1
|
Drvenica I, Blažević I, Bošković P, Bratanić A, Bugarski B, Bilusic T. Sinigrin Encapsulation in Liposomes: Influence on In Vitro Digestion and Antioxidant Potential. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/143574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
2
|
Cocchi V, Hrelia P, Lenzi M. Antimutagenic and Chemopreventive Properties of 6-(Methylsulfinyl) Hexyl Isothiocyanate on TK6 Human Cells by Flow Cytometry. Front Pharmacol 2020; 11:1242. [PMID: 32973500 PMCID: PMC7461824 DOI: 10.3389/fphar.2020.01242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/29/2020] [Indexed: 11/30/2022] Open
Abstract
6-(methylsulfinyl) hexyl isothiocyanate (6-MITC), is the main bioactive compound present in Wasabia japonica rhizome. Several scientific studies have shown that 6-MITC possesses interesting antimicrobial, anti-inflammatory, antiplatelet and antioxidant properties which therefore suggested us it could have an interesting chemopreventive potential. In a recent publication, we demonstrated, in two different leukemia cell lines, its ability to modulate several mechanisms supporting its antitumor activity. For this reason, we thought useful to continue the research, by investigating the potential antimutagenic activity of 6-MITC and thus better define its profile as a possible chemopreventive agent. 6-MITC antimutagenic effect against two known mutagenic agents: the clastogen Mitomycin C (MMC) and the aneuplodogen Vinblastine (VINB), was analyzed, in terms of micronuclei frequency decrease, after short- and long- time treatment on TK6 human cells, using a new automated protocol of the “In Vitro Mammalian Cell Micronucleous Test” by flow cytometry. The results showed a different behavior of the isothiocyante. In particular, 6-MITC was unable to counteract the MMC genotoxicity, but when it was associated with VINB a statistically significant decrease in the micronuclei frequency was registered. Overall, the results obtained suggest a potential antimutagenic activity of 6-MITC, in particular against the aneuploidogen agents. This ability, to inhibit or counteract the mutations at the cellular level has a great therapeutic value and it represents a mechanism through a chemopreventive agent can express its activity.
Collapse
Affiliation(s)
- Veronica Cocchi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Monia Lenzi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Kim CS, Oh J, Subedi L, Kim SY, Choi SU, Lee KR. Rare Thioglycosides from the Roots of Wasabia japonica. JOURNAL OF NATURAL PRODUCTS 2018; 81:2129-2133. [PMID: 30232882 DOI: 10.1021/acs.jnatprod.8b00570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Six new thioglycosides (1-6) were characterized from the roots of Wasabia japonica along with a known analogue (7). Of these compounds, 1-3 possess a disulfide bridge connecting the carbohydrate motif and the aglycone, which is extremely rare in Nature. In particular, compound 1 forms an unusual 1,4,5-oxadithiocane ring system. The structures of the isolated compounds were determined through conventional NMR and HRMS data analysis procedure, and computational methods with advanced statistics were used for the configurational assignments of 1 and two pairs of inseparable epimers, 2/3 and 4/5. All compounds were evaluated for their anti-inflammatory, neuroprotective, and cytotoxic activities, with 1 showing weak anti-inflammatory activity (IC50 41.2 μM).
Collapse
Affiliation(s)
- Chung Sub Kim
- Natural Products Laboratory, School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Joonseok Oh
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States
- Chemical Biology Institute , Yale University , West Haven , Connecticut 06516 , United States
| | - Lalita Subedi
- Gachon Institute of Pharmaceutical Science , Gachon University , Incheon 21936 , Republic of Korea
- College of Pharmacy , Gachon University , #191, Hambakmoero , Yeonsu-gu , Incheon 21936 , Republic of Korea
| | - Sun Yeou Kim
- Gachon Institute of Pharmaceutical Science , Gachon University , Incheon 21936 , Republic of Korea
- College of Pharmacy , Gachon University , #191, Hambakmoero , Yeonsu-gu , Incheon 21936 , Republic of Korea
| | - Sang Un Choi
- Korea Research Institute of Chemical Technology , Daejeon 34114 , Republic of Korea
| | - Kang Ro Lee
- Natural Products Laboratory, School of Pharmacy , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| |
Collapse
|
4
|
Wang Y, DiSalvo M, Gunasekara DB, Dutton J, Proctor A, Lebhar MS, Williamson IA, Speer J, Howard RL, Smiddy NM, Bultman SJ, Sims CE, Magness ST, Allbritton NL. Self-renewing Monolayer of Primary Colonic or Rectal Epithelial Cells. Cell Mol Gastroenterol Hepatol 2017; 4:165-182.e7. [PMID: 29204504 PMCID: PMC5710741 DOI: 10.1016/j.jcmgh.2017.02.011] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/15/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Three-dimensional organoid culture has fundamentally changed the in vitro study of intestinal biology enabling novel assays; however, its use is limited because of an inaccessible luminal compartment and challenges to data gathering in a three-dimensional hydrogel matrix. Long-lived, self-renewing 2-dimensional (2-D) tissue cultured from primary colon cells has not been accomplished. METHODS The surface matrix and chemical factors that sustain 2-D mouse colonic and human rectal epithelial cell monolayers with cell repertoires comparable to that in vivo were identified. RESULTS The monolayers formed organoids or colonoids when placed in standard Matrigel culture. As with the colonoids, the monolayers exhibited compartmentalization of proliferative and differentiated cells, with proliferative cells located near the peripheral edges of growing monolayers and differentiated cells predominated in the central regions. Screening of 77 dietary compounds and metabolites revealed altered proliferation or differentiation of the murine colonic epithelium. When exposed to a subset of the compound library, murine organoids exhibited similar responses to that of the monolayer but with differences that were likely attributable to the inaccessible organoid lumen. The response of the human primary epithelium to a compound subset was distinct from that of both the murine primary epithelium and human tumor cells. CONCLUSIONS This study demonstrates that a self-renewing 2-D murine and human monolayer derived from primary cells can serve as a physiologically relevant assay system for study of stem cell renewal and differentiation and for compound screening. The platform holds transformative potential for personalized and precision medicine and can be applied to emerging areas of disease modeling and microbiome studies.
