1
|
Hao C, Xu R, Li B, Chen Y, Jia Q, Wang Z, Pei J, Zhang B, Su Y, Li J, Dong H, Wu Z, Jen AKY, Wang D. Employment of l-Citrulline as an Effective Molecular Bridge for Regulating the Buried Interface of Perovskite Solar Cells to Achieve High Efficiency and Good Stability. Angew Chem Int Ed Engl 2025:e202508169. [PMID: 40384606 DOI: 10.1002/anie.202508169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2025] [Revised: 05/01/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Suppressing the defects from SnO2 and perovskite interface is essential for the fabrication of large-area n-i-p perovskite solar cells (PSCs) with the needed lifetime and efficiency for commercialization. Here, we report the employment of l-citrulline (CIT), which has amino acid (─COOH, ─NH2) and urea (─NH─CO─NH2) groups, during SnO2 colloidal dispersion to function as a molecular bridge to modulate the SnO2/perovskite buried interface. The amino acid group can effectively coordinate with Sn4+ to passivate the oxygen vacancy defects of SnO2, and the urea group can interact with uncoordinated Pb2+ and I-. These interactions not only improve the electron mobility of SnO2 but also facilitate the formation of larger grain-size perovskite film. In addition, they can also inhibit the generation of excess PbI2 and the nonphotoactive δ phase to result in suppressed trap-assisted nonradiative recombination. Consequently, the incorporation of CIT helps achieve a champion power conversion efficiency (PCE) of 25.95% (0.07065 cm2) in PSC with improved shelf life/light soaking stability. When combined with an antisolvent-free slot-die coating technique in air, the solar modules (23.26 cm2) could achieve a PCE of 22.70%, which is among the highest PCE reported so far.
Collapse
Affiliation(s)
- ChaoBo Hao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ruoyao Xu
- Key Laboratory of Physical Electronics and Devices of Ministry of Education & Shaanxi Key Laboratory of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Boyang Li
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yi Chen
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - QingYu Jia
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - ZhiQiang Wang
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - JiangXue Pei
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - BoHua Zhang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yaqiong Su
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jingrui Li
- State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hua Dong
- Key Laboratory of Physical Electronics and Devices of Ministry of Education & Shaanxi Key Laboratory of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - ZhaoXin Wu
- Key Laboratory of Physical Electronics and Devices of Ministry of Education & Shaanxi Key Laboratory of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Alex K-Y Jen
- Department of Materials Science, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - DongDong Wang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
2
|
Mascarenhas D, Mohammadi A, Higazy R, Ivanovska J, Gauda E, Jasani B. L-Citrulline in Neonates: From Bench to Bed Side. CHILDREN (BASEL, SWITZERLAND) 2024; 12:42. [PMID: 39857873 PMCID: PMC11763423 DOI: 10.3390/children12010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025]
Abstract
L-citrulline (L-CIT), a precursor to L-arginine (L-ARG), is a key contributor to the nitric oxide (NO) signaling pathway. Endothelial dysfunction, characterized by deficient nitric oxide synthesis, is implicated in the pathogenesis of various neonatal conditions such as necrotizing enterocolitis (NEC) and bronchopulmonary dysplasia (BPD) associated pulmonary hypertension (PH). This review summarizes the current evidence around the possible role of L-CIT supplementation in the treatment of these conditions. Detoxification of endogenously produced superoxide radicals is inadequate in preterm infants due to immature antioxidants that leads to the production of peroxynitrite, a reactive oxygen-free radical that is cytotoxic and causes damage to organelles and cellular membranes, further disrupting the coupling of endothelial NO synthase enzyme and the generation of high levels of reactive nitrogen and oxygen species. Animal studies in lipopolysaccharide-induced models of chorioamnionitis and hyperoxia- and inflammation-induced BPD-PH in rodent lung models revealed that L-CIT supplementation significantly mitigated structural changes in the pulmonary vasculature, preserved alveolar growth, and increased vascular endothelial growth factor gene expression, highlighting the anti-inflammatory and antioxidant effects of L-CIT supplementation. Similar benefits were noted in newborn piglet models of chronic hypoxia-induced PH and NEC. Pharmacokinetic studies in neonates have shown doses of 100-300 mg/kg/day to be safe and well tolerated. A few studies have shown the beneficial effects of L-CIT supplementation in pulmonary hypertension secondary to congenital heart disease, but evidence of efficacy in the neonatal population is lacking. While L-CIT shows promise in the treatment of various neonatal conditions, adequately powered studies to evaluate the safety and efficacy of L-CIT supplementation post-surgical NEC and BPD ± PH in the extremely preterm population are needed to translate this novel therapy to clinical practice.
Collapse
Affiliation(s)
- Dwayne Mascarenhas
- Division of Neonatology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (D.M.); (E.G.)
| | - Atefeh Mohammadi
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 1E8, Canada; (A.M.); (J.I.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3K3, Canada;
| | - Randa Higazy
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3K3, Canada;
| | - Julijana Ivanovska
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 1E8, Canada; (A.M.); (J.I.)
| | - Estelle Gauda
- Division of Neonatology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (D.M.); (E.G.)
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 1E8, Canada; (A.M.); (J.I.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3K3, Canada;
| | - Bonny Jasani
- Division of Neonatology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (D.M.); (E.G.)
| |
Collapse
|
3
|
Wang MY, Mo XY, Yi MX, Lu HY. Visualization of the relationship between metabolism and lung diseases from the perspective of bibliometric analysis: research trends and future prospects. Front Med (Lausanne) 2024; 11:1443926. [PMID: 39664315 PMCID: PMC11631585 DOI: 10.3389/fmed.2024.1443926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024] Open
Abstract
Background Extensive research has examined the role of metabolism in lung disease development, yet a comprehensive literature review remains absent despite numerous publications. Objective This study aims to visualize and assess the advancements in research on metabolism and its role in lung diseases. Methods Publications from January 1, 1991, to April 30, 2024, related to lung diseases and metabolism were sourced from the Web of Science Core Collection and analyzed using CiteSpace 6.2.R4, VOSviewer 1.6.19, Bibliometrix, R Studio, and various online tools. Results A total of 1,542 studies were collected and processed through these platforms for literature analysis and data visualization. The analysis revealed a sharp increase in annual publications on metabolism and lung diseases, with the United States and China emerging as leading contributors. Current research trends highlight a shift toward investigating metabolic reprogramming of immune cells in the context of lung diseases. Moreover, genes such as TNF, DIF, AKT1, INS, IL-6, CXCL8, IL-1β, TP53, NF-κB1, MTOR, IFNG, TGF-β1, HIF1α, VEGFA, IL-10, NFE2L2, PPARG, AKT, CRP, STAT3, and CD4 have received significant attention in this research domain. Employing a bibliometric approach, this study offers a comprehensive and objective examination of the knowledge landscape, shedding light on the evolving trends in this field. The findings serve as a valuable resource for researchers, offering a clearer perspective on the advancements in metabolism-related lung disease studies.
Collapse
Affiliation(s)
| | | | | | - Hong-Yan Lu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Summar M. Potential therapeutic uses of L-citrulline beyond genetic urea cycle disorders. J Inherit Metab Dis 2024; 47:1260-1268. [PMID: 39582221 DOI: 10.1002/jimd.12810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 11/26/2024]
Abstract
L-citrulline (referred to hereafter as citrulline), a non-essential amino acid and an intermediate in the urea cycle, is widely recognized for its role in managing genetic urea cycle disorders (UCDs). Recent studies, however, suggest that citrulline's therapeutic potential extends beyond UCDs, particularly in conditions associated with nitric oxide (NO) deficiency, endothelial dysfunction, and oxidative stress. This review explores citrulline's emerging applications in sickle cell disease (SCD), post-operative pulmonary hypertension (PH), hepatic veno-occlusive disease (HVOD), and bronchopulmonary dysplasia (BPD), as well as its speculative use in asthma and acute respiratory distress syndrome (ARDS). In SCD, citrulline may restore NO bioavailability, potentially reducing the incidence and severity of vaso-occlusive crises and preventing complications like pulmonary hypertension. In the context of post-operative PH, citrulline's capacity to enhance NO production can improve pulmonary vascular resistance, decrease right ventricular strain, and reduce the need for mechanical ventilation. Citrulline's protective effects on endothelial function and its ability to mitigate oxidative stress offer promising adjunctive therapy for HVOD, particularly in patients undergoing bone marrow transplantation. In BPD, citrulline could promote alveolar development, reduce inflammation, and improve long-term respiratory outcomes. Despite these promising findings, further research is necessary to determine optimal dosing strategies and to evaluate long-term efficacy and safety. The potential role of citrulline in modulating NO production in conditions like asthma and ARDS also warrants further investigation. This review underscores the versatile therapeutic potential of citrulline and highlights the need for continued research into its applications across various conditions associated with NO deficiency and endothelial dysfunction.
Collapse
|
5
|
Frank BS, Niemiec S, Khailova L, Mancuso CA, Lehmann T, Mitchell MB, Morgan GJ, Twite M, DiMaria MV, Klawitter J, Davidson JA. Arginine-NO metabolites are associated with morbidity in single ventricle infants undergoing stage 2 palliation. Pediatr Res 2024; 96:347-355. [PMID: 38565916 PMCID: PMC11610193 DOI: 10.1038/s41390-024-03162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/01/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Infants with single ventricle heart disease (SVHD) suffer morbidity from insufficient pulmonary blood flow, which may be related to impaired arginine metabolism. No prior study has reported quantitative mapping of arginine metabolites to evaluate the relationship between circulating metabolite levels and outcomes. METHODS Prospective cohort study of 75 SVHD cases peri-Stage 2 and 50 healthy controls. We targeted pre- and post-op absolute serum quantification of 9 key members of the arginine metabolism pathway by tandem mass spectrometry. Primary outcomes were length of stay (LOS) and post-Stage 2 hypoxemia. RESULTS Pre-op cases showed alteration in 6 metabolites including decreased arginine and increased asymmetric dimethyl arginine (ADMA) levels compared to controls. Post-op cases demonstrated decreased arginine and citrulline levels persisting through 48 h. Adjusting for clinical variables, lower pre-op and 2 h post-op concentrations of multiple metabolites, including arginine and citrulline, were associated with longer post-op LOS (p < 0.01). Increased ADMA at 24 h was associated with greater post-op hypoxemia burden (p < 0.05). CONCLUSION Arginine metabolism is impaired in interstage SVHD infants and is further deranged following Stage 2 palliation. Patients with greater metabolite alterations experience greater post-op morbidity. Decreased arginine metabolism may be an important driver of pathology in SVHD. IMPACT Interstage infants with SVHD have significantly altered arginine-nitric oxide metabolism compared to healthy children with deficiency of multiple pathway intermediates persisting through 48 h post-Stage 2 palliation. After controlling for clinical covariates and classic catheterization-derived predictors of Stage 2 readiness, both lower pre-operation and lower post-operation circulating metabolite levels were associated with longer post-Stage 2 LOS while increased post-Stage 2 ADMA concentration was associated with greater post-op hypoxemia. Arginine metabolism mapping offers potential for development using personalized medicine strategies as a biomarker of Stage 2 readiness and therapeutic target to improve pulmonary vascular health in infants with SVHD.
Collapse
Affiliation(s)
- Benjamin S Frank
- University of Colorado Department of Pediatrics, Section of Cardiology, Denver, CO, USA.
| | - Sierra Niemiec
- University of Colorado Department of Biostatistics and Informatics, Denver, CO, USA
| | - Ludmila Khailova
- University of Colorado Department of Pediatrics, Section of Cardiology, Denver, CO, USA
| | | | - Tanner Lehmann
- University of Colorado Department of Pediatrics, Section of Cardiology, Denver, CO, USA
| | - Max B Mitchell
- University of Colorado Department of Surgery, Denver, CO, USA
| | - Gareth J Morgan
- University of Colorado Department of Pediatrics, Section of Cardiology, Denver, CO, USA
| | - Mark Twite
- University of Colorado Department of Anesthesiology, Denver, CO, USA
| | - Michael V DiMaria
- University of Colorado Department of Pediatrics, Section of Cardiology, Denver, CO, USA
| | - Jelena Klawitter
- University of Colorado Department of Anesthesiology, Denver, CO, USA
| | - Jesse A Davidson
- University of Colorado Department of Pediatrics, Section of Cardiology, Denver, CO, USA
| |
Collapse
|
6
|
Qasim A, Mehdi MQ, Bhatia S, Franco-Fuenmayor ME, Jain SK. Enteral L-citrulline supplementation in preterm infants is safe and effective in increasing plasma arginine and citrulline levels-a pilot randomized trial. J Perinatol 2024; 44:702-708. [PMID: 37640809 DOI: 10.1038/s41372-023-01761-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/18/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVE Deficiencies of citrulline and arginine have been associated with adverse outcomes in preterm-infants and data regarding enteral supplementation in preterm infants is limited. STUDY DESIGN This randomized -trial [NCT03649932] included 42 preterm infants (gestational age ≤33 weeks) randomized to receive enteral L-citrulline in low (100 mg/kg/day), medium (200 mg/kg/day) and high-dose (300 mg/kg/day) groups for 7 days. Plasma citrulline and arginine levels were obtained pre-and-post supplementation and efficacy was determined by a significant increase in levels after supplementation. A p < 0.05 was considered significant. Safety monitoring included blood-pressure-monitoring as well as complications and death during hospitalization. RESULTS A total of 40/42 (95%) of the recruits completed the 7-day supplementation with no adverse events. Plasma-citrulline levels increased significantly in all three groups while plasma-arginine levels increased significantly in the high-dose group. CONCLUSION Enteral L-citrulline supplementation in preterm infants is safe and effective in increasing plasma citrulline and arginine levels. CLINICAL TRIAL REGISTRATION NCT03649932 https://clinicaltrials.gov/ct2/show/NCT03649932 .
