.1002/hep4.1266] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023] Open
Abstract
The most typical expression of cystic fibrosis (CF)-related liver disease is a cholangiopathy that can progress to cirrhosis. We aimed to determine the potential impact of environmental and genetic factors on the development of CF-related cholangiopathy in mice. Cystic fibrosis transmembrane conductance regulator (Cftr)-/- mice and Cftr +/+ littermates in a congenic C57BL/6J background were fed a high medium-chain triglyceride (MCT) diet. Liver histopathology, fecal microbiota, intestinal inflammation and barrier function, bile acid homeostasis, and liver transcriptome were analyzed in 3-month-old males. Subsequently, MCT diet was changed for chow with polyethylene glycol (PEG) and the genetic background for a mixed C57BL/6J;129/Ola background (resulting from three backcrosses), to test their effect on phenotype. C57BL/6J Cftr -/- mice on an MCT diet developed cholangiopathy features that were associated with dysbiosis, primarily Escherichia coli enrichment, and low-grade intestinal inflammation. Compared with Cftr +/+ littermates, they displayed increased intestinal permeability and a lack of secondary bile acids together with a low expression of ileal bile acid transporters. Dietary-induced (chow with PEG) changes in gut microbiota composition largely prevented the development of cholangiopathy in Cftr -/- mice. Regardless of Cftr status, mice in a mixed C57BL/6J;129/Ola background developed fatty liver under an MCT diet. The Cftr -/- mice in the mixed background showed no cholangiopathy, which was not explained by a difference in gut microbiota or intestinal permeability, compared with congenic mice. Transcriptomic analysis of the liver revealed differential expression, notably of immune-related genes, in mice of the congenic versus mixed background. In conclusion, our findings suggest that CFTR deficiency causes abnormal intestinal permeability, which, combined with diet-induced dysbiosis and immune-related genetic susceptibility, promotes CF-related cholangiopathy.
Collapse
Affiliation(s)
- Dominique Debray
- Sorbonne Université, INSERM Centre de Recherche Saint-Antoine (CRSA), and Institute of Cardiometabolism and Nutrition (ICAN) Paris France.,Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants Malades Pediatric Hepatology Unit Paris France
| | - Haquima El Mourabit
- Sorbonne Université, INSERM Centre de Recherche Saint-Antoine (CRSA), and Institute of Cardiometabolism and Nutrition (ICAN) Paris France
| | - Fatiha Merabtene
- Sorbonne Université, INSERM Centre de Recherche Saint-Antoine (CRSA), and Institute of Cardiometabolism and Nutrition (ICAN) Paris France
| | - Loïc Brot
- Sorbonne Université, INSERM ERL U1157 Paris France
| | - Damien Ulveling
- Sorbonne Université, INSERM Institut du Cerveau et de la Moelle Epinière (ICM), Bioinformatics-Biostatistics Core Facility Paris France
| | - Yves Chrétien
- Sorbonne Université, INSERM Centre de Recherche Saint-Antoine (CRSA), and Institute of Cardiometabolism and Nutrition (ICAN) Paris France
| | | | - Ivan Moszer
- Sorbonne Université, INSERM Institut du Cerveau et de la Moelle Epinière (ICM), Bioinformatics-Biostatistics Core Facility Paris France
| | - Dominique Wendum
- Sorbonne Université, INSERM Centre de Recherche Saint-Antoine (CRSA), and Institute of Cardiometabolism and Nutrition (ICAN) Paris France.,Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine Pathology Department Paris France
| | - Harry Sokol
- Sorbonne Université, INSERM ERL U1157 Paris France.,Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine Department of Hepato-Gastroenterology Paris France
| | - Chantal Housset
- Sorbonne Université, INSERM Centre de Recherche Saint-Antoine (CRSA), and Institute of Cardiometabolism and Nutrition (ICAN) Paris France.,Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Antoine Department of Hepato-Gastroenterology Paris France
| |
Collapse
|
8
|
Russo P. Liver Disease in Cystic Fibrosis. PRACTICAL HEPATIC PATHOLOGY: A DIAGNOSTIC APPROACH 2018:143-150. [DOI: 10.1016/b978-0-323-42873-6.00010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Tinkov AA, Gatiatulina ER, Popova EV, Polyakova VS, Skalnaya AA, Agletdinov EF, Nikonorov AA, Skalny AV. Early High-Fat Feeding Induces Alteration of Trace Element Content in Tissues of Juvenile Male Wistar Rats. Biol Trace Elem Res 2017; 175:367-374. [PMID: 27311579 DOI: 10.1007/s12011-016-0777-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/09/2016] [Indexed: 12/22/2022]
Abstract
The primary objective of the current study was to assess the influence of early high-fat feeding on tissue trace element content in young male Wistar rats. Twenty weanling male Wistar rats were divided into two groups fed standard (STD) or high-fat diet (HFD) containing 10 and 31.6 % of total calories from fat, respectively, for 1 month. Serum lipid spectrum, apolipoproteins, glucose, insulin, adiponectin, and leptin levels were assessed. The level of trace elements was estimated using inductively coupled plasma mass spectrometry. High-fat feeding significantly increased epidydimal (EDAT) and retroperitoneal adipose tissue (RPAT), as well as total adipose tissue mass by 34, 103, and 59 %, respectively. Serum leptin levels in HFD animals were twofold higher than those in the control rats. No significant difference in serum lipid spectrum, apolipoproteins, glucose, adiponectin, and insulin was detected between the groups. HFD significantly altered tissue trace element content. In particular, HFD-fed animals were characterized by significantly lower levels of Cu, I, Mn, Se, and Zn in the liver; Cr, V, Co, Cu, Fe, and I content of EDAT; Co, Cu, I, Cr, V, Fe, and Zn concentration in RPAT samples. At the same time, only serum Cu was significantly depressed in HFD-fed animals as compared to the control ones. Hair Co, Mn, Si, and V levels were significantly increased in comparison to the control values, whereas Se and I content was decreased. HFD feeding induced excessive adiposity and altered tissue trace element content in rats without insulin resistance, adiponectin deficiency, and proatherogenic state. Hypothetically, trace element disbalance may precede obesity-associated metabolic disturbances.
