1
|
Shen SY, Wu C, Yang ZQ, Wang KX, Shao ZH, Yan W. Advances in cannabinoid receptors pharmacology: from receptor structural insights to ligand discovery. Acta Pharmacol Sin 2025:10.1038/s41401-024-01472-9. [PMID: 39910211 DOI: 10.1038/s41401-024-01472-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/26/2024] [Indexed: 02/07/2025]
Abstract
The medicinal and recreational uses of Cannabis sativa have been recognized for thousands of years. Today, cannabis-derived medicines are used to treat a variety of conditions, including chronic pain, epilepsy, multiple sclerosis, and chemotherapy-induced nausea. However, cannabis use disorder (CUD) has become the third most prevalent substance use disorder globally. Cannabinoid receptors are the primary targets that mediate the effects of cannabis and its analogs. Despite their importance, the mechanisms of modulation and the full therapeutic potential of cannabinoid receptors remain unclear, hindering the development of the next generation of cannabinoid-based drugs. This review summarizes the discovery and medicinal potential of phytocannabinoids and explores the distribution, signaling pathways, and functional roles of cannabinoid receptors. It also discusses classical cannabinoid drugs, as well as agonists, antagonists, and inverse agonists, which serve as key therapeutic agents. Recent advancements in the development of allosteric drugs are highlighted, with a focus on positive and negative allosteric modulators (PAMs and NAMs) that target CB1 and CB2 receptors. The identification of multiple allosteric sites on the CB1 receptor and the structural basis for allosteric modulation are emphasized, along with the structure-based discovery of ago-BAMs for CB1. This review concludes by examining the future potential of allosteric modulators in cannabinoid drug development, noting that ongoing progress in cannabinoid-derived drugs continues to open new avenues for therapeutic use and paves the way for future research into their full medicinal potential.
Collapse
Affiliation(s)
- Si-Yuan Shen
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chao Wu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhi-Qian Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke-Xin Wang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhen-Hua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jincheng Laboratory, Frontier Medical Center, Chengdu, 610212, China.
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Thorsen TS, Kulkarni Y, Sykes DA, Bøggild A, Drace T, Hompluem P, Iliopoulos-Tsoutsouvas C, Nikas SP, Daver H, Makriyannis A, Nissen P, Gajhede M, Veprintsev DB, Boesen T, Kastrup JS, Gloriam DE. Structural basis of THC analog activity at the Cannabinoid 1 receptor. Nat Commun 2025; 16:486. [PMID: 39779700 PMCID: PMC11711184 DOI: 10.1038/s41467-024-55808-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
Tetrahydrocannabinol (THC) is the principal psychoactive compound derived from the cannabis plant Cannabis sativa and approved for emetic conditions, appetite stimulation and sleep apnea relief. THC's psychoactive actions are mediated primarily by the cannabinoid receptor CB1. Here, we determine the cryo-EM structure of HU210, a THC analog and widely used tool compound, bound to CB1 and its primary transducer, Gi1. We leverage this structure for docking and 1000 ns molecular dynamics simulations of THC and 10 structural analogs delineating their spatiotemporal interactions at the molecular level. Furthermore, we pharmacologically profile their recruitment of Gi and β-arrestins and reversibility of binding from an active complex. By combining detailed CB1 structural information with molecular models and signaling data we uncover the differential spatiotemporal interactions these ligands make to receptors governing potency, efficacy, bias and kinetics. This may help explain the actions of abused substances, advance fundamental receptor activation studies and design better medicines.
