1
|
White HE, Tucker AS, Goswami A. Divergent patterns of cranial suture fusion in marsupial and placental mammals. Zool J Linn Soc 2025; 203:zlae060. [PMID: 39995683 PMCID: PMC7617424 DOI: 10.1093/zoolinnean/zlae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Cranial sutures, both open and closed, support a myriad of skull functions, including redistributing strain, accommodating brain expansion, supporting cranial bone growth, and protecting the brain. Thus, variation in the degree, timing, and pattern of suture fusion has functional implications. Using a comparative ontogenetic framework across Mammalia, we quantified degree and pattern of suture fusion through ontogeny for 22 mammalian species (N = 165). Suture closure was scored on a discrete scale for 31 cranial sutures and used to calculate closure scores for individual sutures and specimens. Ancestral state estimations found the degree of ancestral marsupial fusion to be more derived, differing from both the ancestral placental and ancestral therian. The average placental pattern followed the Krogman pattern of suture fusion (cranial vault, cranial base, circum-meatal, palatal, facial, and cranio-facial), whereas marsupials showed a distinct pattern. We propose a new pattern of suture fusion for marsupials: vault, cranio-facial, facial, circum-meatal, palate, cranial base. Delayed fusion of the marsupial cranial base is hypothesized here to support prolonged postnatal growth of the marsupial brain. Collectively, our study has identified a clear marsupial-placental dichotomy in the degree, timing, and pattern of suture fusion, with implications for understanding skull function and ontogeny.
Collapse
Affiliation(s)
- Heather E White
- Centre for Craniofacial and Regenerative Biology, King's College London, Great Maze Pond, London SE1 9RT, United Kingdom
- Science Department, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
- Division of Biosciences, University College London, Gower Street, London WC1E 6DE, United Kingdom
| | - Abigail S Tucker
- Centre for Craniofacial and Regenerative Biology, King's College London, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Anjali Goswami
- Science Department, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
- Division of Biosciences, University College London, Gower Street, London WC1E 6DE, United Kingdom
| |
Collapse
|
2
|
Aplin KP, Armstrong KN, Aplin LM, Jenkins P, Ingleby S, Donnellan SC. Hidden diversity in an ecologically specialized genus of Australian marsupials, the feather-tailed gliders, Acrobates (Diprotodontia, Acrobatidae). Zootaxa 2025; 5566:535-564. [PMID: 40173564 DOI: 10.11646/zootaxa.5566.3.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Indexed: 04/04/2025]
Abstract
The marsupial Family Acrobatidae includes the smallest gliding marsupial species in the monotypic Acrobates, found only in eastern Australia, and an equally small non-gliding species in another monotypic genus Distoechurus, found only in New Guinea. We applied molecular genetic analysis to Acrobates to assess the systematic significance of variation in superficial external characters of the tail and hindfoot (pes). Deep divergence in mitochondrial and nuclear genes demonstrated the broad sympatry of two species consistent with prior morphological diagnoses. Morphological assessment of museum vouchers showed that their distributions overlap extensively in New South Wales and Victoria and include locations where a range of biological research was conducted on the assumption of the presence of a single species. Many of these studies cannot be reassessed because neither vouchers nor tissue suitable for molecular genetic identification were collected. Intriguingly, acrobatids are the only marsupial group with internal ear discs, and the two species of Acrobates show demonstrable differences in the morphology of this structure, the biological significance of which needs to be established. Both species of Acrobates occur widely in the eucalypt forests of south-eastern Australia, which appear to be subject to a growing threat from bushfires likely aggravated by anthropogenic climate change.