Collapse
Affiliation(s)
- Alexey A Tinkov
- Department of Biochemistry, Orenburg State Medical University, Sovetskaya St., 6, Orenburg, 460000, Russia.
- Institute of Bioelementology (Russian Satellite Centre of Trace Element - Institute for UNESCO), Orenburg State University, Pobedy Ave. 13, Orenburg, 460352, Russia.
- Laboratory of Biotechnology and Applied Bioelementology, Yaroslavl State University, Sovetskaya St., 14, Yaroslavl, 150000, Russia.
| | - Eugenia R Gatiatulina
- Department of Biochemistry, Orenburg State Medical University, Sovetskaya St., 6, Orenburg, 460000, Russia
| | - Elizaveta V Popova
- Department of Biochemistry, Orenburg State Medical University, Sovetskaya St., 6, Orenburg, 460000, Russia
| | - Valentina S Polyakova
- Department of Pathologic Anatomy, Orenburg State Medical University, Sovetskaya St., 6, Orenburg, 460000, Russia
| | - Anastasia A Skalnaya
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Lomonosovsky Prospekt, 31-5, Moscow, 117192, Russia
| | - Eduard F Agletdinov
- Central Research Laboratory, Bashkir State Medical University, Zaki Validi St., 64/2, Ufa, 450057, Russia
| | - Alexandr A Nikonorov
- Department of Biochemistry, Orenburg State Medical University, Sovetskaya St., 6, Orenburg, 460000, Russia
- Institute of Bioelementology (Russian Satellite Centre of Trace Element - Institute for UNESCO), Orenburg State University, Pobedy Ave. 13, Orenburg, 460352, Russia
| | - Anatoly V Skalny
- Institute of Bioelementology (Russian Satellite Centre of Trace Element - Institute for UNESCO), Orenburg State University, Pobedy Ave. 13, Orenburg, 460352, Russia
- Laboratory of Biotechnology and Applied Bioelementology, Yaroslavl State University, Sovetskaya St., 14, Yaroslavl, 150000, Russia
- All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Grina St., 7, Moscow, 117216, Russia
| |
Collapse
|
10
|
Enhanced F508del-CFTR Channel Activity Ameliorates Bone Pathology in Murine Cystic Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1132-1141. [DOI: 10.1016/j.ajpath.2013.12.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/25/2013] [Accepted: 12/02/2013] [Indexed: 11/23/2022]
|
11
|
Becker KA, Henry B, Ziobro R, Riethmüller J, Gulbins E. Lipids in cystic fibrosis. Expert Rev Respir Med 2014; 5:527-35. [DOI: 10.1586/ers.11.36] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Epaud R, Aubey F, Xu J, Chaker Z, Clemessy M, Dautin A, Ahamed K, Bonora M, Hoyeau N, Fléjou JF, Mailleux A, Clement A, Henrion-Caude A, Holzenberger M. Knockout of insulin-like growth factor-1 receptor impairs distal lung morphogenesis. PLoS One 2012; 7:e48071. [PMID: 23139760 PMCID: PMC3491012 DOI: 10.1371/journal.pone.0048071] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 09/19/2012] [Indexed: 11/19/2022] Open
Abstract
Background Insulin-like growth factors (IGF-I and -II) are pleiotropic regulators of somatic growth and development in vertebrate species. Endocrine and paracrine effects of both hormones are mediated by a common IGF type 1 receptor (IGF-1R). Lethal respiratory failure in neonatal IGF-1R knockout mice suggested a particular role for this receptor in pulmonary development, and we therefore investigated the consequences of IGF-1R inactivation in lung tissue. Methods and Findings We first generated compound heterozygous mutant mice harboring a hypomorphic (Igf1rneo) and a null (Igf1r−) allele. These IGF-1Rneo/− mice express only 22% of normal IGF-1R levels and are viable. In adult IGF-1Rneo/− mice, we assessed lung morphology and respiratory physiology and found normal histomorphometric characteristics and normal breathing response to hypercapnia. We then generated homozygous IGF-1R knockout mutants (IGF-1R−/−) and analyzed their lung development during late gestation using histomorphometric and immunohistochemical methods. IGF-1R−/− embryos displayed severe lung hypoplasia and markedly underdeveloped diaphragms, leading to lethal neonatal respiratory distress. Importantly, IGF-1R−/− lungs from late gestation embryos were four times smaller than control lungs and showed markedly thickened intersaccular mesenchyme, indicating strongly delayed lung maturation. Cell proliferation and apoptosis were significantly increased in IGF-1R−/− lung tissue as compared with IGF-1R+/+ controls. Immunohistochemistry using pro-SP-C, NKX2-1, CD31 and vWF as markers revealed a delay in cell differentiation and arrest in the canalicular stage of prenatal respiratory organ development in IGF-1R−/− mutant mice. Conclusions/Significance We found that low levels of IGF-1R were sufficient to ensure normal lung development in mice. In contrast, complete absence of IGF-1R significantly delayed end-gestational lung maturation. Results indicate that IGF-1R plays essential roles in cell proliferation and timing of cell differentiation during fetal lung development.