Collapse
Affiliation(s)
- Thor S Thorsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Nordic Virtual Pastures, BioInnovation Institute, København N, Denmark
| | - Yashraj Kulkarni
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - David A Sykes
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Nottingham, Midlands, UK
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Andreas Bøggild
- Interdisciplinary Nanoscience Center and Department of Molecular Biology & Genetics, Aarhus University, Aarhus, Denmark
| | - Taner Drace
- Interdisciplinary Nanoscience Center and Department of Molecular Biology & Genetics, Aarhus University, Aarhus, Denmark
| | - Pattarin Hompluem
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Nottingham, Midlands, UK
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Spyros P Nikas
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, US
| | - Henrik Daver
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- H. Lundbeck A/S, Valby, Denmark
| | - Alexandros Makriyannis
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, US
- Center for Drug Discovery and Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, US
| | - Poul Nissen
- Interdisciplinary Nanoscience Center and Department of Molecular Biology & Genetics, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Denmark, Aarhus, Denmark
| | - Michael Gajhede
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Dmitry B Veprintsev
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Nottingham, Midlands, UK
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Thomas Boesen
- Interdisciplinary Nanoscience Center and Department of Molecular Biology & Genetics, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Denmark, Aarhus, Denmark
| | - Jette S Kastrup
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Gloriam D, Thorsen T, Kulkarni Y, Sykes D, Bøggild A, Drace T, Hompluem P, Iliopoulos-Tsoutsouvas C, Nikas S, Daver H, Makriyannis A, Nissen P, Gajhede M, Veprintsev D, Boesen T, Kastrup J. Structural basis of Δ 9-THC analog activity at the Cannabinoid 1 receptor. RESEARCH SQUARE 2024:rs.3.rs-4277209. [PMID: 38826401 PMCID: PMC11142349 DOI: 10.21203/rs.3.rs-4277209/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Δ9-tetrahydrocannabinol (THC) is the principal psychoactive compound derived from the cannabis plant Cannabis sativa and approved for emetic conditions, appetite stimulation and sleep apnea relief. THC's psychoactive actions are mediated primarily by the cannabinoid receptor CB1. Here, we determine the cryo-EM structure of HU210, a THC analog and widely used tool compound, bound to CB1 and its primary transducer, Gi1. We leverage this structure for docking and 1,000 ns molecular dynamics simulations of THC and 10 structural analogs delineating their spatiotemporal interactions at the molecular level. Furthermore, we pharmacologically profile their recruitment of Gi and β-arrestins and reversibility of binding from an active complex. By combining detailed CB1 structural information with molecular models and signaling data we uncover the differential spatiotemporal interactions these ligands make to receptors governing potency, efficacy, bias and kinetics. This may help explain the actions of abused substances, advance fundamental receptor activation studies and design better medicines.
Collapse
|
4
|
Jiang S, Iliopoulos-Tsoutsouvas C, Tong F, Brust CA, Keenan CM, Raghav JG, Hua T, Wu S, Ho JH, Wu Y, Grim TW, Zvonok N, Thakur GA, Liu ZJ, Sharkey KA, Bohn LM, Nikas SP, Makriyannis A. Novel Functionalized Cannabinoid Receptor Probes: Development of Exceptionally Potent Agonists. J Med Chem 2021; 64:3870-3884. [PMID: 33761251 DOI: 10.1021/acs.jmedchem.0c02053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the development of novel cannabinergic probes that can stabilize the cannabinoid receptors (CBRs) through tight binding interactions. Ligand design involves the introduction of select groups at a judiciously chosen position within the classical hexahydrocannabinol template (monofunctionalized probes). Such groups include the electrophilic isothiocyanato, the photoactivatable azido, and the polar cyano moieties. These groups can also be combined to produce bifunctionalized probes potentially capable of interacting at two distinct sites within the CBR-binding domains. These novel compounds display remarkably high binding affinities for CBRs and are exceptionally potent agonists. A key ligand (27a, AM11245) exhibits exceptionally high potency in both in vitro and in vivo assays and was designated as "megagonist," a property attributed to its tight binding profile. By acting both centrally and peripherally, 27a distinguishes itself from our previously reported "megagonist" AM841, whose functions are restricted to the periphery.
Collapse
Affiliation(s)
| | | | | | - Christina A Brust
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Catherine M Keenan
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | | | - Jo-Hao Ho
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Travis W Grim
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | | | | | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Keith A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Laura M Bohn
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | | | | |
Collapse
|
5
|