Collapse
Affiliation(s)
- Kenneth P Aplin
- Australian National Wildlife Collection; CSIRO National Research Collections Australia; GPO Box 1700; Canberra ACT 2601 Australia.
| | - Kyle N Armstrong
- Australian Centre for Ancient DNA; The University of Adelaide; Adelaide SA 5005 Australia; South Australian Museum; North Terrace; Adelaide SA 5000 Australia..
| | - Lucy M Aplin
- Division of Ecology and Evolution; Research School of Biology; The Australian National University; Canberra ACT 2600 Australia; Department of Evolutionary Biology and Environmental Studies; University of Zurich; Winterthurstrasse 190; 8057; Zurich; Switzerland.
| | - Paula Jenkins
- The Natural History Museum; Mammal Group; Cromwell Road; London SW7 5BD UK.
| | | | | |
Collapse
|
3
|
Umbrello LS, Newton H, Baker AM, Travouillon KJ, Westerman M. Vicariant speciation resulting from biogeographic barriers in the Australian tropics: The case of the red-cheeked dunnart ( Sminthopsis virginiae). Ecol Evol 2024; 14:e70215. [PMID: 39206453 PMCID: PMC11349609 DOI: 10.1002/ece3.70215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Global biodiversity loss continues unabated, and in Australia, the rate of recent mammal extinctions is among the worst in the world. Meanwhile, the diversity among and within many endemic mammal species remains undescribed. This information is crucial to delineate species boundaries and thus inform decision-making for conservation. Sminthopsis virginiae (the red-cheeked dunnart) is a small, dasyurid marsupial found in four disjunct populations around the northern coast of Australia and New Guinea. There are three currently recognized subspecies, each occupying a distinct geographic location. Sminthopsis v. virginiae occurs in Queensland, S. v. rufigenis is distributed across New Guinea and the Aru Islands, and S. v. nitela has populations in the Top End of the Northern Territory and the Kimberley region of Western Australia. Previous molecular work has suggested the current subspecies definitions are not aligned with DNA sequence data, though the sampling was limited. We undertook a comprehensive genetic and morphological review of S. virginiae to clarify relationships within the species. This included mitochondrial (CR, 12S, and cytb) and nuclear (omega-globin, IRBP, and bfib7) loci, and morphometric analysis of skulls and whole wet-preserved specimens held in museums. Maximum Likelihood and Bayesian phylogenetic analyses resolved samples into two distinct clades, demarcated by the Gulf of Carpentaria in Australia's north. Sminthopsis. v. nitela was consistently separated from S. v. virginiae and S. v. rufigenis, based on the overall body and skull size and craniodental features, while S. v. virginiae and S. v. rufigenis were more difficult to distinguish from each other. Thus, we redescribed S. virginiae, recognizing two species, S. nitela (raised from subspecies) and S. virginiae (now comprising the subspecies S. v. virginiae and S. v. rufigenis). This study highlights the importance of recognizing cryptic mammal fauna to help address the gap in our knowledge about diagnosing diversity during a time of conservation crisis.
Collapse
Affiliation(s)
- Linette S. Umbrello
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQueenslandAustralia
- Collections and ResearchWestern Australian MuseumWelshpoolWestern AustraliaAustralia
| | - Hayley Newton
- Collections and ResearchWestern Australian MuseumWelshpoolWestern AustraliaAustralia
- School of Environmental and Conservation SciencesMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Andrew M. Baker
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQueenslandAustralia
- Biodiversity and Geosciences ProgramQueensland MuseumSouth BrisbaneQueenslandAustralia
| | - Kenny J. Travouillon
- Collections and ResearchWestern Australian MuseumWelshpoolWestern AustraliaAustralia
| | - Michael Westerman
- Department of Ecology and GeneticsLa Trobe UniversityBundooraVictoriaAustralia
| |
Collapse
|
4
|
Hand SJ, Maugoust J, Beck RMD, Orliac MJ. A 50-million-year-old, three-dimensionally preserved bat skull supports an early origin for modern echolocation. Curr Biol 2023; 33:4624-4640.e21. [PMID: 37858341 DOI: 10.1016/j.cub.2023.09.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 07/24/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023]
Abstract
Bats are among the most recognizable, numerous, and widespread of all mammals. But much of their fossil record is missing, and bat origins remain poorly understood, as do the relationships of early to modern bats. Here, we describe a new early Eocene bat that helps bridge the gap between archaic stem bats and the hyperdiverse modern bat radiation of more than 1,460 living species. Recovered from ∼50 million-year-old cave sediments in the Quercy Phosphorites of southwestern France, Vielasia sigei's remains include a near-complete, three-dimensionally preserved skull-the oldest uncrushed bat cranium yet found. Phylogenetic analyses of a 2,665 craniodental character matrix, with and without 36.8 kb of DNA sequence data, place Vielasia outside modern bats, with total evidence tip-dating placing it sister to the crown clade. Vielasia retains the archaic dentition and skeletal features typical of early Eocene bats, but its inner ear shows specializations found in modern echolocating bats. These features, which include a petrosal only loosely attached to the basicranium, an expanded cochlea representing ∼25% basicranial width, and a long basilar membrane, collectively suggest that the kind of laryngeal echolocation used by most modern bats predates the crown radiation. At least 23 individuals of V. sigei are preserved together in a limestone cave deposit, indicating that cave roosting behavior had evolved in bats by the end of the early Eocene; this period saw the beginning of significant global climate cooling that may have been an evolutionary driver for bats to first congregate in caves.