Collapse
Affiliation(s)
- Ralph Epaud
- INSERM UMRS 938, Hôpital Saint-Antoine, Paris, France
- UPMC, Université Paris 6, Paris, France
- INSERM U955, Faculté de Médecine, Université Paris-Est, Créteil, France
| | - Flore Aubey
- INSERM UMRS 938, Hôpital Saint-Antoine, Paris, France
- UPMC, Université Paris 6, Paris, France
| | - Jie Xu
- INSERM UMRS 938, Hôpital Saint-Antoine, Paris, France
- UPMC, Université Paris 6, Paris, France
| | - Zayna Chaker
- INSERM UMRS 938, Hôpital Saint-Antoine, Paris, France
- UPMC, Université Paris 6, Paris, France
| | - Maud Clemessy
- INSERM UMRS 938, Hôpital Saint-Antoine, Paris, France
- UPMC, Université Paris 6, Paris, France
| | - Alexandre Dautin
- INSERM UMRS 938, Hôpital Saint-Antoine, Paris, France
- UPMC, Université Paris 6, Paris, France
| | - Karmène Ahamed
- INSERM UMRS 938, Hôpital Saint-Antoine, Paris, France
- UPMC, Université Paris 6, Paris, France
| | - Monique Bonora
- INSERM UMRS 938, Hôpital Saint-Antoine, Paris, France
- UPMC, Université Paris 6, Paris, France
| | - Nadia Hoyeau
- UPMC, Université Paris 6, Paris, France
- APHP, Hôpital Saint Antoine, Paris, France
| | - Jean-François Fléjou
- UPMC, Université Paris 6, Paris, France
- APHP, Hôpital Saint Antoine, Paris, France
| | | | - Annick Clement
- INSERM UMRS 938, Hôpital Saint-Antoine, Paris, France
- UPMC, Université Paris 6, Paris, France
- APHP, Hôpital Trousseau, Paris, France
| | - Alexandra Henrion-Caude
- INSERM UMRS 938, Hôpital Saint-Antoine, Paris, France
- UPMC, Université Paris 6, Paris, France
- INSERM UMRS 781, Hôpital Necker-Enfants Malades, Paris, France
| | - Martin Holzenberger
- INSERM UMRS 938, Hôpital Saint-Antoine, Paris, France
- UPMC, Université Paris 6, Paris, France
- * E-mail:
| |
Collapse
|
13
|
Debray D, Rainteau D, Barbu V, Rouahi M, Mourabit HE, Lerondel S, Rey C, Humbert L, Wendum D, Cottart CH, Dawson P, Chignard N, Housset C. Defects in gallbladder emptying and bile Acid homeostasis in mice with cystic fibrosis transmembrane conductance regulator deficiencies. Gastroenterology 2012; 142:1581-91.e6. [PMID: 22370478 PMCID: PMC3579557 DOI: 10.1053/j.gastro.2012.02.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 02/06/2012] [Accepted: 02/15/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Patients with cystic fibrosis (CF) have poorly defined defects in biliary function. We evaluated the effects of cystic fibrosis transmembrane conductance regulator (CFTR) deficiency on the enterohepatic disposition of bile acids (BAs). METHODS Bile secretion and BA homeostasis were investigated in Cftr(tm1Unc) (Cftr-/-) and CftrΔF508 (ΔF508) mice. RESULTS Cftr-/- and ΔF508 mice did not grow to normal size, but did not have liver abnormalities. The gallbladders of Cftr-/- mice were enlarged and had defects in emptying, based on (99m)technetium-mebrofenin scintigraphy or post-prandial variations in gallbladder volume; gallbladder contraction in response to cholecystokinin-8 was normal. Cftr-/- mice had abnormal gallbladder bile and duodenal acidity, and overexpressed the vasoactive intestinal peptide-a myorelaxant factor for the gallbladder. The BA pool was larger in Cftr-/- than wild-type mice, although there were no differences in fecal loss of BAs. Amounts of secondary BAs in portal blood, liver, and bile of Cftr-/- mice were much lower than normal. Expression of genes that are induced by BAs, including fibroblast growth factor-15 and BA transporters, was lower in the ileum but higher in the gallbladders of Cftr-/- mice, compared with wild-type mice, whereas enzymes that synthesize BA were down-regulated in livers of Cftr-/- mice. This indicates that BAs underwent a cholecystohepatic shunt, which was confirmed using cholyl-(Ne-NBD)-lysine as a tracer. In Cftr-/- mice, cholecystectomy reversed most changes in gene expression and partially restored circulating levels of secondary BAs. The ΔF508 mice overexpressed vasoactive intestinal peptide and had defects in gallbladder emptying and in levels of secondary BAs, but these features were less severe than in Cftr-/- mice. CONCLUSIONS Cftr-/- and CftrΔF508 mice have defects in gallbladder emptying that disrupt enterohepatic circulation of BAs. These defects create a shunt pathway that restricts the amount of toxic secondary BAs that enter the liver.