Marzullo P, Foschi F, Coppini DA, Fanchini F, Magnani L, Rusconi S, Luzzani M, Passarella D. Cannabidiol as the Substrate in Acid-Catalyzed Intramolecular Cyclization. JOURNAL OF NATURAL PRODUCTS 2020; 83:2894-2901. [PMID: 32991167 PMCID: PMC8011986 DOI: 10.1021/acs.jnatprod.0c00436] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The chemical reactivity of cannabidiol is based on its ability to undergo intramolecular cyclization driven by the addition of a phenolic group to one of its two double bonds. The main products of this cyclization are Δ9-THC (trans-Δ-9-tetrahydrocannabinol) and Δ8-THC (trans-Δ-8-tetrahydrocannabinol). These two cannabinoids are isomers, and the first one is a frequently investigated psychoactive compound and pharmaceutical agent. The isomers Δ8-iso-THC (trans-Δ-8-iso-tetrahydrocannabinol) and Δ4(8)-iso-THC (trans-Δ-4,8-iso-tetrahydrocannabinol) have been identified as additional products of intramolecular cyclization. The use of Lewis and protic acids in different solvents has been studied to investigate the possible modulation of the reactivity of CBD (cannabidiol). The complete NMR spectroscopic characterizations of the four isomers are reported. High-performance liquid chromatography analysis and 1H NMR spectra of the reaction mixture were used to assess the percentage ratio of the compounds formed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Daniele Passarella
- Phone: +39 02 5031 4081. E-mail: . Web: https://users.unimi.it/passalab/
| |
Collapse
|
6
|
Linciano P, Citti C, Luongo L, Belardo C, Maione S, Vandelli MA, Forni F, Gigli G, Laganà A, Montone CM, Cannazza G. Isolation of a High-Affinity Cannabinoid for the Human CB1 Receptor from a Medicinal Cannabis sativa Variety: Δ 9-Tetrahydrocannabutol, the Butyl Homologue of Δ 9-Tetrahydrocannabinol. JOURNAL OF NATURAL PRODUCTS 2020; 83:88-98. [PMID: 31891265 DOI: 10.1021/acs.jnatprod.9b00876] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The butyl homologues of Δ9-tetrahydrocannabinol, Δ9-tetrahydrocannabutol (Δ9-THCB), and cannabidiol, cannabidibutol (CBDB), were isolated from a medicinal Cannabis sativa variety (FM2) inflorescence. Appropriate spectroscopic and spectrometric characterization, including NMR, UV, IR, ECD, and HRMS, was carried out on both cannabinoids. The chemical structures and absolute configurations of the isolated cannabinoids were confirmed by comparison with the spectroscopic data of the respective compounds obtained by stereoselective synthesis. The butyl homologue of Δ9-THC, Δ9-THCB, showed an affinity for the human CB1 (Ki = 15 nM) and CB2 receptors (Ki = 51 nM) comparable to that of (-)-trans-Δ9-THC. Docking studies suggested the key bonds responsible for THC-like binding affinity for the CB1 receptor. The formalin test in vivo was performed on Δ9-THCB in order to reveal possible analgesic and anti-inflammatory properties. The tetrad test in mice showed a partial agonistic activity of Δ9-THCB toward the CB1 receptor.
Collapse
MESH Headings
- Analgesics/pharmacology
- Animals
- Cannabidiol/chemistry
- Cannabinoids/chemistry
- Cannabinoids/isolation & purification
- Cannabis/chemistry
- Dronabinol/chemistry
- Dronabinol/isolation & purification
- Humans
- Medical Marijuana
- Mice
- Molecular Structure
- Receptor, Cannabinoid, CB1/chemistry
- Receptor, Cannabinoid, CB1/isolation & purification
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/chemistry
- Receptor, Cannabinoid, CB2/metabolism
Collapse
Affiliation(s)
- Pasquale Linciano
- Department of Life Sciences , University of Modena and Reggio Emilia , Via Campi 103 , 41125 Modena , Italy
| | - Cinzia Citti
- Department of Life Sciences , University of Modena and Reggio Emilia , Via Campi 103 , 41125 Modena , Italy
- Mediteknology s.r.l. , Via Arnesano , 73100 Lecce , Italy
- CNR NANOTEC , Campus Ecotekne, Via Monteroni , 73100 Lecce , Italy
| | - Livio Luongo
- Department of Experimental Medicine, Division of Pharmacology , Università della Campania "L. Vanvitelli" , Via Santa Maria di Costantinopoli 16 , 80138 Naples , Italy
| | - Carmela Belardo
- Department of Experimental Medicine, Division of Pharmacology , Università della Campania "L. Vanvitelli" , Via Santa Maria di Costantinopoli 16 , 80138 Naples , Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Division of Pharmacology , Università della Campania "L. Vanvitelli" , Via Santa Maria di Costantinopoli 16 , 80138 Naples , Italy
| | - Maria Angela Vandelli
- Department of Life Sciences , University of Modena and Reggio Emilia , Via Campi 103 , 41125 Modena , Italy
| | - Flavio Forni
- Department of Life Sciences , University of Modena and Reggio Emilia , Via Campi 103 , 41125 Modena , Italy
| | - Giuseppe Gigli
- CNR NANOTEC , Campus Ecotekne, Via Monteroni , 73100 Lecce , Italy
| | - Aldo Laganà
- CNR NANOTEC , Campus Ecotekne, Via Monteroni , 73100 Lecce , Italy
- Department of Chemistry , Sapienza University of Rome , Piazzale Aldo Moro 5 , 00185 Rome , Italy
| | - Carmela Maria Montone
- Department of Chemistry , Sapienza University of Rome , Piazzale Aldo Moro 5 , 00185 Rome , Italy
| | - Giuseppe Cannazza
- Department of Life Sciences , University of Modena and Reggio Emilia , Via Campi 103 , 41125 Modena , Italy
- CNR NANOTEC , Campus Ecotekne, Via Monteroni , 73100 Lecce , Italy
| |
Collapse
|
7
|