Collapse
Affiliation(s)
- Suzanne J Hand
- ESSRC, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jacob Maugoust
- Institut des Sciences de l'Evolution, UMR 5554 CNRS, IRD, EPHE, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Robin M D Beck
- School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, UK.
| | - Maeva J Orliac
- Institut des Sciences de l'Evolution, UMR 5554 CNRS, IRD, EPHE, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|
5
|
Crichton AI, Beck RMD, Couzens AMC, Worthy TH, Camens AB, Prideaux GJ. A probable koala from the Oligocene of central Australia provides insights into early diprotodontian evolution. Sci Rep 2023; 13:14521. [PMID: 37666885 PMCID: PMC10477348 DOI: 10.1038/s41598-023-41471-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023] Open
Abstract
Diprotodontians are the morphologically and ecologically most diverse order of marsupials. However, an approximately 30-million-year gap in the Australian terrestrial vertebrate fossil record means that the first half of diprotodontian evolution is unknown. Fossil taxa from immediately either side of this gap are therefore critical for reconstructing the early evolution of the order. Here we report the likely oldest-known koala relatives (Phascolarctidae), from the late Oligocene Pwerte Marnte Marnte Local Fauna (central Australia). These include coeval species of Madakoala and Nimiokoala, as well as a new probable koala (?Phascolarctidae). The new taxon, Lumakoala blackae gen. et sp. nov., was comparable in size to the smallest-known phascolarctids, with body-mass estimates of 2.2-2.6 kg. Its bunoselenodont upper molars retain the primitive metatherian condition of a continuous centrocrista, and distinct stylar cusps B and D which lacked occlusion with the hypoconid. This structural arrangement: (1) suggests a morphocline within Phascolarctidae from bunoselenodonty to selenodonty; and (2) better clarifies the evolutionary transitions between molar morphologies within Vombatomorphia. We hypothesize that the molar form of Lumakoala blackae approximates the ancestral condition of the suborder Vombatiformes. Furthermore, it provides a plausible link between diprotodontians and the putative polydolopimorphians Chulpasia jimthorselli and Thylacotinga bartholomaii from the early Eocene Tingamarra Local Fauna (eastern Australia), which we infer as having molar morphologies consistent with stem diprotodontians.
Collapse
Affiliation(s)
- Arthur I Crichton
- College of Science and Engineering, Flinders University, Bedford Park, 5042, Australia.