Collapse
Affiliation(s)
- Dominique Debray
- UPMC Univ Paris 06 and INSERM, UMR_S 938, CdR Saint-Antoine, Paris, France,AP-HP, Hôpital Necker-Enfants Malades, Hépato-Gastroentérologie Pédiatrique, Paris, France
| | - Dominique Rainteau
- UPMC Univ Paris 06 and INSERM, ERL U1057/UMR 7203, Paris, France,AP-HP, Hôpital Saint-Antoine, Biochimie, Hépato-Gastroentérologie & Anatomo-Pathologie, Paris, France
| | - Véronique Barbu
- UPMC Univ Paris 06 and INSERM, UMR_S 938, CdR Saint-Antoine, Paris, France,AP-HP, Hôpital Saint-Antoine, Biochimie, Hépato-Gastroentérologie & Anatomo-Pathologie, Paris, France
| | - Myriam Rouahi
- UPMC Univ Paris 06 and INSERM, UMR_S 938, CdR Saint-Antoine, Paris, France
| | | | | | - Colette Rey
- UPMC Univ Paris 06 and INSERM, UMR_S 938, CdR Saint-Antoine, Paris, France
| | - Lydie Humbert
- UPMC Univ Paris 06 and INSERM, ERL U1057/UMR 7203, Paris, France
| | - Dominique Wendum
- UPMC Univ Paris 06 and INSERM, UMR_S 938, CdR Saint-Antoine, Paris, France,AP-HP, Hôpital Saint-Antoine, Biochimie, Hépato-Gastroentérologie & Anatomo-Pathologie, Paris, France
| | - Charles-Henry Cottart
- UPMC Univ Paris 06 and INSERM, UMR_S 938, CdR Saint-Antoine, Paris, France,Université Paris Descartes, EA 4466, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Paul Dawson
- Section on Gastroenterology, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Nicolas Chignard
- UPMC Univ Paris 06 and INSERM, UMR_S 938, CdR Saint-Antoine, Paris, France
| | - Chantal Housset
- UPMC Univ Paris 06 and INSERM, UMR_S 938, CdR Saint-Antoine, Paris, France,AP-HP, Hôpital Saint-Antoine, Biochimie, Hépato-Gastroentérologie & Anatomo-Pathologie, Paris, France
| |
Collapse
|
14
|
Bazett M, Stefanov AN, Paun A, Paradis J, Haston CK. Strain-dependent airway hyperresponsiveness and a chromosome 7 locus of elevated lymphocyte numbers in cystic fibrosis transmembrane conductance regulator-deficient mice. THE JOURNAL OF IMMUNOLOGY 2012; 188:2297-304. [PMID: 22287709 DOI: 10.4049/jimmunol.1102425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We previously observed the lungs of naive BALB/cJ Cftr(tm1UNC) mice to have greater numbers of lymphocytes, by immunohistochemical staining, than did BALB wild type littermates or C57BL/6J Cftr(tm1UNC) mice. In the present study, we initially investigated whether this mutation in Cftr alters the adaptive immunity phenotype by measuring the lymphocyte populations in the lungs and spleens by FACS and by evaluating CD3-stimulated cytokine secretion, proliferation, and apoptosis responses. Next, we assessed a potential influence of this lymphocyte phenotype on lung function through airway resistance measures. Finally, we mapped the phenotype of pulmonary lymphocyte counts in BALB × C57BL/6J F2 Cftr(tm1UNC) mice and reviewed positional candidate genes. By FACS analysis, both the lungs and spleens of BALB Cftr(tm1UNC) mice had more CD3(+) (both CD4(+) and CD8(+)) cells than did littermates or C57BL/6J Cftr(tm1UNC) mice. Cftr(tm1UNC) and littermate mice of either strain did not differ in anti-CD3-stimulated apoptosis or proliferation levels. Lymphocytes from BALB Cftr(tm1UNC) mice produced more IL-4 and IL-5 and reduced levels of IFN-γ than did littermates, whereas lymphocytes from C57BL/6J Cftr(tm1UNC) mice demonstrated increased Il-17 secretion. BALB Cftr(tm1UNC) mice presented an enhanced airway hyperresponsiveness to methacholine challenge compared with littermates and C57BL/6J Cftr(tm1UNC) mice. A chromosome 7 locus was identified to be linked to lymphocyte numbers, and genetic evaluation of the interval suggests Itgal and Il4ra as candidate genes for this trait. We conclude that the pulmonary phenotype of BALB Cftr(tm1UNC) mice includes airway hyperresponsiveness and increased lymphocyte numbers, with the latter trait being influenced by a chromosome 7 locus.