Collapse
Affiliation(s)
- Amna Qasim
- Department of Neonatology, Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pediatrics, Section of Pediatric Cardiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mohammad Q Mehdi
- Department of Neonatology, Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pediatric Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Snigdha Bhatia
- Department of Neonatology, Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
- Division of Pediatric Cardiology, Department of Pediatrics, Children's Hospital of Michigan, Central Michigan University, Detroit, MI, USA
| | - Maria E Franco-Fuenmayor
- Department of Neonatology, Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Sunil K Jain
- Department of Neonatology, Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
7
|
Ivanovski N, Wang H, Tran H, Ivanovska J, Pan J, Miraglia E, Leung S, Posiewko M, Li D, Mohammadi A, Higazy R, Nagy A, Kim P, Santyr G, Belik J, Palaniyar N, Gauda EB. L-citrulline attenuates lipopolysaccharide-induced inflammatory lung injury in neonatal rats. Pediatr Res 2023; 94:1684-1695. [PMID: 37349511 DOI: 10.1038/s41390-023-02684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/28/2023] [Accepted: 05/16/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Prenatal or postnatal lung inflammation and oxidative stress disrupt alveolo-vascular development leading to bronchopulmonary dysplasia (BPD) with and without pulmonary hypertension. L-citrulline (L-CIT), a nonessential amino acid, alleviates inflammatory and hyperoxic lung injury in preclinical models of BPD. L-CIT modulates signaling pathways mediating inflammation, oxidative stress, and mitochondrial biogenesis-processes operative in the development of BPD. We hypothesize that L-CIT will attenuate lipopolysaccharide (LPS)-induced inflammation and oxidative stress in our rat model of neonatal lung injury. METHODS Newborn rats during the saccular stage of lung development were used to investigate the effect of L-CIT on LPS-induced lung histopathology and pathways involved in inflammatory, antioxidative processes, and mitochondrial biogenesis in lungs in vivo, and in primary culture of pulmonary artery smooth muscle cells, in vitro. RESULTS L-CIT protected the newborn rat lung from LPS-induced: lung histopathology, ROS production, NFκB nuclear translocation, and upregulation of gene and protein expression of inflammatory cytokines (IL-1β, IL-8, MCP-1α, and TNF-α). L-CIT maintained mitochondrial morphology, increased protein levels of PGC-1α, NRF1, and TFAM (transcription factors involved in mitochondrial biogenesis), and induced SIRT1, SIRT3, and superoxide dismutases protein expression. CONCLUSION L-CIT may be efficacious in decreasing early lung inflammation and oxidative stress mitigating progression to BPD. IMPACT The nonessential amino acid L-citrulline (L-CIT) mitigated lipopolysaccharide (LPS)-induced lung injury in the early stage of lung development in the newborn rat. This is the first study describing the effect of L-CIT on the signaling pathways operative in bronchopulmonary dysplasia (BPD) in a preclinical inflammatory model of newborn lung injury. If our findings translate to premature infants, L-CIT could decrease inflammation, oxidative stress and preserve mitochondrial health in the lung of premature infants at risk for BPD.
Collapse
Affiliation(s)
- Nikola Ivanovski
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Huanhuan Wang
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Harvard Tran
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Julijana Ivanovska
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jingyi Pan
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Emily Miraglia
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Sharon Leung
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Melanie Posiewko
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Daniel Li
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Atefeh Mohammadi
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Randa Higazy
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Anita Nagy
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Division of Anatomical Pathology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Peter Kim
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Giles Santyr
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Jaques Belik
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Division of Neonatology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Nades Palaniyar
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Estelle B Gauda
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Division of Neonatology, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
8
|
Sun T, Yu H, Li D, Zhang H, Fu J. Emerging role of metabolic reprogramming in hyperoxia-associated neonatal diseases. Redox Biol 2023; 66:102865. [PMID: 37659187 PMCID: PMC10480540 DOI: 10.1016/j.redox.2023.102865] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023] Open
Abstract
Oxygen therapy is common during the neonatal period to improve survival, but it can increase the risk of oxygen toxicity. Hyperoxia can damage multiple organs and systems in newborns, commonly causing lung conditions such as bronchopulmonary dysplasia and pulmonary hypertension, as well as damage to other organs, including the brain, gut, and eyes. These conditions are collectively referred to as newborn oxygen radical disease to indicate the multi-system damage caused by hyperoxia. Hyperoxia can also lead to changes in metabolic pathways and the production of abnormal metabolites through a process called metabolic reprogramming. Currently, some studies have analyzed the mechanism of metabolic reprogramming induced by hyperoxia. The focus has been on mitochondrial oxidative stress, mitochondrial dynamics, and multi-organ interactions, such as the lung-gut, lung-brain, and brain-gut axes. In this article, we provide an overview of the major metabolic pathway changes reported in hyperoxia-associated neonatal diseases and explore the potential mechanisms of metabolic reprogramming. Metabolic reprogramming induced by hyperoxia can cause multi-organ metabolic disorders in newborns, including abnormal glucose, lipid, and amino acid metabolism. Moreover, abnormal metabolites may predict the occurrence of disease, suggesting their potential as therapeutic targets. Although the mechanism of metabolic reprogramming caused by hyperoxia requires further elucidation, mitochondria and the gut-lung-brain axis may play a key role in metabolic reprogramming.
Collapse
Affiliation(s)
- Tong Sun
- Department of Pediatics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Danni Li
- Department of Pediatics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - He Zhang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Jianhua Fu
- Department of Pediatics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
9
|
Douglass MS, Kaplowitz MR, Zhang Y, Fike CD. Impact of l-citrulline on nitric oxide signaling and arginase activity in hypoxic human pulmonary artery endothelial cells. Pulm Circ 2023; 13:e12221. [PMID: 37063746 PMCID: PMC10091859 DOI: 10.1002/pul2.12221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/18/2023] Open
Abstract
Impaired nitric oxide (NO) signaling contributes to the development of pulmonary hypertension (PH). The l-arginine precursor, l-citrulline, improves NO signaling and has therapeutic potential in PH. However, there is evidence that l-citrulline might increase arginase activity, which in turn, has been shown to contribute to PH. Our major purpose was to determine if l-citrulline increases arginase activity in hypoxic human pulmonary artery endothelial cells (PAECs). In addition, to avoid potential adverse effects from high dose l-citrulline monotherapy, we evaluated whether the effect on NO signaling is greater using co-treatment with l-citrulline and another agent that improves NO signaling, folic acid, than either alone. Arginase activity was measured in human PAECs cultured under hypoxic conditions in the presence of l-citrulline (0-1 mM). NO production and endothelial nitric oxide synthase (eNOS) coupling, as assessed by eNOS dimer-to-monomer ratios, were measured in PAECs treated with l-citrulline and/or folic acid (0.2 μM). Arginase activity increased in hypoxic PAECs treated with 1 mM but not with either 0.05 or 0.1 mM l-citrulline. Co-treatment with folic acid and 0.1 mM l-citrulline increased NO production and eNOS dimer-to-monomer ratios more than treatment with either alone. The potential to increase arginase activity suggests that there might be plasma l-citrulline concentrations that should not be exceeded when using l-citrulline to treat PH. Rather than progressively increasing the dose of l-citrulline as a monotherapy, co-therapy with l-citrulline and folic acid merits consideration, due to the possibility of achieving efficacy at lower doses and minimizing side effects.
Collapse
Affiliation(s)
| | | | - Yongmei Zhang
- Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
| | - Candice D. Fike
- Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
10
|
Fike CD, Aschner JL. Pharmacotherapy for Pulmonary Hypertension in Infants with Bronchopulmonary Dysplasia: Past, Present, and Future. Pharmaceuticals (Basel) 2023; 16:503. [PMID: 37111262 PMCID: PMC10141152 DOI: 10.3390/ph16040503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023] Open
Abstract
Approximately 8-42% of premature infants with chronic lung disease of prematurity, bronchopulmonary dysplasia (BPD), develop pulmonary hypertension (PH). Infants with BPD-PH carry alarmingly high mortality rates of up to 47%. Effective PH-targeted pharmacotherapies are desperately needed for these infants. Although many PH-targeted pharmacotherapies are commonly used to treat BPD-PH, all current use is off-label. Moreover, all current recommendations for the use of any PH-targeted therapy in infants with BPD-PH are based on expert opinion and consensus statements. Randomized Control Trials (RCTs) are needed to determine the efficacy of PH-targeted treatments in premature infants with or at risk of BPD-PH. Prior to performing efficacy RCTs, studies need to be conducted to obtain pharmacokinetic, pharmacodynamic, and safety data for any pharmacotherapy used in this understudied and fragile patient population. This review will discuss current and needed treatment strategies, identify knowledge deficits, and delineate both challenges to be overcome and approaches to be taken to develop effective PH-targeted pharmacotherapies that will improve outcomes for premature infants with or at risk of developing BPD-PH.
Collapse
Affiliation(s)
- Candice D. Fike
- Department of Pediatrics, University of Utah Health, Salt Lake City, UT 84108, USA
| | - Judy L. Aschner
- Department of Pediatrics, Joseph M. Sanzari Children’s Hospital at Hackensack University Medical Center, Hackensack, NJ 07601, USA
- Department of Pediatrics, Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| |
Collapse
|
11
|
Asgary MR, Mirghazanfari SM, Hazrati E, Hadi V, Mehri Ardestani M, Bani Yaghoobi F, Hadi S. The Effect of L-Citrulline Supplementation on Outcomes of Critically Ill Patients under Mechanical Ventilation; a Double-Blind Randomized Controlled Trial. ARCHIVES OF ACADEMIC EMERGENCY MEDICINE 2023; 11:e11. [PMID: 36620736 PMCID: PMC9807954 DOI: 10.22037/aaem.v11i1.1774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Introduction Effective parenteral and enteral amino acid replacement is crucial for critically ill patients with altered amino acid metabolism. This study aimed to assess the effects of l-citrulline supplementation on the clinical and laboratory outcomes in critically patients. Methods This was a double-blind placebo-controlled randomized clinical trial. 82 critically ill patients who were expected to receive mechanical ventilation for more than 72 hours were selected. The patients were assigned to either a placebo or an intervention group. The patients in the placebo group received 10 gr of microcrystalline cellulose and the ones in the intervention group were given l-citrulline daily for 7 days. Serum levels of fasting blood sugar (FBS), lipid profile, hepatic enzymes, serum electrolytes, urea nitrogen, creatinine, and C-reactive protein (CRP) were evaluated before and after the intervention. Duration of invasive ventilation, intensive care unit (ICU) length of stay, ventilator-free days, and 28-day mortality rate were recorded and compared between groups. Results Eighty-two patients completed the trial. No statistically significant differences were observed between the two groups in terms of age (p = 0.46), sex (p = 0.49), body mass index (BMI) (p = 0.41), Sequential Organ Failure Assessment (SOFA) Score (p = 0.08), Clinical Pulmonary Infection Score (CPIS) score (p = 0.76), Acute Physiology and Chronic Health Evaluation (APACHE II) score (p = 0.58), risk factors (p = 0.13), ICU stay before randomization (p = 0.32), and reason of admission (p = 0.50) before the intervention. Citrulline group had a notable reduction in FBS (p = 0.04), total cholesterol (TC) (p = 0.02), low density lipoprotein (LDL-C) (p <0.001) and high-sensitivity CRP (hs-CRP) (p <0.001). Also, a significant increase in lactate dehydrogenase (LDH) concentration (p <0.001) was observed in the intervention group at the end of the trial. Total duration of invasive ventilation and the mean SOFA score on 7th day were significantly lower in the citrulline group compared to the control group. Moreover, a significant increase in days alive and ventilator-free days within 28 days after admission was found in the citrulline group at the end of the trial. Also, there were no significant differences between the groups in terms of mortality rate during intervention, serious adverse events, endotracheal intubation, the use of tracheotomy or non-invasive ventilation after extubation, length of ICU stay, ICU-free days at 28 days, and CPIS and APACHE II scores. For mortality, in the citrulline group, there was two deaths compared to eight deaths in the control group. This resulted in an absolute risk reduction (ARR) of 14.05% (95% CI: 0.39-27.71%) and a number needed to treat (NNT) of 7.1 (95% CI: 3.6-29.5), regarding mortality. Conclusions The results of the present study demonstrated the probable positive effects of citrulline supplementation on lipid profile, hs-CRP levels, duration of invasive ventilation, and SOFA score. Also, l-citrulline consumption may increase the probability of survival without mechanical ventilation.