| | - Robin M D Beck
- School of Science, Engineering and Environment, University of Salford, Salford, England
| | - Aidan M C Couzens
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
| | - Trevor H Worthy
- College of Science and Engineering, Flinders University, Bedford Park, 5042, Australia
| | - Aaron B Camens
- College of Science and Engineering, Flinders University, Bedford Park, 5042, Australia
| | - Gavin J Prideaux
- College of Science and Engineering, Flinders University, Bedford Park, 5042, Australia
| |
Collapse
|
6
|
Umbrello LS, Cooper NK, Adams M, Travouillon KJ, Baker AM, Westerman M, Aplin KP. Hiding in plain sight: two new species of diminutive marsupial (Dasyuridae: Planigale) from the Pilbara, Australia. Zootaxa 2023; 5330:1-46. [PMID: 38220885 DOI: 10.11646/zootaxa.5330.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Indexed: 01/16/2024]
Abstract
Many of Australias smaller marsupial species have been taxonomically described in just the past 50 years, and the Dasyuridae, a speciose family of carnivores, is known to harbour many cryptic taxa. Evidence from molecular studies is being increasingly utilised to help revise species boundaries and focus taxonomic efforts, and research over the past two decades has identified several undescribed genetic lineages within the dasyurid genus Planigale. Here, we describe two new species, Planigale kendricki sp. nov. (formerly known as Planigale 1) and P. tealei sp. nov. (formerly known as Planigale sp. Mt Tom Price). The two new species have broadly overlapping distributions in the Pilbara region of Western Australia. The new species are genetically distinct from each other and from all other members of the genus, at both mitochondrial and nuclear loci, and morphologically, in both external and craniodental characters. The new species are found in regional sympatry within the Pilbara but occupy different habitat types at local scales. This work makes a start at resolving the cryptic diversity within Planigale at a time when small mammals are continuing to decline throughout Australia.
Collapse
Affiliation(s)
- Linette S Umbrello
- School of Biology and Environmental Science; Queensland University of Technology; 2 George Street; Brisbane; QLD 4001; Australia; Collections and Research; Western Australian Museum; Locked Bag 49; Welshpool; WA 6986; Australia.
| | - Norah K Cooper
- Collections and Research; Western Australian Museum; Locked Bag 49; Welshpool; WA 6986; Australia.
| | - Mark Adams
- Department of Biological Sciences; University of Adelaide; Adelaide; SA 5000; Australia.; Evolutionary Biology Unit; South Australian Museum; Adelaide; SA 5000; Australia.
| | - Kenny J Travouillon
- Collections and Research; Western Australian Museum; Locked Bag 49; Welshpool; WA 6986; Australia.
| | - Andrew M Baker
- School of Biology and Environmental Science; Queensland University of Technology; 2 George Street; Brisbane; QLD 4001; Australia; Biodiversity and Geosciences Program; Queensland Museum; South Brisbane; QLD 4101; Australia.
| | - Mike Westerman
- Department of Environment and Genetics; La Trobe University; Bundoora; VIC 3086; Australia.
| | - Ken P Aplin
- Collections and Research; Western Australian Museum; Locked Bag 49; Welshpool; WA 6986; Australia; Australian Museum Research Institute; Australian Museum; 1 William Street; Sydney; NSW 2010; Australia.
| |
Collapse
|
7
|
Weisbecker V, Beck RMD, Guillerme T, Harrington AR, Lange-Hodgson L, Lee MSY, Mardon K, Phillips MJ. Multiple modes of inference reveal less phylogenetic signal in marsupial basicranial shape compared with the rest of the cranium. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220085. [PMID: 37183893 PMCID: PMC10184248 DOI: 10.1098/rstb.2022.0085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/17/2022] [Indexed: 05/16/2023] Open
Abstract
Incorporating morphological data into modern phylogenies allows integration of fossil evidence, facilitating divergence dating and macroevolutionary inferences. Improvements in the phylogenetic utility of morphological data have been sought via Procrustes-based geometric morphometrics (GMM), but with mixed success and little clarity over what anatomical areas are most suitable. Here, we assess GMM-based phylogenetic reconstructions in a heavily sampled source of discrete characters for mammalian phylogenetics-the basicranium-in 57 species of marsupial mammals, compared with the remainder of the cranium. We show less phylogenetic signal in the basicranium compared with a 'Rest of Cranium' partition, using diverse metrics of phylogenetic signal (Kmult, phylogenetically aligned principal components analysis, comparisons of UPGMA/neighbour-joining/parsimony trees and cophenetic distances to a reference phylogeny) for scaled, Procrustes-aligned landmarks and allometry-corrected residuals. Surprisingly, a similar pattern emerged from parsimony-based analyses of discrete cranial characters. The consistent results across methods suggest that easily computed metrics such as Kmult can provide good guidance on phylogenetic information in a landmarking configuration. In addition, GMM data may be less informative for intricate but conservative anatomical regions such as the basicranium, while better-but not necessarily novel-phylogenetic information can be expected for broadly characterized shapes such as entire bones. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Vera Weisbecker