Collapse
Affiliation(s)
- Mark Bazett
- Meakins-Christie Laboratories, Department of Human Genetics, McGill University, Montreal, Quebec H2X 2P2, Canada
| | | | | | | | | |
Collapse
|
15
|
Mouse models of cystic fibrosis: Phenotypic analysis and research applications. J Cyst Fibros 2011; 10 Suppl 2:S152-71. [DOI: 10.1016/s1569-1993(11)60020-9] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Zhang Y, Li X, Grassmé H, Döring G, Gulbins E. Alterations in ceramide concentration and pH determine the release of reactive oxygen species by Cftr-deficient macrophages on infection. THE JOURNAL OF IMMUNOLOGY 2010; 184:5104-11. [PMID: 20351190 DOI: 10.4049/jimmunol.0902851] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We recently demonstrated that the accumulation of ceramide in Cftr-deficient epithelial cells is important for the pathophysiology of CF. However, the role of ceramide in other lung cells, particularly lung macrophages, requires definition. In this study, we report that ceramide is accumulated in Cftr-deficient lung macrophages. Alveolar macrophages contain a vesicle population, which is stained with LysoSensor probes but not by tetramethylrhodamine dextran. These vesicles, presumably secretory lysosomes, exhibit a higher pH in Cftr-deficient macrophages than the corresponding vesicles in lung macrophages isolated from wild-type (WT) mice. Alkalinization of these vesicles in Cftr-deficient macrophages correlates with a failure of the macrophages to respond to infection with various Pseudomonas aeruginosa strains by acutely activating acid sphingomyelinase, releasing ceramide, forming ceramide-enriched membrane platforms that serve to cluster gp91(phox), and, most importantly, releasing reactive oxygen species (ROS). In contrast, these events occur rapidly in WT lung macrophages postinfection. Inhibiting ROS in WT macrophages prevents the killing of P. aeruginosa. These findings provide evidence for a novel pH-controlled pathway from acid sphingomyelinase activation via ceramide and clustering of gp91(phox) to the release of ROS in lung macrophages.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | | | | | | | | |
Collapse
|
17
|
Ruggiero A, Brader P, Serganova I, Zanzonico P, Cai S, Lipman NS, Hricak H, Blasberg RG. Different strategies for reducing intestinal background radioactivity associated with imaging HSV1-tk expression using established radionucleoside probes. Mol Imaging 2010; 9:47-58. [PMID: 20128998 PMCID: PMC3068838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023] Open
Abstract
One limitation of HSV1-tk reporter positron emission tomography (PET) with nucleoside analogues is the high background radioactivity in the intestine. We hypothesized that endogenous expression of thymidine kinase in bacterial flora could phosphorylate and trap such radiotracers, contributing to the high radioactivity levels in the bowel, and therefore explored different strategies to increase fecal elimination of radiotracer. Intestinal radioactivity was assessed by in vivo microPET imaging and ex vivo tissue sampling following intravenous injection of 18F-FEAU, 124I-FIAU, or 18F-FHBG in a germ-free mouse strain. We also explored the use of an osmotic laxative agent and/or a 100% enzymatically hydrolyzed liquid diet. No significant differences in intestinal radioactivity were observed between germ-free and normal mice. 18F-FHBG-derived intestinal radioactivity levels were higher than those of 18F-FEAU and 124I-FIAU; the intestine to blood ratio was more than 20-fold higher for 18F-FHBG than for 18F-FEAU and 124I-FIAU. The combination of Peptamen and Nulytely lowered intestinal radioactivity levels and increased (2.2-fold) the HSV1-tk transduced xenograft to intestine ratio for 18F-FEAU. Intestinal bacteria in germ-free mice do not contribute to the high intestinal levels of radioactivity following injection of radionucleoside analogues. The combination of Peptamen and Nulytely increased radiotracer elimination by increasing bowel motility without inducing dehydration.