Collapse
Key Words
- 2-D, two-dimensional
- 3-D, three-dimensional
- ALP, alkaline phosphatase
- CAG, cytomegalovirus enhancer plus chicken actin promoter
- CI, confidence interval
- Colonic Epithelial Cells
- Compound Screening
- ECM, extracellular matrix
- EDU, 5-ethynyl-2′-deoxyuridine
- EGF, epidermal growth factor
- ENR-W, cell medium with [Wnt-3A] of 30 ng/mL
- ENR-w, cell medium with [Wnt-3A] of 10 ng/mL
- HISC, human intestinal stem cell medium
- IACUC, Institutional Animal Care and Use Committee
- ISC, intestinal stem cell
- Monolayer
- Organoids
- PBS, phosphate-buffered saline
- PDMS, polydimethylsiloxane
- RFP, red fluorescent protein
- SEM, scanning electron microscope
- SSMD, strictly standardized mean difference
- UNC, University of North Carolina
- α-ChgA, anti-chromogranin A
- α-Muc2, anti-mucin2
Collapse
Affiliation(s)
- Yuli Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Matthew DiSalvo
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina
| | - Dulan B. Gunasekara
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Johanna Dutton
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina
| | - Angela Proctor
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Michael S. Lebhar
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina
| | - Ian A. Williamson
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina
| | - Jennifer Speer
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Riley L. Howard
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina
| | - Nicole M. Smiddy
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Scott J. Bultman
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Christopher E. Sims
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Scott T. Magness
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina,Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina,Correspondence Address correspondence to: Nancy L. Allbritton, MD, PhD, Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599. fax: (919) 962-2388.Department of ChemistryUniversity of North CarolinaChapel HillNorth Carolina 27599
| |
Collapse
|
5
|
Hsuan SW, Chyau CC, Hung HY, Chen JH, Chou FP. The induction of apoptosis and autophagy by Wasabia japonica extract in colon cancer. Eur J Nutr 2015; 55:491-503. [PMID: 25720497 DOI: 10.1007/s00394-015-0866-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 02/18/2015] [Indexed: 12/19/2022]
Abstract
PURPOSE Wasabia japonica (wasabi) has been shown to exhibit properties of detoxification, anti-inflammation and the induction of apoptosis in cancer cells. This study aimed to investigate the molecular mechanism of the cytotoxicity of wasabi extract (WE) in colon cancer cells to evaluate the potential of wasabi as a functional food for chemoprevention. METHODS Colo 205 cells were treated with different doses of WE, and the cytotoxicity was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide. Apoptosis and autophagy were detected by 4',6-diamidino-2-phenylindole, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-imidacarbo-yanine iodide and staining for acidic vascular organelles (AVOs), along with Western blotting. RESULTS The results demonstrated that WE induced the extrinsic pathway and mitochondrial death machinery through the activation of TNF-α, Fas-L, caspases, truncated Bid and cytochrome C. WE also induced autophagy by decreasing the phosphorylation of Akt and mTOR and promoting the expression of microtubule-associated protein 1 light chain 3-II and AVO formation. An in vivo xenograft model verified that tumor growth was delayed by WE treatment. CONCLUSION Our studies revealed that WE exhibits anti-colon cancer properties through the induction of apoptosis and autophagy. These results provide support for the application of WE as a chemopreventive functional food and as a prospective treatment of colon cancer.
Collapse
Affiliation(s)
- Shu-Wen Hsuan
- Institute of Biochemistry and Biotechnology, Medical College, Chung Shan Medical University, Taichung, Taiwan
| | - Charng-Cherng Chyau
- Research Institute of Biotechnology, Hung Kuang University, Taichung, Taiwan
| | - Hsiao-Yu Hung
- Institute of Biochemistry and Biotechnology, Medical College, Chung Shan Medical University, Taichung, Taiwan
| | - Jing-Hsien Chen
- School of Nutrition, Chung Shan Medical University, Taichung, Taiwan. .,Chung Shan Medical University, No. 110, Sec. 1, Jiangou N. Rd., South Dist., Taichung City, 402, Taiwan.
| | - Fen-Pi Chou
- Institute of Biochemistry and Biotechnology, Medical College, Chung Shan Medical University, Taichung, Taiwan. .,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan. .,Chung Shan Medical University, No. 110, Sec. 1, Jiangou N. Rd., South Dist., Taichung City, 402, Taiwan.
| |
Collapse
|
6
|
Abstract
From the methanol extract of the Cardamine diphylla rhizome, methylethyl- (1), 2-methylbutyl- (2), 3-methylpentyl- (4), 3-indolylmethyl- (5), 1-methoxy-3-indolylmethyl- (6), 4-methoxy-3-indolylmethyl- (7) glucosinolates, and desulfo-2-methylbutylglucosinolate (3) were isolated. The structure elucidation of the compounds was performed by spectroscopic methods. The toxicity on brine shrimp larvae of the methanol extract of the C. diphylla rhizome was evaluated. In addition, the free-radical-scavenging activity of the crude extract was carried out by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay.
Collapse
Affiliation(s)
- Sabine Montaut
- Department of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - René S. Bleeker
- Department of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - Carine Jacques
- Department of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|