Collapse
Affiliation(s)
- Mohammad Reza Asgary
- Department of Health, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Sayid Mahdi Mirghazanfari
- Department of Physiology and Iranian Medicine, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ebrahim Hazrati
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Vahid Hadi
- Department of Health, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mojgan Mehri Ardestani
- Department of Persian Medicine, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Faeze Bani Yaghoobi
- Instructor, Department of Military Nursing, Faculty of Nursing, AJA University of Medical sciences, Tehran, Iran
| | - Saeid Hadi
- Department of Health, School of Medicine, AJA University of Medical Sciences, Tehran, Iran.,Corresponding author: Saeid Hadi; Department of Health, Aja University of Medical Sciences, Fatemi Street, Tehran, Iran. P. O. Box: 1416643931 Tel: + 98/218/895 556, Fax: + 98/218/8984 861 ORCID: 0000-0003-2770-7084
| |
Collapse
|
12
|
Mohammadi A, Higazy R, Gauda EB. PGC-1α activity and mitochondrial dysfunction in preterm infants. Front Physiol 2022; 13:997619. [PMID: 36225305 PMCID: PMC9548560 DOI: 10.3389/fphys.2022.997619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
Extremely low gestational age neonates (ELGANs) are born in a relatively hyperoxic environment with weak antioxidant defenses, placing them at high risk for mitochondrial dysfunction affecting multiple organ systems including the nervous, respiratory, ocular, and gastrointestinal systems. The brain and lungs are highly affected by mitochondrial dysfunction and dysregulation in the neonate, causing white matter injury (WMI) and bronchopulmonary dysplasia (BPD), respectively. Adequate mitochondrial function is important in providing sufficient energy for organ development as it relates to alveolarization and axonal myelination and decreasing oxidative stress via reactive oxygen species (ROS) and reactive nitrogen species (RNS) detoxification. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) is a master regulator of mitochondrial biogenesis and function. Since mitochondrial dysfunction is at the root of WMI and BPD pathobiology, exploring therapies that can regulate PGC-1α activity may be beneficial. This review article describes several promising therapeutic agents that can mitigate mitochondrial dysfunction through direct and indirect activation and upregulation of the PGC-1α pathway. Metformin, resveratrol, omega 3 fatty acids, montelukast, L-citrulline, and adiponectin are promising candidates that require further pre-clinical and clinical studies to understand their efficacy in decreasing the burden of disease from WMI and BPD in preterm infants.
Collapse
Affiliation(s)
- Atefeh Mohammadi
- The Hospital for Sick Children, Division of Neonatology, Department of Pediatrics and Translational Medicine Program, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Randa Higazy
- The Hospital for Sick Children, Division of Neonatology, Department of Pediatrics and Translational Medicine Program, Toronto, ON, Canada
| | - Estelle B. Gauda
- The Hospital for Sick Children, Division of Neonatology, Department of Pediatrics and Translational Medicine Program, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Ye C, Wu J, Reiss JD, Sinclair TJ, Stevenson DK, Shaw GM, Chace DH, Clark RH, Prince LS, Ling XB, Sylvester KG. Progressive Metabolic Abnormalities Associated with the Development of Neonatal Bronchopulmonary Dysplasia. Nutrients 2022; 14:nu14173547. [PMID: 36079804 PMCID: PMC9459725 DOI: 10.3390/nu14173547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Objective: To assess the longitudinal metabolic patterns during the evolution of bronchopulmonary dysplasia (BPD) development. Methods: A case-control dataset of preterm infants (<32-week gestation) was obtained from a multicenter database, including 355 BPD cases and 395 controls. A total of 72 amino acid (AA) and acylcarnitine (AC) variables, along with infants’ calorie intake and growth outcomes, were measured on day of life 1, 7, 28, and 42. Logistic regression, clustering methods, and random forest statistical modeling were utilized to identify metabolic variables significantly associated with BPD development and to investigate their longitudinal patterns that are associated with BPD development. Results: A panel of 27 metabolic variables were observed to be longitudinally associated with BPD development. The involved metabolites increased from 1 predominant different AC by day 7 to 19 associated AA and AC compounds by day 28 and 16 metabolic features by day 42. Citrulline, alanine, glutamate, tyrosine, propionylcarnitine, free carnitine, acetylcarnitine, hydroxybutyrylcarnitine, and most median-chain ACs (C5:C10) were the most associated metabolites down-regulated in BPD babies over the early days of life, whereas phenylalanine, methionine, and hydroxypalmitoylcarnitine were observed to be up-regulated in BPD babies. Most calorie intake and growth outcomes revealed similar longitudinal patterns between BPD cases and controls over the first 6 weeks of life, after gestational adjustment. When combining with birth weight, the derived metabolic-based discriminative model observed some differences between those with and without BPD development, with c-statistics of 0.869 and 0.841 at day 7 and 28 of life on the test data. Conclusions: The metabolic panel we describe identified some metabolic differences in the blood associated with BPD pathogenesis. Further work is needed to determine whether these compounds could facilitate the monitoring and/or investigation of early-life metabolic status in the lung and other tissues for the prevention and management of BPD.
Collapse
Affiliation(s)
- Chengyin Ye
- Department of Health Management, School of Public Health, Hangzhou Normal University, Hangzhou 311100, China
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Jinghua Wu
- Department of Health Management, School of Public Health, Hangzhou Normal University, Hangzhou 311100, China
| | - Jonathan D. Reiss
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94304, USA
- Stanford Metabolic Health Center, Stanford Children’s Hospital, Stanford, CA 94304, USA
| | - Tiffany J. Sinclair
- Department of Surgery, Division of Pediatric Surgery, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - David K. Stevenson
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94304, USA
- Stanford Metabolic Health Center, Stanford Children’s Hospital, Stanford, CA 94304, USA
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94304, USA
| | | | - Reese H. Clark
- Pediatrix-Obstetrix Center for Research, Education and Quality, Sunrise, FL 33323, USA
| | - Lawrence S. Prince
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Xuefeng Bruce Ling
- Department of Surgery, Division of Pediatric Surgery, Stanford University School of Medicine, Stanford, CA 94304, USA
- Clinical and Translational Research Program, Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital, Palo Alto, CA 94304, USA
- Correspondence: (X.B.L.); (K.G.S.); Tel.: +1-650-723-6439 (K.G.S.); Fax: +1-650-725-5577 (K.G.S.)
| | - Karl G. Sylvester
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94304, USA
- Stanford Metabolic Health Center, Stanford Children’s Hospital, Stanford, CA 94304, USA
- Department of Surgery, Division of Pediatric Surgery, Stanford University School of Medicine, Stanford, CA 94304, USA
- Correspondence: (X.B.L.); (K.G.S.); Tel.: +1-650-723-6439 (K.G.S.); Fax: +1-650-725-5577 (K.G.S.)
| |
Collapse
|
14
|
Yu T, Park YM, Wang L, Deuster PA. L-citrulline prevents heat-induced mitochondrial dysfunction and cell injury through nitric oxide-mediated Drp1 inhibition in mouse C2C12 myoblasts. Br J Nutr 2022; 129:1-24. [PMID: 35791786 DOI: 10.1017/s0007114522001982] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Severe heat exposure causes mitochondrial fragmentation and dysfunction, which contribute to the pathogenesis of heat-related illness. L-citrulline is a naturally occurring amino acid and has been suggested to influence heat shock responses. This study aimed to test whether L-citrulline supplementation would preserve mitochondrial integrity and attenuate heat-induced skeletal muscle injury, and elucidate the underlying mechanisms. At 37°C, L-citrulline (2 mM) increased mitochondrial elongation in mouse C2C12 myoblasts, a process associated with a reduction in mitochondrial fission protein Drp1 levels. Mechanistic studies revealed that L-citrulline increased cellular nitric oxide (NO) levels, but not S-nitrosylation of Drp1. L-citrulline caused a decrease in phosphorylation of Drp1 at Ser 616 and an increase in phosphorylation of Drp1 at Ser 637, which resulted in a reduced mitochondrial localization of Drp1. L-NAME, a non-selective NO synthase inhibitor, abolished the increase in L-citrulline-induced NO levels and inhibited Drp1 phosphorylation changes and mitochondrial elongation, which indicates involvement of a NO-dependent pathway. Under 43°C heat stress conditions, L-citrulline prevented translocation of Drp1 to mitochondria, mitochondrial fragmentation and decreased membrane potential. Finally, L-citrulline pretreatment inhibited heat-induced reactive oxygen species (ROS) overproduction, caspase 3/7 activation, apoptotic cell death, and improved cell viability. NO inhibitor L-NAME abolished all the above protective effects of L-citrulline under heat stress. Our results suggest that L-citrulline prevents heat-induced mitochondrial dysfunction and cell injury through NO-mediated Drp1 inhibition in C2C12 myoblasts. L-citrulline may be an effective treatment for heat-related illnesses and other mitochondrial diseases.
Collapse
Affiliation(s)
- Tianzheng Yu
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Yu Min Park
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Li Wang
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Patricia A Deuster
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
15
|
Omar SA, Abdul-Hafez A, Ibrahim S, Pillai N, Abdulmageed M, Thiruvenkataramani RP, Mohamed T, Madhukar BV, Uhal BD. Stem-Cell Therapy for Bronchopulmonary Dysplasia (BPD) in Newborns. Cells 2022; 11:cells11081275. [PMID: 35455954 PMCID: PMC9025385 DOI: 10.3390/cells11081275] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Premature newborns are at a higher risk for the development of respiratory distress syndrome (RDS), acute lung injury (ALI) associated with lung inflammation, disruption of alveolar structure, impaired alveolar growth, lung fibrosis, impaired lung angiogenesis, and development of bronchopulmonary dysplasia (BPD) with severe long-term developmental adverse effects. The current therapy for BPD is limited to supportive care including high-oxygen therapy and pharmacotherapy. Recognizing more feasible treatment options to improve lung health and reduce complications associated with BPD is essential for improving the overall quality of life of premature infants. There is a reduction in the resident stem cells in lungs of premature infants with BPD, which strongly suggests a critical role of stem cells in BPD pathogenesis; this warrants the exploration of the potential therapeutic use of stem-cell therapy. Stem-cell-based therapies have shown promise for the treatment of many pathological conditions including acute lung injury and BPD. Mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (EVs) including exosomes are promising and effective therapeutic modalities for the treatment of BPD. Treatment with MSCs and EVs may help to reduce lung inflammation, improve pulmonary architecture, attenuate pulmonary fibrosis, and increase the survival rate.
Collapse
Affiliation(s)
- Said A. Omar
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
- Regional Neonatal Intensive Care Unit, Sparrow Health System, Lansing, MI 48912, USA
- Correspondence: ; Tel.: +1-517-364-2948
| | - Amal Abdul-Hafez
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
| | - Sherif Ibrahim
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
| | - Natasha Pillai
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
| | - Mohammed Abdulmageed
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
- Regional Neonatal Intensive Care Unit, Sparrow Health System, Lansing, MI 48912, USA
| | - Ranga Prasanth Thiruvenkataramani
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
- Regional Neonatal Intensive Care Unit, Sparrow Health System, Lansing, MI 48912, USA
| | - Tarek Mohamed
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
- Regional Neonatal Intensive Care Unit, Sparrow Health System, Lansing, MI 48912, USA
| | - Burra V. Madhukar
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (S.I.); (N.P.); (M.A.); (R.P.T.); (T.M.); (B.V.M.)
| | - Bruce D. Uhal
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
16
|
Sakaria RP, Dhanireddy R. Pharmacotherapy in Bronchopulmonary Dysplasia: What Is the Evidence? Front Pediatr 2022; 10:820259. [PMID: 35356441 PMCID: PMC8959440 DOI: 10.3389/fped.2022.820259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Bronchopulmonary Dysplasia (BPD) is a multifactorial disease affecting over 35% of extremely preterm infants born each year. Despite the advances made in understanding the pathogenesis of this disease over the last five decades, BPD remains one of the major causes of morbidity and mortality in this population, and the incidence of the disease increases with decreasing gestational age. As inflammation is one of the key drivers in the pathogenesis, it has been targeted by majority of pharmacological and non-pharmacological methods to prevent BPD. Most extremely premature infants receive a myriad of medications during their stay in the neonatal intensive care unit in an effort to prevent or manage BPD, with corticosteroids, caffeine, and diuretics being the most commonly used medications. However, there is no consensus regarding their use and benefits in this population. This review summarizes the available literature regarding these medications and aims to provide neonatologists and neonatal providers with evidence-based recommendations.
Collapse
Affiliation(s)
- Rishika P. Sakaria
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ramasubbareddy Dhanireddy
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
17
|
Wang L, Zhong WH, Liu DY, Shen HQ, He ZJ. Metabolic analysis of infants with bronchopulmonary dysplasia under early nutrition therapy: An observational cohort study. Exp Biol Med (Maywood) 2022; 247:470-479. [PMID: 34894806 PMCID: PMC8943329 DOI: 10.1177/15353702211060513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/24/2021] [Indexed: 11/15/2022] Open
Abstract
To assess the amino acid and fatty acid metabolite patterns between infants with and without bronchopulmonary dysplasia in different nutritional stages after birth and identify metabolic indicators of bronchopulmonary dysplasia. This was an observational cohort of preterm infants born at a gestational age ≤32 + 6 weeks and with a body weight ≤2000 g. Amino acid and carnitine profiles were measured in dried blood spots (DBSs) during the early nutrition transitional phase using tandem mass spectrometry. Bronchopulmonary dysplasia was defined as oxygen dependence at 36 weeks of postmenstrual age or 28 days after birth. Metabolomic analysis was employed to define metabolites with significant differences, map significant metabolites into pathways, and identify metabolic indicators of bronchopulmonary dysplasia. We evaluated 45 neonates with and 40 without bronchopulmonary dysplasia. Four amino acids and three carnitines showed differences between the groups. Three carnitines (C0, C2, and C6:1) were high in the bronchopulmonary dysplasia group mostly; conversely, all four amino acids (threonine, arginine, methionine, and glutamine (Gln)) were low in the bronchopulmonary dysplasia group. Pathway analysis of these metabolites revealed two pathways with significant changes (p < 0.05). ROC analysis showed Gln/C6:1 at total parenteral nutrition phase had both 80% sensitivity and specificity for predicting the development of bronchopulmonary dysplasia, with an area under the curve of 0.81 (95% confidence interval 0.71-0.89). Amino acid and fatty acid metabolite profiles changed in infants with bronchopulmonary dysplasia after birth during the nutrition transitional period, suggesting that metabolic dysregulation may participate in the development of bronchopulmonary dysplasia. Our findings demonstrate that metabolic indicators are promising for forecasting the occurrence of bronchopulmonary dysplasia among preterm neonates.