- College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Robin M. D. Beck
- School of Science, Engineering and Environment, University of Salford, Salford, M5 4WT, UK
| | - Thomas Guillerme
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | | | - Leonie Lange-Hodgson
- School of Biological Sciences, University of Queensland, Saint Lucia, Queensland, 4072, Australia
| | - Michael S. Y. Lee
- College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
- Earth Sciences Section, South Australian Museum, Adelaide, South Australia, 5000 Australia
| | - Karine Mardon
- Centre of Advanced Imaging, University of Queensland, Saint Lucia, Queensland, 4072, Australia
| | - Matthew J. Phillips
- School of Biology & Environmental Science, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| |
Collapse
|
8
|
Prideaux GJ, Warburton NM. A review of the late Cenozoic genus Bohra (Diprotodontia: Macropodidae) and the evolution of tree-kangaroos. Zootaxa 2023; 5299:1-95. [PMID: 37518576 DOI: 10.11646/zootaxa.5299.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Indexed: 08/01/2023]
Abstract
Tree-kangaroos of the genus Dendrolagus occupy forest habitats of New Guinea and extreme northeastern Australia, but their evolutionary history is poorly known. Descriptions in the 2000s of near-complete Pleistocene skeletons belonging to larger-bodied species in the now-extinct genus Bohra broadened our understanding of morphological variation in the group and have since helped us to identify unassigned fossils in museum collections, as well as to reassign species previously placed in other genera. Here we describe these fossils and analyse tree-kangaroo systematics via comparative osteology. Including B. planei sp. nov., B. bandharr comb. nov. and B. bila comb. nov., we recognise the existence of at least seven late Cenozoic species of Bohra, with a maximum of three in any one assemblage. All tree-kangaroos (Dendrolagina subtribe nov.) exhibit skeletal adaptations reflective of greater joint flexibility and manoeuvrability, particularly in the hindlimb, compared with other macropodids. The Pliocene species of Bohra retained the stepped calcaneocuboid articulation characteristic of ground-dwelling macropodids, but this became smoothed to allow greater hindfoot rotation in the later species of Bohra and in Dendrolagus. Tree-kangaroo diversification may have been tied to the expansion of forest habitats in the early Pliocene. Following the onset of late Pliocene aridity, some tree-kangaroo species took advantage of the consequent spread of more open habitats, becoming among the largest late Cenozoic tree-dwellers on the continent. Arboreal Old World primates and late Quaternary lemurs may be the closest ecological analogues to the species of Bohra.
Collapse
Affiliation(s)
- Gavin J Prideaux
- College of Science & Engineering; Flinders University; Bedford Park; South Australia 5042; Australia.
| | | |
Collapse
|
9
|
Wilson LAB, López-Aguirre C, Archer M, Hand SJ, Flores D, Abdala F, Giannini NP. Patterns of ontogenetic evolution across extant marsupials reflect different allometric pathways to ecomorphological diversity. Nat Commun 2023; 14:2689. [PMID: 37164950 PMCID: PMC10172307 DOI: 10.1038/s41467-023-38365-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
The relatively high level of morphological diversity in Australasian marsupials compared to that observed among American marsupials remains poorly understood. We undertake a comprehensive macroevolutionary analysis of ontogenetic allometry of American and Australasian marsupials to examine whether the contrasting levels of morphological diversity in these groups are reflected in their patterns of allometric evolution. We collate ontogenetic series for 62 species and 18 families of marsupials (n = 2091 specimens), spanning across extant marsupial diversity. Our results demonstrate significant lability of ontogenetic allometric trajectories among American and Australasian marsupials, yet a phylogenetically structured pattern of allometric evolution is preserved. Here we show that species diverging more than 65 million years ago converge in their patterns of ontogenetic allometry under animalivorous and herbivorous diets, and that Australasian marsupials do not show significantly greater variation in patterns of ontogenetic allometry than their American counterparts, despite displaying greater magnitudes of extant ecomorphological diversity.