Citti C, Linciano P, Russo F, Luongo L, Iannotta M, Maione S, Laganà A, Capriotti AL, Forni F, Vandelli MA, Gigli G, Cannazza G. A novel phytocannabinoid isolated from Cannabis sativa L. with an in vivo cannabimimetic activity higher than Δ 9-tetrahydrocannabinol: Δ 9-Tetrahydrocannabiphorol. Sci Rep 2019; 9:20335. [PMID: 31889124 PMCID: PMC6937300 DOI: 10.1038/s41598-019-56785-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022] Open
Abstract
(-)-Trans-Δ9-tetrahydrocannabinol (Δ9-THC) is the main compound responsible for the intoxicant activity of Cannabis sativa L. The length of the side alkyl chain influences the biological activity of this cannabinoid. In particular, synthetic analogues of Δ9-THC with a longer side chain have shown cannabimimetic properties far higher than Δ9-THC itself. In the attempt to define the phytocannabinoids profile that characterizes a medicinal cannabis variety, a new phytocannabinoid with the same structure of Δ9-THC but with a seven-term alkyl side chain was identified. The natural compound was isolated and fully characterized and its stereochemical configuration was assigned by match with the same compound obtained by a stereoselective synthesis. This new phytocannabinoid has been called (-)-trans-Δ9-tetrahydrocannabiphorol (Δ9-THCP). Along with Δ9-THCP, the corresponding cannabidiol (CBD) homolog with seven-term side alkyl chain (CBDP) was also isolated and unambiguously identified by match with its synthetic counterpart. The binding activity of Δ9-THCP against human CB1 receptor in vitro (Ki = 1.2 nM) resulted similar to that of CP55940 (Ki = 0.9 nM), a potent full CB1 agonist. In the cannabinoid tetrad pharmacological test, Δ9-THCP induced hypomotility, analgesia, catalepsy and decreased rectal temperature indicating a THC-like cannabimimetic activity. The presence of this new phytocannabinoid could account for the pharmacological properties of some cannabis varieties difficult to explain by the presence of the sole Δ9-THC.
Collapse
Affiliation(s)
- Cinzia Citti
- Mediteknology spin-off company of the National Council of Research (CNR), Via Arnesano, 73100, Lecce, Italy
- Institute of Nanotechnology of the National Council of Research (CNR NANOTEC), Via Monteroni, 73100, Lecce, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Pasquale Linciano
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Fabiana Russo
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Livio Luongo
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
| | - Monica Iannotta
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
| | - Aldo Laganà
- Institute of Nanotechnology of the National Council of Research (CNR NANOTEC), Via Monteroni, 73100, Lecce, Italy
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Flavio Forni
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Maria Angela Vandelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology of the National Council of Research (CNR NANOTEC), Via Monteroni, 73100, Lecce, Italy
| | - Giuseppe Cannazza
- Institute of Nanotechnology of the National Council of Research (CNR NANOTEC), Via Monteroni, 73100, Lecce, Italy.
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy.
| |
Collapse
|
8
|
Bilel S, Tirri M, Arfè R, Ossato A, Trapella C, Serpelloni G, Neri M, Fattore L, Marti M. Novel halogenated synthetic cannabinoids impair sensorimotor functions in mice. Neurotoxicology 2019; 76:17-32. [PMID: 31610187 DOI: 10.1016/j.neuro.2019.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 09/18/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023]
Abstract
JWH-018-Cl, JWH-018-Br and AM-2201 (JWH-018 halogenated-derivatives; JWH-018-R compounds) are synthetic cannabinoid agonists illegally marketed as "Spice", "K2", "herbal blend" and research chemicals for their cannabis-like psychoactive effects. In rodents, JWH-018 and its halogenated derivatives reproduce the typical effects of Δ9-tetrahydrocannabinol (Δ9-THC), i.e. hypothermia, analgesia, hypolocomotion and akinesia. Yet, the effects of JWH-018-R compounds on sensorimotor functions are still unknown. This study was designed to investigate the effect of an acute intraperitoneal (i.p.) administration of JWH-018-R compounds (0.01-6 mg/kg) on sensorimotor functions in mice and to compare them to those caused by the reference compound JWH-018 and Δ9-THC. A well validated battery of behavioral tests was used to investigate the effects of these synthetic cannabinoids on the visual, auditory and tactile responses in mice, while the pre-pulse inhibition (PPI) test was used to investigate their effect on sensorimotor gating. The effect of the synthetic cannabinoids on spontaneous locomotion was also measured by a video tracking analysis to assess potential cannabinoid-induced motor impairment. Results showed that, similarly to JWH-018, systemic administration of JWH-018-R compounds inhibits sensorimotor and PPI responses at lower doses (0.01-0.1 mg/kg) and reduced spontaneous locomotion at intermediate/high doses (1-6 mg/kg). All effects were prevented by the administration of the selective cannabinoid CB1 receptor antagonist/inverse agonist AM-251 thus confirming a CB1 receptor-mediated action. Finding that lower doses of JWH-018-R compounds selectively impair sensorimotor and PPI responses without affecting locomotion should be carefully considered to better understand the potential danger that halogenated-derivatives of JWH-018 may pose to public health, with particular reference to decreased performance in driving and hazardous works.