Collapse
Affiliation(s)
- Li Wang
- Department of Neonatology, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China
| | - Wen Hua Zhong
- Department of Neonatology, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China
- Department of Neonatology, Jiaxing Maternity and Child Health Care Hospital, Jiaxing 314001, China
| | - Dan Yang Liu
- Department of Neonatology, Jingan District Zhabei Central Hospital, Shanghai 200070, China
| | - Hai Qing Shen
- Department of Neonatology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai 200030, China *These authors have contributed equally to this work
| | - Zhen Juan He
- Department of Neonatology, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
18
|
Leibel SL, Tseu I, Zhou A, Hodges A, Yin J, Bilodeau C, Goltsis O, Post M. Metabolomic profiling of human pluripotent stem cell differentiation into lung progenitors. iScience 2022; 25:103797. [PMID: 35198866 PMCID: PMC8850758 DOI: 10.1016/j.isci.2022.103797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/02/2021] [Accepted: 01/17/2022] [Indexed: 11/29/2022] Open
Abstract
Metabolism is vital to cellular function and tissue homeostasis during human lung development. In utero, embryonic pluripotent stem cells undergo endodermal differentiation toward a lung progenitor cell fate that can be mimicked in vitro using induced human pluripotent stem cells (hiPSCs) to study genetic mutations. To identify differences between wild-type and surfactant protein B (SFTPB)-deficient cell lines during endoderm specification toward lung, we used an untargeted metabolomics approach to evaluate the developmental changes in metabolites. We found that the metabolites most enriched during the differentiation from pluripotent stem cell to lung progenitor cell, regardless of cell line, were sphingomyelins and phosphatidylcholines, two important lipid classes in lung development. The SFTPB mutation had no metabolic impact on early endodermal lung development. The identified metabolite signatures during lung progenitor cell differentiation may be utilized as biomarkers for normal embryonic lung development.
Collapse
Affiliation(s)
- Sandra L Leibel
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92037, USA.,Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Irene Tseu
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Anson Zhou
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Andrew Hodges
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jun Yin
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Claudia Bilodeau
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Olivia Goltsis
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Martin Post
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| |
Collapse
|
19
|
Oxygen Toxicity to the Immature Lung-Part I: Pathomechanistic Understanding and Preclinical Perspectives. Int J Mol Sci 2021; 22:ijms222011006. [PMID: 34681665 PMCID: PMC8540649 DOI: 10.3390/ijms222011006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 01/13/2023] Open
Abstract
In utero, the fetus and its lungs develop in a hypoxic environment, where HIF-1α and VEGFA signaling constitute major determinants of further development. Disruption of this homeostasis after preterm delivery and extrauterine exposure to high fractions of oxygen are among the key events leading to bronchopulmonary dysplasia (BPD). Reactive oxygen species (ROS) production constitutes the initial driver of pulmonary inflammation and cell death, altered gene expression, and vasoconstriction, leading to the distortion of further lung development. From preclinical studies mainly performed on rodents over the past two decades, the deleterious effects of oxygen toxicity and the injurious insults and downstream cascades arising from ROS production are well recognized. This article provides a concise overview of disease drivers and different therapeutic approaches that have been successfully tested within experimental models. Despite current studies, clinical researchers are still faced with an unmet clinical need, and many of these strategies have not proven to be equally effective in clinical trials. In light of this challenge, adapting experimental models to the complexity of the clinical situation and pursuing new directions constitute appropriate actions to overcome this dilemma. Our review intends to stimulate research activities towards the understanding of an important issue of immature lung injury.
Collapse
|
20
|
Yue L, Lu X, Dennery PA, Yao H. Metabolic dysregulation in bronchopulmonary dysplasia: Implications for identification of biomarkers and therapeutic approaches. Redox Biol 2021; 48:102104. [PMID: 34417157 PMCID: PMC8710987 DOI: 10.1016/j.redox.2021.102104] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/03/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common chronic lung disease in premature infants. Accumulating evidence shows that dysregulated metabolism of glucose, lipids and amino acids are observed in premature infants. Animal and cell studies demonstrate that abnormal metabolism of these substrates results in apoptosis, inflammation, reduced migration, abnormal proliferation or senescence in response to hyperoxic exposure, and that rectifying metabolic dysfunction attenuates neonatal hyperoxia-induced alveolar simplification and vascular dysgenesis in the lung. BPD is often associated with several comorbidities, including pulmonary hypertension and neurodevelopmental abnormalities, which significantly increase the morbidity and mortality of this disease. Here, we discuss recent progress on dysregulated metabolism of glucose, lipids and amino acids in premature infants with BPD and in related in vivo and in vitro models. These findings suggest that metabolic dysregulation may serve as a biomarker of BPD and plays important roles in the pathogenesis of this disease. We also highlight that targeting metabolic pathways could be employed in the prevention and treatment of BPD.
Collapse
Affiliation(s)
- Li Yue
- Department of Orthopedics, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Xuexin Lu
- Department of Pediatrics, Ascension St. John Hospital, Detroit, MI, USA
| | - Phyllis A Dennery
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA; Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA.
| |
Collapse
|
21
|
Orzabal MR, Naik VD, Lee J, Wu G, Ramadoss J. Impact of gestational electronic cigarette vaping on amino acid signature profile in the pregnant mother and the fetus. Metabol Open 2021; 11:100107. [PMID: 34355157 PMCID: PMC8319793 DOI: 10.1016/j.metop.2021.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/10/2021] [Accepted: 07/11/2021] [Indexed: 11/25/2022] Open
Abstract
Background Electronic cigarettes (e-cigs) are a form of tobacco product that has become increasingly popular over the past decade. Despite the known health consequences of tobacco product exposure during pregnancy, a substantial number of daily smokers will continue to smoke during pregnancy. Our current knowledge on the effects of e-cig aerosol exposure during pregnancy is limited to a small number of animal studies, which have identified several e-cig aerosol-induced disruptions to the physiology of normal development. Methods To further assess the impact of prenatal e-cig aerosol exposure on maternal and fetal health, we examined the amino acid signature profiles in maternal and fetal plasma, as well as in the fetal lungs, a sensitive target organ for prenatal tobacco product exposure. Pregnant Sprague Dawley rats were randomly assigned to one of three groups and were exposed to either e-cig aerosols containing nicotine, e-cig aerosols without nicotine, or room air. Dams were exposed utilizing a state-of-the-art custom engineered e-cig vaping system that is compatible with commercially available e-cig atomizers and enables a translational inhalation delivery method comparable to human vaping. Results We determined that gestational exposure to e-cig aerosols results in significant alterations to the amino acid profile in the maternal and fetal compartments, including the fetal lungs. The data shows a targeted disruption to the nitric oxide pathway, branched-chain amino acid metabolism, fetal protein synthesis, and urea cycle. Conclusion The data presented herein provides additional support that gestational e-cig aerosol exposure can impact crucial biological processes and exemplifies the need for extensive research on exposure to e-cig aerosols. First report of e-cig induced alterations to maternal/fetal amino acid profile. Translational vaping paradigm utilizing custom engineered vaping system. Analysis of amino acids show gestational e-cig exposure has significant effects. Fetal lungs may be a sensitive target to gestational e-cig aerosol exposure. Marker of dysregulation in branched-chain amino acid metabolism and urea cycle.
Collapse
Affiliation(s)
- Marcus R Orzabal
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Vishal D Naik
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Jehoon Lee
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
| | - Jayanth Ramadoss
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
22
|
Douglass MS, Zhang Y, Kaplowitz MR, Fike CD. L-citrulline increases arginase II protein levels and arginase activity in hypoxic piglet pulmonary artery endothelial cells. Pulm Circ 2021; 11:20458940211006289. [PMID: 33948161 PMCID: PMC8053766 DOI: 10.1177/20458940211006289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/08/2021] [Indexed: 11/15/2022] Open
Abstract
The L-arginine precursor, L-citrulline, re-couples endothelial nitric oxide synthase, increases nitric oxide production, and ameliorates chronic hypoxia-induced pulmonary hypertension in newborn pigs. L-arginine can induce arginase, which, in turn, may diminish nitric oxide production. Our major purpose was to determine if L-citrulline increases arginase activity in hypoxic piglet pulmonary arterial endothelial cells, and if so, concomitantly impacts the ability to increase endothelial nitric oxide synthase re-coupling and nitric oxide production. Piglet pulmonary arterial endothelial cells were cultured in hypoxic conditions with L-citrulline (0-3 mM) and/or the arginase inhibitor S-(2-boronoethyl)-L-cysteine. We measured arginase activity and nitric oxide production. We assessed endothelial nitric oxide synthase coupling by measuring endothelial nitric oxide synthase dimers and monomers. L-citrulline concentrations ≥0.5 mM increased arginase activity in hypoxic pulmonary arterial endothelial cells. L-citrulline concentrations ≥0.1 mM increased nitric oxide production and concentrations ≥0.5 mM elevated endothelial nitric oxide synthase dimer-to-monomer ratios. Co-treatment with L-citrulline and S-(2-boronoethyl)-L-cysteine elevated endothelial nitric oxide synthase dimer-to-monomer ratios more than sole treatment. Despite inducing arginase, L-citrulline increased nitric oxide production and endothelial nitric oxide synthase coupling in hypoxic piglet pulmonary arterial endothelial cells. However, these dose-dependent findings raise the possibility that there could be L-citrulline concentrations that elevate arginase to levels that negate improvements in endothelial nitric oxide synthase dysfunction. Moreover, our findings suggest that combining an arginase inhibitor with L-citrulline merits evaluation as a treatment for chronic hypoxia-induced pulmonary hypertension.
Collapse
Affiliation(s)
| | - Yongmei Zhang
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Mark R Kaplowitz
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Candice D Fike
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
23
|
Scott JA, Maarsingh H, Holguin F, Grasemann H. Arginine Therapy for Lung Diseases. Front Pharmacol 2021; 12:627503. [PMID: 33833679 PMCID: PMC8022134 DOI: 10.3389/fphar.2021.627503] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/04/2021] [Indexed: 12/15/2022] Open
Abstract
Nitric oxide (NO) is produced by a family of isoenzymes, nitric oxide synthases (NOSs), which all utilize L-arginine as substrate. The production of NO in the lung and airways can play a number of roles during lung development, regulates airway and vascular smooth muscle tone, and is involved in inflammatory processes and host defense. Altered L-arginine/NO homeostasis, due to the accumulation of endogenous NOS inhibitors and competition for substrate with the arginase enzymes, has been found to play a role in various conditions affecting the lung and in pulmonary diseases, such as asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), pulmonary hypertension, and bronchopulmonary dysplasia. Different therapeutic strategies to increase L-arginine levels or bioavailability are currently being explored in pre-clinical and clinical studies. These include supplementation of L-arginine or L-citrulline and inhibition of arginase.
Collapse
Affiliation(s)
- Jeremy A Scott
- Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Harm Maarsingh
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL, United States
| | - Fernando Holguin
- Division of Pulmonary Sciences and Critical Care, University of Colorado, Aurora, CO, United States
| | - Hartmut Grasemann
- Division of Respiratory Medicine, Department of Paediatrics and Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
24
|
McClellan EB, Wang Z, Albertine KH, Kaplowitz MR, Zhang Y, Fike CD. l-Citrulline treatment alters the structure of the pulmonary circulation in hypoxic newborn pigs. Pediatr Pulmonol 2020; 55:2762-2772. [PMID: 32662946 PMCID: PMC7719608 DOI: 10.1002/ppul.24960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/12/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND Dysregulated nitric oxide (NO) signaling contributes to chronic hypoxia (CH)-induced pulmonary hypertension (PH). NO signaling is improved and pulmonary vascular resistance (PVR) is reduced in CH piglets treated with the l-arginine-NO precursor, l-citrulline. We hypothesized that l-citrulline might cause structural changes in the pulmonary circulation that would contribute to the reduction in PVR and that the l-citrulline-induced structural changes would be accompanied by alterations in vascular endothelial growth factor (VEGF) signaling. METHODS We evaluated small pulmonary arterial (PA) wall thickness, lung capillary density, and protein abundances of VEGF, VEGFR2, and phospho (p)-VEGFR2 in PA and peripheral lung samples of piglets raised in the lab in CH (10%-12% O2 ) from the day of life (DOL) 2 until DOL 11 to 12 or raised in room air (normoxia) by the vendor and studied on arrival to the lab on DOL 11 to 12. Some CH piglets were treated with oral l-citrulline (1-1.5 g/kg/d) starting on the third day of hypoxia. RESULTS PA wall thickness was 32% less and lung capillary formation was nearly doubled in l-citrulline treated than untreated CH piglets. Both of these l-citrulline-induced structural changes in the pulmonary circulation were accompanied by altered amounts of VEGF protein but not by altered amounts of either VEGFR2 or p-VEGFR2 proteins. CONCLUSIONS Alterations in the structure of the pulmonary circulation in CH piglets by l-citrulline are unlikely to be mediated by overall VEGF signaling. Nonetheless, l-citrulline- induced structural changes should reduce PVR and thereby contribute to the amelioration of CH-induced PH.