Collapse
Affiliation(s)
- Laura A B Wilson
- School of Archaeology and Anthropology, The Australian National University, Canberra, ACT 2600, Australia.
- Earth & Sustainability Science Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Camilo López-Aguirre
- Department of Anthropology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Michael Archer
- Earth & Sustainability Science Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Suzanne J Hand
- Earth & Sustainability Science Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - David Flores
- Unidad Ejecutora Lillo (Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación Miguel Lillo). Instituto de Vertebrados, Fundación Miguel Lillo. Miguel Lillo 251, CP 4000, Tucumán, Argentina
| | - Fernando Abdala
- Unidad Ejecutora Lillo (Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación Miguel Lillo), Miguel Lillo 251, CP4000, Tucumán, Argentina
| | - Norberto P Giannini
- Unidad Ejecutora Lillo (Consejo Nacional de Investigaciones Científicas y Técnicas-Fundación Miguel Lillo), Miguel Lillo 251, CP4000, Tucumán, Argentina
- Cátedra de Biogeografía, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
10
|
van Zoelen JD, Camens AB, Worthy TH, Prideaux GJ. Description of the Pliocene marsupial Ambulator keanei gen. nov. (Marsupialia: Diprotodontidae) from inland Australia and its locomotory adaptations. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230211. [PMID: 37266037 PMCID: PMC10230189 DOI: 10.1098/rsos.230211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023]
Abstract
Diprotodontids were the largest marsupials to exist and an integral part of Australian terrestrial ecosystems until the last members of the group became extinct approximately 40 000 years ago. Despite the frequency with which diprotodontid remains are encountered, key aspects of their morphology, systematics, ecology and evolutionary history remain poorly understood. Here we describe new skeletal remains of the Pliocene taxon Zygomaturus keanei from northern South Australia. This is only the third partial skeleton of a late Cenozoic diprotodontid described in the last century, and the first displaying soft tissue structures associated with footpad impressions. Whereas it is difficult to distinguish Z. keanei and the type species of the genus, Z. trilobus, on dental grounds, the marked cranial and postcranial differences suggest that Z. keanei warrants genus-level distinction. Accordingly, we place it in the monotypic Ambulator gen. nov. We, also recognize the late Miocene Z. gilli as a nomen dubium. Features of the forelimb, manus and pes reveal that Ambulator keanei was more graviportal with greater adaptation to quadrupedal walking than earlier diprotodontids. These adaptations may have been driven by a need to travel longer distances to obtain resources as open habitats expanded in the late Pliocene of inland Australia.
Collapse
Affiliation(s)
- Jacob D. van Zoelen
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Aaron B. Camens
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Trevor H. Worthy
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Gavin J. Prideaux
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
11
|
White HE, Tucker AS, Fernandez V, Portela Miguez R, Hautier L, Herrel A, Urban DJ, Sears KE, Goswami A. Pedomorphosis in the ancestry of marsupial mammals. Curr Biol 2023:S0960-9822(23)00457-8. [PMID: 37119816 DOI: 10.1016/j.cub.2023.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 02/27/2023] [Accepted: 04/05/2023] [Indexed: 05/01/2023]
Abstract
Within mammals, different reproductive strategies (e.g., egg laying, live birth of extremely underdeveloped young, and live birth of well-developed young) have been linked to divergent evolutionary histories. How and when developmental variation across mammals arose is unclear. While egg laying is unquestionably considered the ancestral state for all mammals, many long-standing biases treat the extreme underdeveloped state of marsupial young as the ancestral state for therian mammals (clade including both marsupials and placentals), with the well-developed young of placentals often considered the derived mode of development. Here, we quantify mammalian cranial morphological development and estimate ancestral patterns of cranial shape development using geometric morphometric analysis of the largest comparative ontogenetic dataset of mammals to date (165 specimens, 22 species). We identify a conserved region of cranial morphospace for fetal specimens, after which cranial morphology diversified through ontogeny in a cone-shaped pattern. This cone-shaped pattern of development distinctively reflected the upper half of the developmental hourglass model. Moreover, cranial morphological variation was found to be significantly associated with the level of development (position on the altricial-precocial spectrum) exhibited at birth. Estimation of ancestral state allometry (size-related shape change) reconstructs marsupials as pedomorphic relative to the ancestral therian mammal. In contrast, the estimated allometries for the ancestral placental and ancestral therian were indistinguishable. Thus, from our results, we hypothesize that placental mammal cranial development most closely reflects that of the ancestral therian mammal, while marsupial cranial development represents a more derived mode of mammalian development, in stark contrast to many interpretations of mammalian evolution.