Collapse
Affiliation(s)
- Sabrine Bilel
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Italy
| | - Micaela Tirri
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine, University of Ferrara, Ferrara, Italy
| | - Raffaella Arfè
- Institute of Public Health, Section of Legal Medicine, Catholic University of Rome, Rome, Italy
| | - Andrea Ossato
- Institute of Public Health, Section of Legal Medicine, Catholic University of Rome, Rome, Italy
| | - Claudio Trapella
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Italy
| | - Giovanni Serpelloni
- Drug Policy Institute, Department of Psychiatry in the College of Medicine, University of Florida, USA
| | - Margherita Neri
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine, University of Ferrara, Ferrara, Italy
| | - Liana Fattore
- Institute of Neuroscience-Cagliari, National Research Council, Italy.
| | - Matteo Marti
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine, University of Ferrara, Ferrara, Italy; Center for Neuroscience and National Institute of Neuroscience, Italy; Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Italy
| |
Collapse
|
9
|
Hua T, Vemuri K, Nikas SP, Laprairie RB, Wu Y, Qu L, Pu M, Korde A, Jiang S, Ho JH, Han GW, Ding K, Li X, Liu H, Hanson MA, Zhao S, Bohn LM, Makriyannis A, Stevens RC, Liu ZJ. Crystal structures of agonist-bound human cannabinoid receptor CB 1. Nature 2017; 547:468-471. [PMID: 28678776 PMCID: PMC5793864 DOI: 10.1038/nature23272] [Citation(s) in RCA: 371] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/15/2017] [Indexed: 12/22/2022]
Abstract
The cannabinoid receptor 1 (CB1) is the principal target of the psychoactive constituent of marijuana, the partial agonist Δ9-tetrahydrocannabinol (Δ9-THC). Here we report two agonist-bound crystal structures of human CB1 in complex with a tetrahydrocannabinol (AM11542) and a hexahydrocannabinol (AM841) at 2.80 Å and 2.95 Å resolution, respectively. The two CB1-agonist complexes reveal important conformational changes in the overall structure, relative to the antagonist-bound state, including a 53% reduction in the volume of the ligand-binding pocket and an increase in the surface area of the G-protein-binding region. In addition, a 'twin toggle switch' of Phe2003.36 and Trp3566.48 (superscripts denote Ballesteros-Weinstein numbering) is experimentally observed and appears to be essential for receptor activation. The structures reveal important insights into the activation mechanism of CB1 and provide a molecular basis for predicting the binding modes of Δ9-THC, and endogenous and synthetic cannabinoids. The plasticity of the binding pocket of CB1 seems to be a common feature among certain class A G-protein-coupled receptors. These findings should inspire the design of chemically diverse ligands with distinct pharmacological properties.