Collapse
Affiliation(s)
- Eric B McClellan
- Department of Pediatrics, University of Utah Health, Salt Lake City, Utah
| | - Zhengming Wang
- Department of Pediatrics, University of Utah Health, Salt Lake City, Utah
| | - Kurt H Albertine
- Department of Pediatrics, University of Utah Health, Salt Lake City, Utah
| | - Mark R Kaplowitz
- Department of Pediatrics, University of Utah Health, Salt Lake City, Utah
| | - Yongmei Zhang
- Department of Pediatrics, University of Utah Health, Salt Lake City, Utah
| | - Candice D Fike
- Department of Pediatrics, University of Utah Health, Salt Lake City, Utah
| |
Collapse
|
25
|
Stamenkovska M, Thaçi Q, Hadzi‐Petrushev N, Angelovski M, Bogdanov J, Reçica S, Kryeziu I, Gagov H, Mitrokhin V, Kamkin A, Schubert R, Mladenov M, Sopi RB. Curcumin analogs (B2BrBC and C66) supplementation attenuates airway hyperreactivity and promote airway relaxation in neonatal rats exposed to hyperoxia. Physiol Rep 2020; 8:e14555. [PMID: 32812392 PMCID: PMC7435033 DOI: 10.14814/phy2.14555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND This study was undertaken to test the hypothesis that the newly synthesized curcuminoids B2BrBC and C66 supplementation will overcome hyperoxia-induced tracheal hyperreactivity and impairment of relaxation of tracheal smooth muscle (TSM). MATERIALS AND METHODS Rat pups (P5) were exposed to hyperoxia (>95% O2 ) or normoxia for 7 days. At P12, tracheal cylinders were used to study in vitro contractile responses induced by methacholine (10-8 -10-4 M) or relaxation induced by electrical field stimulation (5-60 V) in the presence/absence of B2BrBC or C66, or to study the direct relaxant effects elicited by both analogs. RESULTS Hyperoxia significantly increased contraction and decreased relaxation of TSM compared to normoxia controls. Presence of B2BrBC or C66 normalized both contractile and relaxant responses altered by hyperoxia. Both, curcuminoids directly induced dose-dependent relaxation of preconstricted TSM. Supplementation of hyperoxic animals with B2BrBC or C66, significantly increased catalase activity. Lung TNF-α was significantly increased in hyperoxia-exposed animals. Both curcumin analogs attenuated increases in TNF-α in hyperoxic animals. CONCLUSION We show that B2BrBC and C66 provide protection against adverse contractility and relaxant effect of hyperoxia on TSM, and whole lung inflammation. Both analogs induced direct relaxation of TSM. Through restoration of catalase activity in hyperoxia, we speculate that analogs are protective against hyperoxia-induced tracheal hyperreactivity by augmenting H2 O2 catabolism. Neonatal hyperoxia induces increased tracheal contractility, attenuates tracheal relaxation, diminishes lung antioxidant capacity, and increases lung inflammation, while monocarbonyl CUR analogs were protective of these adverse effects of hyperoxia. Analogs may be promising new therapies for neonatal hyperoxic airway and lung disease.
Collapse
Affiliation(s)
- Mimoza Stamenkovska
- Faculty of Natural Sciences and MathematicsInstitute of Biology“Sts, Cyril and Methodius” UniversitySkopjeMacedonia
| | - Qendrim Thaçi
- Department of Premedical Courses‐BiologyFaculty of MedicineUniversity of PrishtinaSt. Martyrs’ Boulevard n.n.PrishtinaKosovoSerbia
| | - Nikola Hadzi‐Petrushev
- Faculty of Natural Sciences and MathematicsInstitute of Biology“Sts, Cyril and Methodius” UniversitySkopjeMacedonia
| | - Marija Angelovski
- Faculty of Natural Sciences and MathematicsInstitute of Biology“Sts, Cyril and Methodius” UniversitySkopjeMacedonia
| | - Jane Bogdanov
- Faculty of Natural Sciences and MathematicsInstitute of Chemistry“Ss. Cyril and Methodius” UniversitySkopjeMacedonia
| | - Shkëlzen Reçica
- Department of Premedical Courses‐BiologyFaculty of MedicineUniversity of PrishtinaSt. Martyrs’ Boulevard n.n.PrishtinaKosovoSerbia
| | - Islam Kryeziu
- Department of Premedical Courses‐BiologyFaculty of MedicineUniversity of PrishtinaSt. Martyrs’ Boulevard n.n.PrishtinaKosovoSerbia
| | - Hristo Gagov
- Faculty of BiologySofia University St. Kliment OhridskiSofiaBulgaria
| | - Vadim Mitrokhin
- Department of Fundamental and Applied PhysiologyRussian National Research Medical UniversityMoscowRussia
| | - Andre Kamkin
- Department of Fundamental and Applied PhysiologyRussian National Research Medical UniversityMoscowRussia
| | - Rudolf Schubert
- PhysiologyInstitute of Theoretical MedicineMedical FacultyUniversity of AugsburgAugsburgGermany
| | - Mitko Mladenov
- Faculty of Natural Sciences and MathematicsInstitute of Biology“Sts, Cyril and Methodius” UniversitySkopjeMacedonia
| | - Ramadan B. Sopi
- Department of Premedical Courses‐BiologyFaculty of MedicineUniversity of PrishtinaSt. Martyrs’ Boulevard n.n.PrishtinaKosovoSerbia
| |
Collapse
|
26
|
Dikalova A, Aschner JL, Kaplowitz MR, Cunningham G, Summar M, Fike CD. Combined l-citrulline and tetrahydrobiopterin therapy improves NO signaling and ameliorates chronic hypoxia-induced pulmonary hypertension in newborn pigs. Am J Physiol Lung Cell Mol Physiol 2020; 318:L762-L772. [PMID: 32073878 PMCID: PMC7191483 DOI: 10.1152/ajplung.00280.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/05/2020] [Accepted: 02/12/2020] [Indexed: 01/21/2023] Open
Abstract
Newborn pigs with chronic hypoxia-induced pulmonary hypertension (PH) have evidence of endothelial nitric oxide synthase (eNOS) uncoupling. In this model, we showed that therapies that promote eNOS coupling, either tetrahydrobiopterin (BH4), a NOS cofactor, or l-citrulline, a NO-l-arginine precursor, inhibit PH. We wanted to determine whether cotreatment with l-citrulline and a BH4 compound, sapropterin dihydrochloride, improves NO signaling and chronic hypoxia-induced PH more markedly than either alone. Normoxic (control) and hypoxic piglets were studied. Some hypoxic piglets received sole treatment with l-citrulline or BH4, or were cotreated with l-citrulline and BH4, from day 3 through day 10 of hypoxia. Catheters were placed for hemodynamic measurements, and pulmonary arteries were dissected to assess eNOS dimer-to-monomer ratios and NO production. In untreated hypoxic piglets, pulmonary vascular resistance (PVR) was higher and NO production and eNOS dimer-to-monomer ratios were lower than in normoxic piglets. Compared with the untreated hypoxic group, PVR was lower in hypoxic piglets cotreated with l-citrulline and BH4 and in those treated with l-citrulline alone but not for those treated solely with BH4. NO production and eNOS dimer-to-monomer ratios were greater for all three treated hypoxic groups compared with the untreated group. Notably, greater improvements in PVR, eNOS dimer-to-monomer ratios, and NO production were found in hypoxic piglets cotreated with l-citrulline and BH4 than in piglets treated with either alone. Cotreatment with l-citrulline and BH4 more effectively improves NO signaling and inhibits chronic hypoxia-induced PH than either treatment alone. Combination therapies may offer enhanced therapeutic capacity for challenging clinical conditions, such as chronic neonatal PH.
Collapse
Affiliation(s)
- Anna Dikalova
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Judy L Aschner
- Department of Pediatrics, Albert Einstein College of Medicine, New York, New York
- Department of Pediatrics, Hackensack Meridian Health School of Medicine at Seton Hall University, Nutley, New Jersey
| | - Mark R Kaplowitz
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pediatrics, University of Utah Health, Salt Lake City, Utah
| | - Gary Cunningham
- Division of Genetics and Metabolism, Children's National Medical Center, Washington, District of Columbia
| | - Marshall Summar
- Division of Genetics and Metabolism, Children's National Medical Center, Washington, District of Columbia
| | - Candice D Fike
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pediatrics, University of Utah Health, Salt Lake City, Utah
| |
Collapse
|
27
|
Morty RE. Using Experimental Models to Identify Pathogenic Pathways and Putative Disease Management Targets in Bronchopulmonary Dysplasia. Neonatology 2020; 117:233-239. [PMID: 32485712 DOI: 10.1159/000506989] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 11/19/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a common and serious complication of preterm birth. Limited pharmacological and other medical interventions are currently available for the management of severely affected, very preterm infants. BPD can be modelled in preclinical studies using experimental animals, and experimental animal models have been extremely valuable in the development of hallmark clinical management strategies for BPD, including pulmonary surfactant replacement and single-course antenatal corticosteroids. A gradual move away from large animal models of BPD in favor of term-born rodents has facilitated the identification of a multitude of new mechanisms of normal and stunted lung development, but this has also potentially limited the utility of experimental animal models for the identification of pathogenic pathways and putative disease management targets in BPD. Indeed, more recent pharmacological interventions for the management of BPD that have been validated in randomized controlled trials have relied very little on preclinical data generated in experimental animal models. While rodent-based models of BPD have tremendous advantages in terms of the availability of genetic tools, they also have considerable drawbacks, including limited utility for studying breathing mechanics, gas exchange, and pulmonary hemodynamics; and they have a less relevant clinical context where lung prematurity and a background of infection are now rarely present in the pathophysiology under study. There is a pressing need to refine existing models to better recapitulate pathological processes at play in affected infants, in order to better evaluate new candidate pharmacological and other interventions for the management of BPD.
Collapse
Affiliation(s)
- Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany, .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany,
| |
Collapse
|
28
|
Dillard J, Perez M, Chen B. Therapies that enhance pulmonary vascular NO-signaling in the neonate. Nitric Oxide 2019; 95:45-54. [PMID: 31870967 DOI: 10.1016/j.niox.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/25/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
There are several pulmonary hypertensive diseases that affect the neonatal population, including persistent pulmonary hypertension of the newborn (PPHN) and bronchopulmonary dysplasia (BPD)-associated pulmonary hypertension (PH). While the indication for inhaled nitric oxide (iNO) use is for late-preterm and term neonates with PPHN, there is a suboptimal response to this pulmonary vasodilator in ~40% of patients. Additionally, there are no FDA-approved treatments for BPD-associated PH or for preterm infants with PH. Therefore, investigating mechanisms that alter the nitric oxide-signaling pathway has been at the forefront of pulmonary vascular biology research. In this review, we will discuss the various mechanistic pathways that have been targets in neonatal PH, including NO precursors, soluble guanylate cyclase modulators, phosphodiesterase inhibitors and antioxidants. We will review their role in enhancing NO-signaling at the bench, in animal models, as well as highlight their role in the treatment of neonates with PH.
Collapse
Affiliation(s)
- Julie Dillard
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
| | - Marta Perez
- Division of Neonatology, Stanley Manne Children's Research Institute, Ann and Robert H Lurie Children's Hospital, Chicago, IL, USA; Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| | - Bernadette Chen
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
29
|
Krystofova J, Pathipati P, Russ J, Sheldon A, Ferriero D. The Arginase Pathway in Neonatal Brain Hypoxia-Ischemia. Dev Neurosci 2019; 40:437-450. [PMID: 30995639 PMCID: PMC6784534 DOI: 10.1159/000496467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
Brain damage after hypoxia-ischemia (HI) occurs in an age-dependent manner. Neuroprotective strategies assumed to be effective in adults might have deleterious effects in the immature brain. In order to create effective therapies, the complex pathophysiology of HI in the developing brain requires exploring new mechanisms. Critical determinants of neuronal survival after HI are the extent of vascular dysfunction, inflammation, and oxidative stress, followed later by tissue repair. The key enzyme of these processes in the human body is arginase (ARG) that acts via the bioavailability of nitric oxide, and the synthesis of polyamines and proline. ARG is expressed throughout the brain in different cells. However, little is known about the effect of ARG in pathophysiological states of the brain, especially hypoxia-ischemia. Here, we summarize the role of ARG during neurodevelopment as well as in various brain pathologies.