Collapse
Affiliation(s)
- Heather E White
- Science Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK; Centre for Craniofacial and Regenerative Biology, King's College London, Great Maze Pond, London SE1 9RT, UK; Division of Biosciences, University College London, Gower Street, London WC1E 6DE, UK.
| | - Abigail S Tucker
- Centre for Craniofacial and Regenerative Biology, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Vincent Fernandez
- European Synchrotron Radiation Facility, 71 rue des Martyrs, 38000 Grenoble, France
| | | | - Lionel Hautier
- Science Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK; Institut des Sciences de l'Evolution, Université de Montpellier, CNRS, IRD, EPHE, Montpellier 34095, France
| | - Anthony Herrel
- UMR 7179, Centre National de la Recherche Scientifique/Muséum National d'Histoire Naturelle, Département Adaptations du Vivant, 55 rue Buffon, 75005 Paris, France
| | - Daniel J Urban
- Institute of Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Anjali Goswami
- Science Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK; Division of Biosciences, University College London, Gower Street, London WC1E 6DE, UK
| |
Collapse
|
12
|
Beck RMD, de Vries D, Janiak MC, Goodhead IB, Boubli JP. Total evidence phylogeny of platyrrhine primates and a comparison of undated and tip-dating approaches. J Hum Evol 2023; 174:103293. [PMID: 36493598 DOI: 10.1016/j.jhevol.2022.103293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 12/12/2022]
Abstract
There have been multiple published phylogenetic analyses of platyrrhine primates (New World monkeys) using both morphological and molecular data, but relatively few that have integrated both types of data into a total evidence approach. Here, we present phylogenetic analyses of recent and fossil platyrrhines, based on a total evidence data set of 418 morphological characters and 10.2 kilobases of DNA sequence data from 17 nuclear genes taken from previous studies, using undated and tip-dating approaches in a Bayesian framework. We compare the results of these analyses with molecular scaffold analyses using maximum parsimony and Bayesian approaches, and we use a formal information theoretic approach to identify unstable taxa. After a posteriori pruning of unstable taxa, the undated and tip-dating topologies appear congruent with recent molecular analyses and support largely similar relationships, with strong support for Stirtonia as a stem alouattine, Neosaimiri as a stem saimirine, Cebupithecia as a stem pitheciine, and Lagonimico as a stem callitrichid. Both analyses find three Greater Antillean subfossil platyrrhines (Xenothrix, Antillothrix, and Paralouatta) to form a clade that is related to Callicebus, congruent with a single dispersal event by the ancestor of this clade to the Greater Antilles. They also suggest that the fossil Proteropithecia may not be closely related to pitheciines, and that all known platyrrhines older than the Middle Miocene are stem taxa. Notably, the undated analysis found the Early Miocene Panamacebus (currently recognized as the oldest known cebid) to be unstable, and the tip-dating analysis placed it outside crown Platyrrhini. Our tip-dating analysis supports a late Oligocene or earliest Miocene (20.8-27.0 Ma) age for crown Platyrrhini, congruent with recent molecular clock analyses.
Collapse
Affiliation(s)
- Robin M D Beck
- Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, Manchester, UK.
| | - Dorien de Vries
- Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, Manchester, UK
| | - Mareike C Janiak
- Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, Manchester, UK
| | - Ian B Goodhead
- Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, Manchester, UK
| | - Jean P Boubli
- Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, Manchester, UK
| |
Collapse
|