Collapse
Affiliation(s)
- Alessandro Ruggiero
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Peter Brader
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
- Department of Radiology, Division of Pediatric Radiology, Medical University of Graz, Graz, Austria
| | - Inna Serganova
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Pat Zanzonico
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Shangde Cai
- Cyclotron and Radiochemistry Core Facility, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Neil S. Lipman
- Research Animal Resource Center, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Hedvig Hricak
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Ronald G. Blasberg
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
18
|
Ruggiero A, Brader P, Serganova I, Zanzonico P, Cai S, Lipman NS, Hricak H, Blasberg RG. Different Strategies for Reducing Intestinal Background Radioactivity Associated with Imaging HSV1-
tk
Expression Using Established Radionucleoside Probes. Mol Imaging 2010. [DOI: 10.2310/7290.2010.00006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Alessandro Ruggiero
- From the Departments of Radiology, Medical Physics, and Neurology, Cyclotron and Radiochemistry Core Facility, and Research Animal Resource Center, Memorial Sloan-Kettering Cancer Center, New York, NY, and Department of Radiology, Division of Pediatric Radiology, Medical University of Graz, Graz, Austria
| | - Peter Brader
- From the Departments of Radiology, Medical Physics, and Neurology, Cyclotron and Radiochemistry Core Facility, and Research Animal Resource Center, Memorial Sloan-Kettering Cancer Center, New York, NY, and Department of Radiology, Division of Pediatric Radiology, Medical University of Graz, Graz, Austria
| | - Inna Serganova
- From the Departments of Radiology, Medical Physics, and Neurology, Cyclotron and Radiochemistry Core Facility, and Research Animal Resource Center, Memorial Sloan-Kettering Cancer Center, New York, NY, and Department of Radiology, Division of Pediatric Radiology, Medical University of Graz, Graz, Austria
| | - Pat Zanzonico
- From the Departments of Radiology, Medical Physics, and Neurology, Cyclotron and Radiochemistry Core Facility, and Research Animal Resource Center, Memorial Sloan-Kettering Cancer Center, New York, NY, and Department of Radiology, Division of Pediatric Radiology, Medical University of Graz, Graz, Austria
| | - Shangde Cai
- From the Departments of Radiology, Medical Physics, and Neurology, Cyclotron and Radiochemistry Core Facility, and Research Animal Resource Center, Memorial Sloan-Kettering Cancer Center, New York, NY, and Department of Radiology, Division of Pediatric Radiology, Medical University of Graz, Graz, Austria
| | - Neil S. Lipman
- From the Departments of Radiology, Medical Physics, and Neurology, Cyclotron and Radiochemistry Core Facility, and Research Animal Resource Center, Memorial Sloan-Kettering Cancer Center, New York, NY, and Department of Radiology, Division of Pediatric Radiology, Medical University of Graz, Graz, Austria
| | - Hedvig Hricak
- From the Departments of Radiology, Medical Physics, and Neurology, Cyclotron and Radiochemistry Core Facility, and Research Animal Resource Center, Memorial Sloan-Kettering Cancer Center, New York, NY, and Department of Radiology, Division of Pediatric Radiology, Medical University of Graz, Graz, Austria
| | - Ronald G. Blasberg
- From the Departments of Radiology, Medical Physics, and Neurology, Cyclotron and Radiochemistry Core Facility, and Research Animal Resource Center, Memorial Sloan-Kettering Cancer Center, New York, NY, and Department of Radiology, Division of Pediatric Radiology, Medical University of Graz, Graz, Austria
| |
Collapse
|
19
|
Mimoun M, Coste TC, Lebacq J, Lebecque P, Wallemacq P, Leal T, Armand M. Increased tissue arachidonic acid and reduced linoleic acid in a mouse model of cystic fibrosis are reversed by supplemental glycerophospholipids enriched in docosahexaenoic acid. J Nutr 2009; 139:2358-64. [PMID: 19828687 DOI: 10.3945/jn.109.110999] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