Collapse
Affiliation(s)
- Jana Krystofova
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA,
| | - Praneeti Pathipati
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Jeffrey Russ
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Ann Sheldon
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Donna Ferriero
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
30
|
Kurosawa T, Miyoshi S, Yamazaki S, Nishina T, Mikami T, Oikawa A, Homma S, Nakano H. A murine model of acute lung injury identifies growth factors to promote tissue repair and their biomarkers. Genes Cells 2018; 24:112-125. [PMID: 30474194 DOI: 10.1111/gtc.12659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 11/17/2018] [Accepted: 11/18/2018] [Indexed: 11/30/2022]
Abstract
Type II alveolar epithelial cells (AEC2s) play a crucial role in the regeneration of type I AECs after acute lung injury. The mechanisms underlying the regeneration of AEC2s are not fully understood. To address this issue, here, we investigated a murine model of acute lung injury using mice expressing human Diphtheria Toxin Receptor (DTR) under the control of Lysozyme M promoter (LysM-DTR). DT injection induced the depletion of AEC2s, alveolar macrophages, and bone marrow (BM)-derived myeloid cells in LysM-DTR mice, and the mice died within 6 days after DT injection. Apoptotic AEC2s and bronchiolar epithelial cells appeared at 24 hr, whereas Ki67-positive proliferating cells appeared in the alveoli and bronchioles in the lung of LysM-DTR mice at 72-96 hr after DT injection. Transfer of wild-type BM cells into LysM-DTR mice accelerated the regeneration of AEC2s along with the up-regulation of several growth factors. Moreover, several metabolites were significantly decreased in the sera of LysM-DTR mice compared with WT mice after DT injection, suggesting that these metabolites might be biomarkers to predict AEC2s injury. Together, LysM-DTR mice might be useful to identify growth factors to promote lung repair and the metabolites to predict the severity of lung injury.
Collapse
Affiliation(s)
- Takeyuki Kurosawa
- Department of Biochemistry, Toho University Graduate School of Medicine, Tokyo, Japan.,Department of Respiratory Medicine, Toho University Graduate School of Medicine, Tokyo, Japan.,Department of Respiratory Medicine, Omori Medical Center, Tokyo, Japan
| | - Shion Miyoshi
- Department of Biochemistry, Toho University Graduate School of Medicine, Tokyo, Japan.,Department of Respiratory Medicine, Toho University Graduate School of Medicine, Tokyo, Japan.,Department of Respiratory Medicine, Omori Medical Center, Tokyo, Japan
| | - Soh Yamazaki
- Department of Biochemistry, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Nishina
- Department of Biochemistry, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Tetuo Mikami
- Department of Pathology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Akira Oikawa
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan.,Faculty of Agriculture, Yamagata University, Tsuruoka, Japan
| | - Sakae Homma
- Department of Respiratory Medicine, Toho University Graduate School of Medicine, Tokyo, Japan.,Department of Respiratory Medicine, Omori Medical Center, Tokyo, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University Graduate School of Medicine, Tokyo, Japan.,Host Defense Research Center, Toho University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
31
|
Dedja A, Gucciardi A, Giordano G, Maria Di Gangi I, Porzionato A, Navaglia F, Baraldi E, Grisafi D, Zaramella P. Lipopolysaccharide-induced chorioamnionitis and postnatal lung injury: The beneficial effects of L-citrulline in newborn rats. Exp Lung Res 2018; 44:226-240. [DOI: 10.1080/01902148.2018.1497730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Arben Dedja
- Neonatal Intensive Care Unit, Women’s and Children’s Health Department, University of Padova, Padova, Italy
- Pediatric and Congenital Cardiac Surgery Unit, Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Antonina Gucciardi
- Mass Spectrometry and Metabolomic Laboratory, Department of Women's and Children's Health, University of Padova, Italy
| | - Giuseppe Giordano
- Mass Spectrometry and Metabolomic Laboratory, Department of Women's and Children's Health, University of Padova, Italy
| | - Iole Maria Di Gangi
- Mass Spectrometry and Metabolomic Laboratory, Department of Women's and Children's Health, University of Padova, Italy
| | - Andrea Porzionato
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Filippo Navaglia
- Department of Laboratory Medicine, University-Hospital, Padova, Italy
| | - Eugenio Baraldi
- Neonatal Intensive Care Unit, Women’s and Children’s Health Department, University of Padova, Padova, Italy
| | - Davide Grisafi
- Neonatal Intensive Care Unit, Women’s and Children’s Health Department, University of Padova, Padova, Italy
| | - Patrizia Zaramella
- Neonatal Intensive Care Unit, Women’s and Children’s Health Department, University of Padova, Padova, Italy
| |
Collapse
|
32
|
Lauterbach R, Pawlik D, Lauterbach JP. L-citrulline supplementation in the treatment of pulmonary hypertension associated with bronchopulmonary dysplasia in preterm infant: A case report. SAGE Open Med Case Rep 2018; 6:2050313X18778730. [PMID: 29854406 PMCID: PMC5968659 DOI: 10.1177/2050313x18778730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 05/01/2018] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION the aim of this case report is to present that oral L-citrulline supplementation may attenuate chronic pulmonary hypertension and reduce oxygen requirement in infants with severe bronchopulmonary dysplasia. IMPORTANT CLINICAL FINDINGS a boy, with a birth weight of 700 g, born by cesarean section after 25 weeks of pregnancy complicated with preeclampsia, was admitted to the neonatal intensive care unit. He was ventilatory dependent for the next 3 months with significantly increased oxygen requirements. A severe stage of bronchopulmonary dysplasia, complicated with increased pulmonary vascular resistance, was diagnosed. Treatment with inhaled nitric oxide and oral sildenafil was included in the therapy of chronic pulmonary hypertension. The results of screening echocardiograms and increased plasma brain natriuretic peptide concentrations, suggested right ventricle dysfunction. THE MAIN INTERVENTION at the beginning of the sixth month of hospitalization, oral supplementation of L-citrulline in a single dose of 150 mg/kg/day was introduced and continued for 70 days. During the first 3 weeks after L-citrulline was started, the patient was weaned from mechanical ventilation and he was never intubated again until he was discharged. Plasma brain natriuretic peptide concentrations decreased significantly during the first month of L-citrulline administration and became stable until the termination of L-citrulline supplementation. At discharge, the patient required 22%-25% concentration of oxygen supplemented intermittently, exclusively during feeding. CONCLUSION these results indicate that L-citrulline supplementation may deserve coverage as an additional, potentially beneficial alternative in the prophylaxis or therapy of chronic pulmonary hypertension in newborns.
Collapse
Affiliation(s)
- Ryszard Lauterbach
- Department of Neonatology, Jagiellonian University Medical College, Kraków, Poland
| | - Dorota Pawlik
- Department of Neonatology, Jagiellonian University Medical College, Kraków, Poland
| | | |
Collapse
|
33
|
Starch synthase IIIa and starch branching enzyme IIb-deficient mutant rice line ameliorates pancreatic insulin secretion in rats: screening and evaluating mutant rice lines with antidiabetic functionalities. Br J Nutr 2018. [DOI: 10.1017/s0007114518000314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractDiabetes mellitus is a metabolic disease spreading worldwide that has been reported to worsen the development and progression of other diseases (cancer, vascular diseases and dementia). To establish functional rice lines with anti-postprandial hyperglycaemic effects, we developed mutant rice lines, which lack one or two gene(s) related to starch synthesis, and evaluated their effects. Powder of mutant rice lines or other grains was loaded to rats fasted overnight (oral grain powder loading test). Incremental area under time-concentration curves (iAUC) were calculated with monitored blood glucose levels. Rice lines with anti-postprandial hyperglycaemic effects were separated by cluster analysis with calculated iAUC. A double mutant rice #4019 (starch synthase IIIa (ss3a)/branching enzyme IIb (be2b)), one of the screened mutant rice lines, was fed to Goto-Kakizaki (GK) rats, an animal model for type 2 diabetes, for 5 weeks. Plasma levels of C-peptide, a marker of pancreatic insulin secretion, were measured with ELISA. Forin vitrostudy, a rat pancreatic cell line was cultured with a medium containing rat serum which was sampled from rats fed #4019 diet for 2 d. After 24-h of incubation, an insulin secretion test was performed. Through the oral rice powder loading test, seven rice lines were identified as antidiabetic rice lines. The intake of #4019 diet increased plasma C-peptide levels of GK rats. This result was also observedin vitro.In rat serum added to cell medium, ornithine was significantly increased by the intake of #4019. In conclusion, the mutant rice #4019 promoted pancreatic insulin secretion via elevation of serum ornithine levels.
Collapse
|
34
|
Trittmann JK, Velten M, Heyob KM, Almazroue H, Jin Y, Nelin LD, Rogers LK. Arginase and α-smooth muscle actin induction after hyperoxic exposure in a mouse model of bronchopulmonary dysplasia. Clin Exp Pharmacol Physiol 2018; 45:556-562. [PMID: 29266319 DOI: 10.1111/1440-1681.12909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/30/2017] [Accepted: 12/12/2017] [Indexed: 12/26/2022]
Abstract
The L-arginine/NO pathway is an important regulator of pulmonary hypertension, the leading cause of mortality in patients with the chronic lung disease of prematurity, bronchopulmonary dysplasia. L-arginine can be metabolized by NO synthase (NOS) to form L-citrulline and NO, a potent vasodilator. Alternatively, L-arginine can be metabolized by arginase to form urea and L-ornithine, a precursor to collagen and proline formation important in vascular remodelling. In the current study, we hypothesized that C3H/HeN mice exposed to prolonged hyperoxia would have increased arginase expression and pulmonary vascular wall cell proliferation. C3H/HeN mice were exposed to 14 days of 85% O2 or room air and lung homogenates analyzed by western blot for protein levels of arginase I, arginase II, endothelial NOS (eNOS), ornithine decarboxylase (ODC), ornithine aminotransferase (OAT), and α-smooth muscle actin (α-SMA). Hyperoxia did not change arginase I or eNOS protein levels. However, arginase II protein levels were 15-fold greater after hyperoxia exposure than in lungs exposed to room air. Greater protein levels of ODC and OAT were found in lungs following hyperoxic exposure than in room air animals. α-SMA protein levels were found to be 7-fold greater in the hyperoxia exposed lungs than in room air lungs. In the hyperoxia exposed lungs there was evidence of greater pulmonary vascular wall cell proliferation by α-SMA immunohistochemistry than in room air lungs. Taken together, these data are consistent with a more proliferative vascular phenotype, and may explain the propensity of patients with bronchopulmonary dysplasia to develop pulmonary hypertension.
Collapse
Affiliation(s)
- Jennifer K Trittmann
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Markus Velten
- Department of Anesthesiology and Intensive Care Medicine, Rheinische Friedrich-Wilhelms University, University Medical Center, Bonn, Germany
| | - Kathryn M Heyob
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Hanadi Almazroue
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Yi Jin
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Leif D Nelin
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Lynette K Rogers
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
35
|
Liu C, Chen J, Liu B, Liao WT, Liu J, Xu G, Sun BD, Zhang EL, Gao YQ. Activated corticosterone synthetic pathway is involved in poor responses to re-oxygenation after prolonged hypoxia. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:8414-8423. [PMID: 31966693 PMCID: PMC6965453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/20/2017] [Indexed: 06/10/2023]
Abstract
Diverse response patterns to re-oxygenation lead to various physiological or pathological phenotypes, but now lack of systematic research models in vivo. High-altitude de-acclimatization syndrome (HADAS) describes systematic alterations of re-oxygenation returning to plain after a long living in high altitude. In this study, we aim at employing a comprehensive metabolomics to explore the mechanisms for different reactions to re-oxygenation based on systematic quantitation scoring methods of HADAS model. Plasma samples were collected from 22 subjects when they finished their stay in high altitude for 1 year (5300 m), returning plain for 30th day and 180th day. These participants were divided into HADAS-S or HADAS-R group based on HADAS model on the 30th day after their reaching. Metabolic profiling was performed by ultra-performance liquid chromatography-quadrupole time-of-light mass spectrometry (UPLC-QTOFMS) in conjunction with univariate and multivariate statistical analysis. A total of 20 differential metabolites were identified by the comparison between HADAS-S and HADAS-R group. Pathway analysis suggested that the most potential disturbed pathway is sterol synthesis pathway, especially corticosterone synthetic sub-pathway. These molecules detected in this pathway are detailed that they showed a rapid and significant increasing manner in HADAS-S subjects comparing to HADAS-R group in the process of re-oxygenation. In conclusion, we identified that excessive stress responses to re-oxygenation might contribute to the distinctions between HADAS-S and HADAS-R group. These findings provide novel insights for further understanding of the pathogenesis for metabolic abnormalities in re-oxygenation after prolonged hypoxia.