Collapse
Affiliation(s)
- Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kiran Vemuri
- Center for Drug Discovery, Department of Pharmaceutical Sciences; Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Spyros P Nikas
- Center for Drug Discovery, Department of Pharmaceutical Sciences; Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Robert B Laprairie
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Lu Qu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengchen Pu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Anisha Korde
- Center for Drug Discovery, Department of Pharmaceutical Sciences; Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Shan Jiang
- Center for Drug Discovery, Department of Pharmaceutical Sciences; Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Jo-Hao Ho
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Gye Won Han
- Departments of Biological Sciences and Chemistry, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA
| | - Kang Ding
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xuanxuan Li
- Complex Systems Division, Beijing Computational Science Research Center, Beijing 100193, China
| | - Haiguang Liu
- Complex Systems Division, Beijing Computational Science Research Center, Beijing 100193, China
| | | | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Laura M Bohn
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Department of Pharmaceutical Sciences; Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Raymond C Stevens
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- Departments of Biological Sciences and Chemistry, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
10
|
Canazza I, Ossato A, Vincenzi F, Gregori A, Di Rosa F, Nigro F, Rimessi A, Pinton P, Varani K, Borea PA, Marti M. Pharmaco-toxicological effects of the novel third-generation fluorinate synthetic cannabinoids, 5F-ADBINACA, AB-FUBINACA, and STS-135 in mice. In vitro and in vivo studies. Hum Psychopharmacol 2017; 32. [PMID: 28597570 DOI: 10.1002/hup.2601] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 01/08/2023]
Abstract
INTRODUCTION 5F-ADBINACA, AB-FUBINACA, and STS-135 are 3 novel third-generation fluorinate synthetic cannabinoids that are illegally marketed as incense, herbal preparations, or research chemicals for their psychoactive cannabis-like effects. METHODS The present study aims at investigating the in vitro and in vivo pharmacological activity of 5F-ADBINACA, AB-FUBINACA, and STS-135 in male CD-1 mice, comparing their in vivo effects with those caused by the administration of Δ9 -THC and JWH-018. In vitro competition binding experiments revealed a nanomolar affinity and potency of the 5F-ADBINACA, AB-FUBINACA, and STS-135 on mouse and human CB1 and CB2 receptors. Moreover, these synthetic cannabinoids induced neurotoxicity in murine neuro-2a cells. RESULTS In vivo studies showed that 5F-ADBINACA, AB-FUBINACA, and STS-135 induced hypothermia; increased pain threshold to both noxious mechanical and thermal stimuli; caused catalepsy; reduced motor activity; impaired sensorimotor responses (visual, acoustic, and tactile); caused seizures, myoclonia, and hyperreflexia; and promoted aggressiveness in mice. Behavioral and neurological effects were fully prevented by the selective CB1 receptor antagonist/inverse agonist AM 251. Differently, the visual sensory response induced by STS-135 was only partly prevented by the AM 251, suggesting a CB1 -independent mechanism. CONCLUSIONS For the first time, the present study demonstrates the pharmaco-toxicological effects induced by the administration of 5F-ADBINACA, AB-FUBINACA, and STS-135 in mice and suggests their possible detrimental effects on human health.
Collapse
Affiliation(s)
- Isabella Canazza
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy.,Institute of Public Health, Section of Legal Medicine, Catholic University of Rome, Rome, Italy
| | - Andrea Ossato
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy.,Institute of Public Health, Section of Legal Medicine, Catholic University of Rome, Rome, Italy
| | - Fabrizio Vincenzi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Adolfo Gregori
- Carabinieri, Department of Scientific Investigation (RIS), Rome, Italy
| | - Fabiana Di Rosa
- Carabinieri, Department of Scientific Investigation (RIS), Rome, Italy
| | - Federica Nigro
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Alessandro Rimessi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Katia Varani
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Pier Andrea Borea
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Matteo Marti
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy.,Center for Neuroscience and Istituto Nazionale di Neuroscienze, University of Ferrara, Ferrara, Italy
| |
Collapse
|
11
|
Bow EW, Rimoldi JM. The Structure-Function Relationships of Classical Cannabinoids: CB1/CB2 Modulation. PERSPECTIVES IN MEDICINAL CHEMISTRY 2016; 8:17-39. [PMID: 27398024 PMCID: PMC4927043 DOI: 10.4137/pmc.s32171] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/31/2016] [Accepted: 06/02/2016] [Indexed: 12/11/2022]
Abstract
The cannabinoids are members of a deceptively simple class of terpenophenolic secondary metabolites isolated from Cannabis sativa highlighted by (-)-Δ(9)-tetrahydrocannabinol (THC), eliciting distinct pharmacological effects mediated largely by cannabinoid receptor (CB1 or CB2) signaling. Since the initial discovery of THC and related cannabinoids, synthetic and semisynthetic classical cannabinoid analogs have been evaluated to help define receptor binding modes and structure-CB1/CB2 functional activity relationships. This perspective will examine the classical cannabinoids, with particular emphasis on the structure-activity relationship of five regions: C3 side chain, phenolic hydroxyl, aromatic A-ring, pyran B-ring, and cyclohexenyl C-ring. Cumulative structure-activity relationship studies to date have helped define the critical structural elements required for potency and selectivity toward CB1 and CB2 and, more importantly, ushered the discovery and development of contemporary nonclassical cannabinoid modulators with enhanced physicochemical and pharmacological profiles.