An imbalance in (n-6)/(n-3) PUFA has been reported in cystic fibrosis (CF) patients. Glycerophospholipids enriched in docosahexaenoic acid (GPL-DHA) have been shown to regulate the (n-6)/(n-3) fatty acid ratio in the elderly. Here, we tested the effect of GPL-DHA supplementation on PUFA status in F508del homozygous CF mice. GPL-DHA liposomes were administrated by gavage (60 mg DHA/kg daily, i.e. at maximum 1.4 mg DHA/d) to 1.5-mo-old CF mice (CF+DHA) and their corresponding wild-type (WT) homozygous littermates (WT+DHA) for 6 wk. The PUFA status of different tissues was determined by GC and compared with control groups (CF and WT). There was an alteration in the (n-6) PUFA pathway in several CF-target organs in CF compared with WT mice, as evidenced by a higher level of arachidonic acid (AA) in membrane phospholipids or whole tissue (21 and 39% in duodenum-jejunum, 32 and 38% in ileum, and 19 and 43% in pancreas). Elevated AA levels were associated with lower linoleic acid (LA) and higher dihomo-gamma-linolenic acid levels. No DHA deficiency was observed. GPL-DHA treatment resulted in different PUFA composition changes depending on the tissue (increase in LA, decrease in elevated AA, DHA increase, increase in (n-6)/(n-3) fatty acid ratio). However, the DHA/AA ratio consistently increased in all tissues in CF+DHA and WT+DHA mice. Our study demonstrates the effectiveness of an original oral DHA formulation in counter-balancing the abnormal (n-6) fatty acid metabolism in organs of CF mice when administrated at a low dose and highlights the potential of the use of GPL-DHA as nutritherapy for CF patients.
Collapse
Affiliation(s)
- Myriam Mimoun
- INSERM, U 476 Nutrition Humaine et Lipides, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Becker KA, Riethmüller J, Lüth A, Döring G, Kleuser B, Gulbins E. Acid sphingomyelinase inhibitors normalize pulmonary ceramide and inflammation in cystic fibrosis. Am J Respir Cell Mol Biol 2009; 42:716-24. [PMID: 19635928 DOI: 10.1165/rcmb.2009-0174oc] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Employing genetic mouse models we have recently shown that ceramide accumulation is critically involved in the pathogenesis of cystic fibrosis (CF) lung disease. Genetic or systemic inhibition of the acid sphingomyelinase (Asm) is not feasible for treatment of patients or might cause adverse effects. Thus, a manipulation of ceramide specifically in lungs of CF mice must be developed. We tested whether inhalation of different acid sphingomyelinase inhibitors does reduce Asm activity and ceramide accumulation in lungs of CF mice. The efficacy and specificity of the drugs was determined. Ceramide was determined by mass spectrometry, DAG-kinase assays, and fluorescence microscopy. We determined pulmonary and systemic Asm activity, neutral sphingomyelinase (Nsm), ceramide, cytokines, and infection susceptibility. Mass spectroscopy, DAG-kinase assays, and semiquantitative immune fluorescence microscopy revealed that a standard diet did not influence ceramide in bronchial respiratory epithelial cells, while a diet with Peptamen severely affected the concentration of sphingolipids in CF lungs. Inhalation of the Asm inhibitors amitriptyline, trimipramine, desipramine, chlorprothixene, fluoxetine, amlodipine, or sertraline restored normal ceramide concentrations in murine bronchial epithelial cells, reduced inflammation in the lung of CF mice and prevented infection with Pseudomonas aeruginosa. All drugs showed very similar efficacy. Inhalation of the drugs was without systemic effects and did not inhibit Nsm. These findings employing several structurally different Asm inhibitors identify Asm as primary target in the lung to reduce ceramide concentrations. Inhaling an Asm inhibitor may be a beneficial treatment for CF, with minimal adverse systemic effects.