Collapse
Affiliation(s)
- Chang Liu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing, China
- Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of EducationChongqing, China
- Key Laboratory of High Altitude Medicine, PLAChongqing, China
| | - Jian Chen
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing, China
- Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of EducationChongqing, China
- Key Laboratory of High Altitude Medicine, PLAChongqing, China
| | - Bao Liu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing, China
- Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of EducationChongqing, China
- Key Laboratory of High Altitude Medicine, PLAChongqing, China
| | - Wen-Ting Liao
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing, China
- Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of EducationChongqing, China
- Key Laboratory of High Altitude Medicine, PLAChongqing, China
| | - Jie Liu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing, China
- Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of EducationChongqing, China
- Key Laboratory of High Altitude Medicine, PLAChongqing, China
| | - Gang Xu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing, China
- Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of EducationChongqing, China
- Key Laboratory of High Altitude Medicine, PLAChongqing, China
| | - Bing-Da Sun
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing, China
- Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of EducationChongqing, China
- Key Laboratory of High Altitude Medicine, PLAChongqing, China
| | - Er-Long Zhang
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing, China
- Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of EducationChongqing, China
- Key Laboratory of High Altitude Medicine, PLAChongqing, China
| | - Yu-Qi Gao
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical UniversityChongqing, China
- Key Laboratory of High Altitude Environmental Medicine, Third Military Medical University, Ministry of EducationChongqing, China
- Key Laboratory of High Altitude Medicine, PLAChongqing, China
| |
Collapse
|
36
|
Ma L, Zhou P, Neu J, Lin HC. Potential Nutrients for Preventing or Treating Bronchopulmonary Dysplasia. Paediatr Respir Rev 2017; 22:83-88. [PMID: 27843119 DOI: 10.1016/j.prrv.2016.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/01/2016] [Accepted: 08/29/2016] [Indexed: 10/21/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a frequent complication occurring in extremely preterm infants. Despite recent advances in newborn medicine, the incidence of BPD does not appear to have changed markedly, and specific treatments and prevention strategies are still lacking. Nutrition plays an important role in normal lung development and maturation. Malnutrition may delay somatic growth and new alveoli development, thus aggravating pulmonary injury involved in the pathogenesis of BPD. However, few nutrients have been investigated for their potential to mitigate the pathogenesis of BPD. In this article, we reviewed the recent progress in research on potential nutrients useful for the prevention or treatment of BPD, including glutamine, cysteine and N-acetylcysteine, L-arginine and L-citrulline, long chain polyunsaturated fatty acids (LCPUFAs), inositol, selenium, and some antioxidant vitamins including vitamin A. Current evidence shows that vitamin A and LCPUFA can prevent BPD, and that L-citrulline might provide a new method to treat chronic pulmonary hypertension associated with BPD in premature infants. The effects of other nutrients on BPD prevention need to be further studied.
Collapse
Affiliation(s)
- Liya Ma
- Department of Neonatology, Shenzhen Baoan Maternal and Child Health Hospital, China.
| | - Ping Zhou
- Department of Neonatology, Shenzhen Baoan Maternal and Child Health Hospital, China.
| | - Josef Neu
- Department of Pediatrics, University of Florida, U.S.A..
| | - Hung-Chih Lin
- Department of Pediatrics, Children's Hospital and School of Chinese Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
37
|
Abstract
Hyperoxic acute lung injury (HALI) refers to the damage to the lungs secondary to exposure to elevated oxygen partial pressure. HALI has been a concern in clinical practice with the development of deep diving and the use of normobaric as well as hyperbaric oxygen in clinical practice. Although the pathogenesis of HALI has been extensively studied, the findings are still controversial. Nitric oxide (NO) is an intercellular messenger and has been considered as a signaling molecule involved in many physiological and pathological processes. Although the role of NO in the occurrence and development of pulmonary diseases including HALI has been extensively studied, the findings on the role of NO in HALI are conflicting. Moreover, inhalation of NO has been approved as a therapeutic strategy for several diseases. In this paper, we briefly summarize the role of NO in the pathogenesis of HALI and the therapeutic potential of inhaled NO in HALI.
Collapse
Affiliation(s)
- Wen-Wu Liu
- Department of Diving and Hyperbaric Medicine, Secondary Military Medical University, Shanghai, China
| | - Cui-Hong Han
- Department of Pathology, the First Hospital of Jining City, Jining, Shandong Province, China
| | - Pei-Xi Zhang
- Department of Cardiothoracic Surgery, the First Hospital of Jining City, Jining, Shandong Province, China
| | - Juan Zheng
- Department of Diving and Hyperbaric Medicine, Secondary Military Medical University, Shanghai, China
| | - Kan Liu
- Department of Diving and Hyperbaric Medicine, Secondary Military Medical University, Shanghai, China
| | - Xue-Jun Sun
- Department of Diving and Hyperbaric Medicine, Secondary Military Medical University, Shanghai, China
| |
Collapse
|
38
|
Challenges, priorities and novel therapies for hypoxemic respiratory failure and pulmonary hypertension in the neonate. J Perinatol 2016; 36 Suppl 2:S32-6. [PMID: 27225964 DOI: 10.1038/jp.2016.47] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/10/2016] [Accepted: 02/16/2016] [Indexed: 01/31/2023]
Abstract
Future priorities for the management of hypoxemic respiratory failure (HRF) and pulmonary hypertension include primary prevention of neonatal lung diseases, 'precision medicine' and translating promising clinical and preclinical research into novel therapies. Promising areas of investigation include noninvasive ventilation strategies, emerging pulmonary vasodilators (for example, cinaciguat, intravenous bosentan, rho-kinase inhibitors, peroxisome proliferator-activated receptor-γ agonists) and hemodynamic support (arginine vasopressin). Research challenges include the optimal timing for primary prevention interventions and development of validated biomarkers that predict later disease or serve as surrogates for long-term respiratory outcomes. Differentiating respiratory disease endotypes using biomarkers and experimental therapies tailored to the underlying pathobiology are central to the concept of 'precision medicine' (that is, prevention and treatment strategies that take individual variability into account). The ideal biomarker should be expressed early in the neonatal course to offer an opportunity for effective and targeted interventions to modify outcomes. The feasibility of this approach will depend on the identification and validation of accurate, rapid and affordable point-of-care biomarker tests. Trials targeting patient-specific pathobiology may involve less risk than traditional randomized controlled trials that enroll all at-risk neonates. Such approaches would reduce trial costs, potentially with fewer negative trials and improved health outcomes. Initiatives such as the Prematurity and Respiratory Outcomes Program, supported by the National Heart, Lung, and Blood Institute, provide a framework to develop refined outcome measures and early biomarkers that will enhance our understanding of novel, mechanistic therapeutic targets that can be tested in clinical trials in neonates with HRF.
Collapse
|
39
|
Abstract
Persistent pulmonary hypertension of the newborn (PPHN) is a surprisingly common event in the neonatal intensive care unit, and affects both term and preterm infants. Recent studies have begun to elucidate the maternal, fetal and genetic risk factors that trigger PPHN. There have been numerous therapeutic advances over the last decade. It is now appreciated that oxygen supplementation, particularly for the goal of pulmonary vasodilation, needs to be approached as a therapy that has risks and benefits. Administration of surfactant or inhaled nitric oxide (iNO) therapy at a lower acuity of illness can decrease the risk of extracorporeal membrane oxygenation/death, progression of disease and duration of hospital stay. Milrinone may have specific benefits as an 'inodilator', as prolonged exposure to iNO plus oxygen may activate phosphodiesterase (PDE) 3A. Additionally, sildenafil and hydrocortisone may benefit infants exposed to hyperoxia and oxidative stress. Continued investigation is likely to reveal new therapies such as citrulline and cinaciguat that will enhance NO synthase and soluble guanylate cyclase function. Continued laboratory and clinical investigation will be needed to optimize treatment and improve outcomes.
Collapse
Affiliation(s)
- Robin H Steinhorn
- Children's National Health System, George Washington University, Washington, D.C., USA
| |
Collapse
|
40
|
Fike CD, Dikalova A, Kaplowitz MR, Cunningham G, Summar M, Aschner JL. Rescue Treatment with L-Citrulline Inhibits Hypoxia-Induced Pulmonary Hypertension in Newborn Pigs. Am J Respir Cell Mol Biol 2015; 53:255-64. [PMID: 25536367 DOI: 10.1165/rcmb.2014-0351oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Infants with cardiopulmonary disorders associated with hypoxia develop pulmonary hypertension. We previously showed that initiation of oral L-citrulline before and continued throughout hypoxic exposure improves nitric oxide (NO) production and ameliorates pulmonary hypertension in newborn piglets. Rescue treatments, initiated after the onset of pulmonary hypertension, better approximate clinical strategies. Mechanisms by which L-citrulline improves NO production merit elucidation. The objective of this study was to determine whether starting L-citrulline after the onset of pulmonary hypertension inhibits disease progression and improves NO production by recoupling endothelial NO synthase (eNOS). Hypoxic and normoxic (control) piglets were studied. Some hypoxic piglets received oral L-citrulline starting on Day 3 of hypoxia and continuing throughout the remaining 7 days of hypoxic exposure. Catheters were placed for hemodynamic measurements, and pulmonary arteries were dissected to assess NO production and eNOS dimer-to-monomer ratios (a measure of eNOS coupling). Pulmonary vascular resistance was lower in L-citrulline-treated hypoxic piglets than in untreated hypoxic piglets but was higher than in normoxic controls. NO production and eNOS dimer-to-monomer ratios were greater in pulmonary arteries from L-citrulline-treated than from untreated hypoxic animals but were lower than in normoxic controls. When started after disease onset, oral L-citrulline treatment improves NO production by recoupling eNOS and inhibits the further development of chronic hypoxia-induced pulmonary hypertension in newborn piglets. Oral L-citrulline may be a novel strategy to halt or reverse pulmonary hypertension in infants suffering from cardiopulmonary conditions associated with hypoxia.
Collapse
Affiliation(s)
- Candice D Fike
- 1 Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee.,2 Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, Tennessee
| | - Anna Dikalova
- 1 Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mark R Kaplowitz
- 1 Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Gary Cunningham
- 3 Division of Genetics and Metabolism, Children's National Medical Center, Washington, District of Columbia; and
| | - Marshall Summar
- 3 Division of Genetics and Metabolism, Children's National Medical Center, Washington, District of Columbia; and
| | - Judy L Aschner
- 4 Department of Pediatrics, Albert Einstein College of Medicine and the Children's Hospital at Montefiore, New York, New York
| |
Collapse
|
41
|
Combined iNO and endothelial progenitor cells improve lung alveolar and vascular structure in neonatal rats exposed to prolonged hyperoxia. Pediatr Res 2015; 77:784-92. [PMID: 25742118 DOI: 10.1038/pr.2015.39] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 11/06/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND Stem cells or inhaled nitric oxide (iNO) are reported to improve lung structures in bronchopulmonary dysplasia (BPD) models. We hypothesized that combined iNO and transplanted endothelial progenitor cells (EPCs) might restore lung structure in rats after neonatal hyperoxia. METHODS Litters were separated into eight groups: room air, hyperoxia, hyperoxia + iNO, hyperoxia + iNO + L-NAME, hyperoxia + EPCs, hyperoxia + EPCs + L-NAME, hyperoxia + EPCs + iNO, and hyperoxia + EPCs + iNO + L-NAME. Litters were exposed to hyperoxia from the 21st day, then, sacrificed. EPCs were injected on the 21st day. L-NAME was injected daily for 7 d from the 21st day. Serum vascular endothelial growth factor (VEGF), radial alveolar count (RAC), VIII factor, EPCs engraftment, lung VEGF, VEGFR2, endothelial nitric oxide (eNOS) and SDF-1 expression, and NO production were examined. RESULTS Hyperoxia exposure led to air space enlargement, loss of lung capillaries, and low expression of VEGF and eNOS. Transplanted EPCs, when combined with iNO, had significantly increased engraftment in lungs, compared to EPCs alone, upon hyperoxia exposure. There was improvement in alveolarization, microvessel density, and upregulation of VEGF and eNOS proteins in the hyperoxia-exposed EPCs with iNO group, compared to hyperoxia alone. CONCLUSION Combined EPCs and iNO improved lung structures after neonatal hyperoxia. This was associated with the upregulation of VEGF and eNOS expression.
Collapse
|
42
|
Abstract
SIGNIFICANCE Fetal lung development takes place in hypoxia meaning that premature birth is hyperoxia for the prematurely born infant. The most common respiratory morbidity afflicting premature infants is bronchopulmonary dysplasia (BPD). Pathophysiologically, BPD represents the impact of injury, including O2 toxicity, to the immature developing lung that causes arrested lung development. RECENT ADVANCES The thioredoxin (Trx) system, which is predominantly expressed in pulmonary epithelia in the newborn lung, acts as an antioxidant system; however, it is increasingly recognized as a key redox regulator of signal transduction and gene expression via thiol-disulfide exchange reactions. CRITICAL ISSUES This review focuses on the contribution of Trx family proteins toward normal and aberrant lung development, in particular, the roles of the Trx system in hyperoxic responses of alveolar epithelial cells, aberrant lung development in animal models of BPD, O2-dependent signaling processes, and possible therapeutic efficacy in preventing O2-mediated lung injury. FUTURE DIRECTIONS The significant contribution of the Trx system toward redox regulation of key developmental pathways necessary for proper lung development suggests that therapeutic strategies focused on preserving pulmonary Trx function could significantly improve the outcomes of prematurely born human infants.