Collapse
Affiliation(s)
- Eric W. Bow
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, MS, USA
| | - John M. Rimoldi
- Department of BioMolecular Sciences, Division of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, MS, USA
| |
Collapse
|
12
|
Janero DR, Yaddanapudi S, Zvonok N, Subramanian KV, Shukla VG, Stahl E, Zhou L, Hurst D, Wager-Miller J, Bohn LM, Reggio PH, Mackie K, Makriyannis A. Molecular-interaction and signaling profiles of AM3677, a novel covalent agonist selective for the cannabinoid 1 receptor. ACS Chem Neurosci 2015; 6:1400-10. [PMID: 25978068 DOI: 10.1021/acschemneuro.5b00090] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The cannabinoid 1 receptor (CB1R) is one of the most abundant G protein-coupled receptors (GPCRs) in the central nervous system. CB1R involvement in multiple physiological processes, especially neurotransmitter release and synaptic function, has made this GPCR a prime drug discovery target, and pharmacological CB1R activation has been demonstrated to be a tenable therapeutic modality. Accordingly, the design and profiling of novel, drug-like CB1R modulators to inform the receptor's ligand-interaction landscape and molecular pharmacology constitute a prime contemporary research focus. For this purpose, we report utilization of AM3677, a designer endocannabinoid (anandamide) analogue derivatized with a reactive electrophilic isothiocyanate functionality, as a covalent, CB1R-selective chemical probe. The data demonstrate that reaction of AM3677 with a cysteine residue in transmembrane helix 6 of human CB1R (hCB1R), C6.47(355), is a key feature of AM3677's ligand-binding motif. Pharmacologically, AM3677 acts as a high-affinity, low-efficacy CB1R agonist that inhibits forskolin-stimulated cellular cAMP formation and stimulates CB1R coupling to G protein. AM3677 also induces CB1R endocytosis and irreversible receptor internalization. Computational docking suggests the importance of discrete hydrogen bonding and aromatic interactions as determinants of AM3677's topology within the ligand-binding pocket of active-state hCB1R. These results constitute the initial identification and characterization of a potent, high-affinity, hCB1R-selective covalent agonist with utility as a pharmacologically active, orthosteric-site probe for providing insight into structure-function correlates of ligand-induced CB1R activation and the molecular features of that activation by the native ligand, anandamide.
Collapse
Affiliation(s)
- David R. Janero
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Suma Yaddanapudi
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Nikolai Zvonok
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Kumar V. Subramanian
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Vidyanand G. Shukla
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Edward Stahl
- Departments of Molecular Therapeutics and Neuroscience, Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Lei Zhou
- Departments of Molecular Therapeutics and Neuroscience, Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Dow Hurst
- Center for Drug Discovery, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - James Wager-Miller
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, United States
| | - Laura M. Bohn
- Departments of Molecular Therapeutics and Neuroscience, Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Patricia H. Reggio
- Center for Drug Discovery, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, United States
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
13
|
Vigolo A, Ossato A, Trapella C, Vincenzi F, Rimondo C, Seri C, Varani K, Serpelloni G, Marti M. Novel halogenated derivates of JWH-018: Behavioral and binding studies in mice. Neuropharmacology 2015; 95:68-82. [DOI: 10.1016/j.neuropharm.2015.02.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/30/2015] [Accepted: 02/03/2015] [Indexed: 01/26/2023]
|
14
|
Nikas SP, Sharma R, Paronis CA, Kulkarni S, Thakur GA, Hurst D, Wood JT, Gifford RS, Rajarshi G, Liu Y, Raghav JG, Guo JJ, Järbe TUC, Reggio PH, Bergman J, Makriyannis A. Probing the carboxyester side chain in controlled deactivation (-)-δ(8)-tetrahydrocannabinols. J Med Chem 2014; 58:665-81. [PMID: 25470070 PMCID: PMC4306527 DOI: 10.1021/jm501165d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
![]()
We
recently reported on a controlled deactivation/detoxification approach
for obtaining cannabinoids with improved druggability. Our design
incorporates a metabolically labile ester group at strategic positions
within the THC structure. We have now synthesized a series of (−)-Δ8-THC analogues encompassing a carboxyester group within the
3-alkyl chain in an effort to explore this novel cannabinergic chemotype
for CB receptor binding affinity, in vitro and in vivo potency and
efficacy, as well as controlled deactivation by plasma esterases.