Collapse
Affiliation(s)
- Katrin Anne Becker
- Professor and Chair, Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, D-45122 Essen, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Peroxiredoxin 6 fails to limit phospholipid peroxidation in lung from Cftr-knockout mice subjected to oxidative challenge. PLoS One 2009; 4:e6075. [PMID: 19562038 PMCID: PMC2698990 DOI: 10.1371/journal.pone.0006075] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 06/02/2009] [Indexed: 11/19/2022] Open
Abstract
Oxidative stress plays a prominent role in the pathophysiology of cystic fibrosis (CF). Despite the presence of oxidative stress markers and a decreased antioxidant capacity in CF airway lining fluid, few studies have focused on the oxidant/antioxidant balance in CF cells. The aim of the current study was to investigate the cellular levels of reactive oxygen species (ROS), oxidative damage and enzymatic antioxidant defenses in the lung of Cftr-knockout mice in basal conditions and as a response to oxidative insult. The results show that endogenous ROS and lipid peroxidation levels are higher in Cftr−/− lung when compared to wild-type (Cftr+/+) in basal conditions, despite a strong enzymatic antioxidant response involving superoxide dismutases, glutathione peroxidases and peroxiredoxin 6 (Prdx6). The latter has the unique capacity to directly reduce membrane phospholipid hydroperoxides (PL-OOH). A dramatic increase in PL-OOH levels in Cftr−/− lung consecutive to in vivo oxidative challenge by paraquat (PQ) unmasks a susceptibility to phospholipid peroxidation. PQ strongly decreases Prdx6 expression in Cftr−/− mice compared to Cftr+/+. Similar results were obtained after P. aeruginosa LPS challenge. Two-dimensional gel analysis of Prdx6 revealed one main molecular form in basal conditions and a PQ-induced form only detected in Cftr+/+ lung. Mass spectrometry experiments suggested that, as opposed to the main basal form, the one induced by PQ is devoid of overoxidized catalytic Cys47 and could correspond to a fully active form that is not induced in Cftr−/− lung. These results highlight a constitutive redox imbalance and a vulnerability to oxidative insult in Cftr−/− lung and present Prdx6 as a key component in CF antioxidant failure. This impaired PL-OOH detoxification mechanism may enhance oxidative damage and stress-related signaling, contributing to an exaggerated inflammatory response in CF lung.
Collapse
|
22
|
Bonvin E, Le Rouzic P, Bernaudin JF, Cottart CH, Vandebrouck C, Crié A, Leal T, Clement A, Bonora M. Congenital tracheal malformation in cystic fibrosis transmembrane conductance regulator-deficient mice. J Physiol 2008; 586:3231-43. [PMID: 18450781 DOI: 10.1113/jphysiol.2008.150763] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In cystic fibrosis (CF) patients, the major alteration in pulmonary function is due to peripheral airway obstruction. In the present study, we investigated the possibility that alterations in the extrathoracic airways, particularly in the trachea that expresses high levels of CFTR (CF transmembrane conductance regulator), may contribute to respiratory dysfunction. We performed morphological analyses of the trachea and airway functional studies in adult Cftr knockout (Cftr(-/-)) and F508del-CFTR mice and their controls. Macroscopic and histological examination of the trachea showed the presence of one to seven disrupted or incomplete cartilage rings in Cftr(-/-) mice (23/25) while only a few Cftr(+/+) mice (6/25) had one abnormal ring. Tracheal defects were mainly localized in the proximal trachea. In 14 Cftr(-/-) mice, frontal disruption of the first three to six rings below the cricoid cartilage were associated with upper tracheal constriction. Similar tracheal abnormalities were detected in adult F508del-CFTR and in newborn Cftr(-/-) and F508del-CFTR mice. Tracheal and ventilatory function analyses showed in Cftr(-/-) mice a decreased contractile response of the proximal trachea and a reduced breathing rate due to an increase in the inspiratory and expiratory times. In F508del-CFTR mice, the expiratory time was longer than in controls. Therefore, these structural and functional abnormalities detected in adult and newborn CF mouse models may represent congenital malformations related to CFTR dysfunction. These results raise important questions concerning the mechanisms governing tracheal development within the context of CFTR protein dysfunction and the implication of such abnormalities in the pathogenesis of airway disease in CF.
Collapse
|
23
|
Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat Med 2008; 14:382-91. [PMID: 18376404 DOI: 10.1038/nm1748] [Citation(s) in RCA: 436] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 03/04/2008] [Indexed: 01/06/2023]
Abstract
Microbial lung infections are the major cause of morbidity and mortality in the hereditary metabolic disorder cystic fibrosis, yet the molecular mechanisms leading from the mutation of cystic fibrosis transmembrane conductance regulator (CFTR) to lung infection are still unclear. Here, we show that ceramide age-dependently accumulates in the respiratory tract of uninfected Cftr-deficient mice owing to an alkalinization of intracellular vesicles in Cftr-deficient cells. This change in pH results in an imbalance between acid sphingomyelinase (Asm) cleavage of sphingomyelin to ceramide and acid ceramidase consumption of ceramide, resulting in the higher levels of ceramide. The accumulation of ceramide causes Cftr-deficient mice to suffer from constitutive age-dependent pulmonary inflammation, death of respiratory epithelial cells, deposits of DNA in bronchi and high susceptibility to severe Pseudomonas aeruginosa infections. Partial genetic deficiency of Asm in Cftr(-/-)Smpd1(+/-) mice or pharmacological treatment of Cftr-deficient mice with the Asm blocker amitriptyline normalizes pulmonary ceramide and prevents all pathological findings, including susceptibility to infection. These data suggest inhibition of Asm as a new treatment strategy for cystic fibrosis.
Collapse
|