Collapse
Affiliation(s)
- Trent E Tipple
- 1 Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| |
Collapse
|
43
|
Wedgwood S, Steinhorn RH. Role of reactive oxygen species in neonatal pulmonary vascular disease. Antioxid Redox Signal 2014; 21:1926-42. [PMID: 24350610 PMCID: PMC4202910 DOI: 10.1089/ars.2013.5785] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Abnormal lung development in the perinatal period can result in severe neonatal complications, including persistent pulmonary hypertension (PH) of the newborn and bronchopulmonary dysplasia. Reactive oxygen species (ROS) play a substantive role in the development of PH associated with these diseases. ROS impair the normal pulmonary artery (PA) relaxation in response to vasodilators, and ROS are also implicated in pulmonary arterial remodeling, both of which can increase the severity of PH. RECENT ADVANCES PA ROS levels are elevated when endogenous ROS-generating enzymes are activated and/or when endogenous ROS scavengers are inactivated. Animal models have provided valuable insights into ROS generators and scavengers that are dysregulated in different forms of neonatal PH, thus identifying potential therapeutic targets. CRITICAL ISSUES General antioxidant therapy has proved ineffective in reversing PH, suggesting that it is necessary to target specific signaling pathways for successful therapy. FUTURE DIRECTIONS Development of novel selective pharmacologic inhibitors along with nonantioxidant therapies may improve the treatment outcomes of patients with PH, while further investigation of the underlying mechanisms may enable earlier detection of the disease.
Collapse
Affiliation(s)
- Stephen Wedgwood
- Department of Pediatrics, University of California Davis Medical Center , Sacramento, California
| | | |
Collapse
|
44
|
O'Reilly M, Thébaud B. Animal models of bronchopulmonary dysplasia. The term rat models. Am J Physiol Lung Cell Mol Physiol 2014; 307:L948-58. [PMID: 25305248 DOI: 10.1152/ajplung.00160.2014] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the chronic lung disease of prematurity that affects very preterm infants. Although advances in perinatal care have enabled the survival of infants born as early as 23-24 wk of gestation, the challenge of promoting lung growth while protecting the ever more immature lung from injury is now bigger. Consequently, BPD remains one of the most common complications of extreme prematurity and still lacks specific treatments. Progress in our understanding of BPD and the potential of developing therapeutic strategies have arisen from large (baboons, sheep, and pigs) and small (rabbits, rats, and mice) animal models. This review focuses specifically on the use of the rat to model BPD and summarizes how the model is used in various research studies and the advantages and limitations of this particular model, and it highlights recent therapeutic advances in BPD by using this rat model.
Collapse
Affiliation(s)
- Megan O'Reilly
- Department of Pediatrics and Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada; and
| | - Bernard Thébaud
- Ottawa Hospital Research Institute, Sprott Center for Stem Cell Research, Regenerative Medicine Program and Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
45
|
Fike CD, Summar M, Aschner JL. L-citrulline provides a novel strategy for treating chronic pulmonary hypertension in newborn infants. Acta Paediatr 2014; 103:1019-26. [PMID: 24862864 DOI: 10.1111/apa.12707] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 03/23/2014] [Accepted: 05/23/2014] [Indexed: 02/05/2023]
Abstract
UNLABELLED Effective therapies are urgently needed for infants with forms of pulmonary hypertension that develop or persist beyond the first week of life. The L-arginine nitric oxide (NO) precursor, L-citrulline, improves NO signalling and ameliorates pulmonary hypertension in newborn animals. In vitro studies demonstrate that manipulating L-citrulline transport alters NO production. CONCLUSION Strategies that increase the supply and transport of L-citrulline merit pursuit as novel approaches to managing infants with chronic, progressive pulmonary hypertension.
Collapse
Affiliation(s)
- Candice D. Fike
- Department of Pediatrics; Vanderbilt University Medical Center; Nashville TN USA
- Monroe Carell Jr. Children's Hospital at Vanderbilt; Nashville TN USA
| | - Marshall Summar
- Division of Genetics and Metabolism; Children's National Medical Center; Washington DC USA
| | - Judy L. Aschner
- Department of Pediatrics; Albert Einstein College of Medicine and the Children's Hospital at Montefiore; New York NY USA
| |
Collapse
|
46
|
Collins JJP, Thébaud B. Progenitor cells of the distal lung and their potential role in neonatal lung disease. ACTA ACUST UNITED AC 2014; 100:217-26. [PMID: 24619857 DOI: 10.1002/bdra.23227] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/14/2014] [Accepted: 01/18/2014] [Indexed: 12/21/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is the most common adverse outcome in extreme preterm neonates (born before 28 weeks gestation). BPD is characterized by interrupted lung growth and may predispose to early-onset emphysema and poor lung function in later life. At present, there is no treatment for BPD. Recent advances in stem/progenitor cell biology have enabled the exploration of endogenous lung progenitor populations in health and disease. In parallel, exogenous stem/progenitor cell administration has shown promise in protecting the lung from injury in the experimental setting. This review will provide an outline of the progenitor populations that have currently been identified in all tissue compartments of the distal lung and how they may be affected in BPD. A thorough understanding of the lung's endogenous progenitor populations during normal development, injury and repair may one day allow us to harness their regenerative capacity.
Collapse
Affiliation(s)
- Jennifer J P Collins
- Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
47
|
Bhandari V. Postnatal inflammation in the pathogenesis of bronchopulmonary dysplasia. ACTA ACUST UNITED AC 2014; 100:189-201. [PMID: 24578018 DOI: 10.1002/bdra.23220] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/02/2014] [Accepted: 01/05/2014] [Indexed: 12/18/2022]
Abstract
Exposure to hyperoxia, invasive mechanical ventilation, and systemic/local sepsis are important antecedents of postnatal inflammation in the pathogenesis of bronchopulmonary dysplasia (BPD). This review will summarize information obtained from animal (baboon, lamb/sheep, rat and mouse) models that pertain to the specific inflammatory agents and signaling molecules that predispose a premature infant to BPD.
Collapse
Affiliation(s)
- Vineet Bhandari
- Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
48
|
Richter J, Toelen J, Vanoirbeek J, Kakigano A, Dekoninck P, Verbeken E, Deprest J. Functional assessment of hyperoxia-induced lung injury after preterm birth in the rabbit. Am J Physiol Lung Cell Mol Physiol 2013; 306:L277-83. [PMID: 24375793 DOI: 10.1152/ajplung.00315.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The objective of this study was to document early neonatal (7 days) pulmonary outcome in the rabbit model for preterm birth and hyperoxia-induced lung injury. Preterm pups were delivered at 28 days (term = 31 days; early saccular phase of lung development) by cesarean section, housed in an incubator, and gavage fed for 7 days. Pups were divided into the following groups: 1) normoxia (21% O2; normoxia group) and 2) and hyperoxia (>95% O2; hyperoxia group). Controls were pups born at term who were housed in normoxic conditions (control group). Outcome measures were survival, pulmonary function tests using the whole body plethysmograph and forced oscillation technique, and lung morphometry. There was a significant difference in survival of preterm pups whether they were exposed to normoxia (83.3%) or hyperoxia (55.9%). Hyperoxic exposure was associated with increased tissue damping and elasticity and decreased static compliance compared with normoxic controls (P < 0.01). Morphometry revealed an increased linear intercept and increased mean wall transection length, which translates to larger alveoli with septal thickening in hyperoxia compared with normoxia (P < 0.01). In conclusion, the current experimental hyperoxic conditions to which preterm pups are exposed induce the typical clinical features of bronchopulmonary dysplasia. This model will be used to study novel preventive or therapeutic interventions.
Collapse
Affiliation(s)
- Jute Richter
- Clinical Dept. of Obstetrics and Gynaecology and Academic Dept. of Development and Regeneration, Organ System Cluster, Univ. Hospitals of Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
49
|
Romero MJ, Yao L, Sridhar S, Bhatta A, Dou H, Ramesh G, Brands MW, Pollock DM, Caldwell RB, Cederbaum SD, Head CA, Bagi Z, Lucas R, Caldwell RW. l-Citrulline Protects from Kidney Damage in Type 1 Diabetic Mice. Front Immunol 2013; 4:480. [PMID: 24400007 PMCID: PMC3871963 DOI: 10.3389/fimmu.2013.00480] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 12/09/2013] [Indexed: 01/01/2023] Open
Abstract
RATIONALE Diabetic nephropathy (DN) is a major cause of end-stage renal disease, associated with endothelial dysfunction. Chronic supplementation of l-arginine (l-arg), the substrate for endothelial nitric oxide synthase (eNOS), failed to improve vascular function. l-Citrulline (l-cit) supplementation not only increases l-arg synthesis, but also inhibits cytosolic arginase I, a competitor of eNOS for the use of l-arg, in the vasculature. AIMS To investigate whether l-cit treatment reduces DN in streptozotocin (STZ)-induced type 1 diabetes (T1D) in mice and rats and to study its effects on arginase II (ArgII) function, the main renal isoform. METHODS STZ-C57BL6 mice received l-cit or vehicle supplemented in the drinking water. For comparative analysis, diabetic ArgII knock out mice and l-cit-treated STZ-rats were evaluated. RESULTS l-Citrulline exerted protective effects in kidneys of STZ-rats, and markedly reduced urinary albumin excretion, tubulo-interstitial fibrosis, and kidney hypertrophy, observed in untreated diabetic mice. Intriguingly, l-cit treatment was accompanied by a sustained elevation of tubular ArgII at 16 weeks and significantly enhanced plasma levels of the anti-inflammatory cytokine IL-10. Diabetic ArgII knock out mice showed greater blood urea nitrogen levels, hypertrophy, and dilated tubules than diabetic wild type (WT) mice. Despite a marked reduction in collagen deposition in ArgII knock out mice, their albuminuria was not significantly different from diabetic WT animals. l-Cit also restored nitric oxide/reactive oxygen species balance and barrier function in high glucose-treated monolayers of human glomerular endothelial cells. Moreover, l-cit also has the ability to establish an anti-inflammatory profile, characterized by increased IL-10 and reduced IL-1β and IL-12(p70) generation in the human proximal tubular cells. CONCLUSION l-Citrulline supplementation established an anti-inflammatory profile and significantly preserved the nephron function during T1D.
Collapse
Affiliation(s)
- Maritza J Romero
- Department of Pharmacology and Toxicology, Georgia Regents University , Augusta, GA , USA ; Department of Anesthesiology and Perioperative Medicine, Georgia Regents University , Augusta, GA , USA ; Vascular Biology Center, Georgia Regents University , Augusta, GA , USA
| | - Lin Yao
- Department of Pharmacology and Toxicology, Georgia Regents University , Augusta, GA , USA
| | - Supriya Sridhar
- Vascular Biology Center, Georgia Regents University , Augusta, GA , USA
| | - Anil Bhatta
- Department of Pharmacology and Toxicology, Georgia Regents University , Augusta, GA , USA
| | - Huijuan Dou
- Vascular Biology Center, Georgia Regents University , Augusta, GA , USA
| | - Ganesan Ramesh
- Vascular Biology Center, Georgia Regents University , Augusta, GA , USA ; Department of Medicine, Georgia Regents University , Augusta, GA , USA
| | - Michael W Brands
- Department of Physiology, Georgia Regents University , Augusta, GA , USA
| | - David M Pollock
- Department of Pharmacology and Toxicology, Georgia Regents University , Augusta, GA , USA ; Department of Medicine, Georgia Regents University , Augusta, GA , USA
| | - Ruth B Caldwell
- Vascular Biology Center, Georgia Regents University , Augusta, GA , USA ; Department of Cell Biology and Anatomy, Georgia Regents University , Augusta, GA , USA ; Department of Ophthalmology, Georgia Regents University , Augusta, GA , USA ; VA Medical Center, Georgia Regents University , Augusta, GA , USA
| | - Stephen D Cederbaum
- Intellectual and Developmental Disabilities Research Center/Neuropsychiatric Institute (IDDRC/NPI), University of California Los Angeles School of Medicine , Los Angeles, CA , USA
| | - C Alvin Head
- Department of Anesthesiology and Perioperative Medicine, Georgia Regents University , Augusta, GA , USA
| | - Zsolt Bagi
- Vascular Biology Center, Georgia Regents University , Augusta, GA , USA
| | - Rudolf Lucas
- Department of Pharmacology and Toxicology, Georgia Regents University , Augusta, GA , USA ; Vascular Biology Center, Georgia Regents University , Augusta, GA , USA ; Division of Pulmonary Medicine, Georgia Regents University , Augusta, GA , USA
| | - Robert W Caldwell
- Department of Pharmacology and Toxicology, Georgia Regents University , Augusta, GA , USA ; Department of Physiology, Georgia Regents University , Augusta, GA , USA
| |
Collapse
|
50
|
Fike CD, Aschner JL. Looking beyond PPHN: the unmet challenge of chronic progressive pulmonary hypertension in the newborn. Pulm Circ 2013; 3:454-66. [PMID: 24618533 DOI: 10.1086/674438] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Abstract Infants with forms of pulmonary hypertension (PH) that persist or develop beyond the first week of life are an understudied group of patients with up to 40%-60% mortality. The clinical management of the progressive PH that develops in these infants is challenging because of the nonspecific signs and symptoms of clinical presentation, the limited diagnostic sensitivity of standard echocardiographic techniques, and the lack of proven therapies. The signaling mechanisms that underlie the structural and functional abnormalities in the pulmonary circulation of these infants are not yet clear. The ability to improve outcomes for these patients awaits technological advances to improve diagnostic capabilities and therapeutic discoveries made in basic science laboratories that can be tested in randomized clinical trials.
Collapse
Affiliation(s)
- Candice D Fike
- 1 Department of Pediatrics, Vanderbilt University School of Medicine, and Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, Tennessee, USA
| | | |
Collapse
|