We have also probed the chain’s polar characteristics with
regard to fast onset and short duration of action. Our lead molecule,
namely 2-[(6aR,10aR)-6a,7,10,10a-tetrahydro-1-hydroxy-6,6,9-trimethyl-6H-dibenzo[b,d]pyran-3-yl]-2-methyl-propanoic
acid 3-cyano-propyl ester (AM7438), showed picomolar affinity for
CB receptors and is deactivated by plasma esterases while the respective
acid metabolite is inactive. In further in vitro and in vivo experiments,
the compound was found to be a remarkably potent and efficacious CB1
receptor agonist with relatively fast onset/offset of action.
Collapse
Affiliation(s)
- Spyros P Nikas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University , Boston, Massachusetts 02115, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sharma R, Nikas SP, Paronis CA, Wood JT, Halikhedkar A, Guo JJ, Thakur GA, Kulkarni S, Benchama O, Raghav JG, Gifford RS, Järbe TUC, Bergman J, Makriyannis A. Controlled-deactivation cannabinergic ligands. J Med Chem 2013; 56:10142-57. [PMID: 24286207 DOI: 10.1021/jm4016075] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report an approach for obtaining novel cannabinoid analogues with controllable deactivation and improved druggability. Our design involves the incorporation of a metabolically labile ester group at the 2'-position on a series of (-)-Δ(8)-THC analogues. We have sought to introduce benzylic substituents α to the ester group which affect the half-lives of deactivation through enzymatic activity while enhancing the affinities and efficacies of individual ligands for the CB1 and CB2 receptors. The 1'-(S)-methyl, 1'-gem-dimethyl, and 1'-cyclobutyl analogues exhibit remarkably high affinities for both CB receptors. The novel ligands are susceptible to enzymatic hydrolysis by plasma esterases in a controllable manner, while their metabolites are inactive at the CB receptors. In further in vitro and in vivo experiments key analogues were shown to be potent CB1 receptor agonists and to exhibit CB1-mediated hypothermic and analgesic effects.
Collapse
Affiliation(s)
- Rishi Sharma
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University , Boston, Massachusetts 02115, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Alapafuja SO, Nikas SP, Bharathan IT, Shukla VG, Nasr ML, Bowman AL, Zvonok N, Li J, Shi X, Engen JR, Makriyannis A. Sulfonyl fluoride inhibitors of fatty acid amide hydrolase. J Med Chem 2012; 55:10074-89. [PMID: 23083016 DOI: 10.1021/jm301205j] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfonyl fluorides are known to inhibit esterases. Early work from our laboratory has identified hexadecyl sulfonylfluoride (AM374) as a potent in vitro and in vivo inhibitor of fatty acid amide hydrolase (FAAH). We now report on later generation sulfonyl fluoride analogs that exhibit potent and selective inhibition of FAAH. Using recombinant rat and human FAAH, we show that 5-(4-hydroxyphenyl)pentanesulfonyl fluoride (AM3506) has similar inhibitory activity for both the rat and the human enzyme, while rapid dilution assays and mass spectrometry analysis suggest that the compound is a covalent modifier for FAAH and inhibits its action in an irreversible manner. Our SAR results are highlighted by molecular docking of key analogs.
Collapse
Affiliation(s)
- Shakiru O Alapafuja
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University , Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hartsel JA, Craft DT, Chen QH, Ma M, Carlier PR. Access to "Friedel-Crafts-restricted" tert-alkyl aromatics by activation/methylation of tertiary benzylic alcohols. J Org Chem 2012; 77:3127-33. [PMID: 22394317 PMCID: PMC3321128 DOI: 10.1021/jo202371c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein we describe a two-step protocol to prepare m-tert-alkylbenzenes. The appropriate tertiary benzylic alcohols are activated with SOCl(2) or concentrated HCl and then treated with trimethylaluminum, affording the desired products in 68-97% yields (22 examples). This reaction sequence is successful in the presence of a variety of functional groups, including acid-sensitive and Lewis-basic groups. In addition to t-Bu groups, 1,1-dimethylpropyl and 1-ethyl-1-methylpropyl groups can also be installed using this method.
Collapse
Affiliation(s)
| | - Derek T. Craft
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Qiao-Hong Chen
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Ming Ma
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Paul R. Carlier
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061
| |
Collapse
|
18
|
Investigation of a novel molecular descriptor for the lead optimization of 4-aminoquinazolines as vascular endothelial growth factor receptor-2 inhibitors: application for quantitative structure-activity relationship analysis in lead optimization. Bioorg Med Chem Lett 2011; 21:1371-5. [PMID: 21306896 DOI: 10.1016/j.bmcl.2011.01.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/08/2011] [Accepted: 01/11/2011] [Indexed: 12/24/2022]
Abstract
We investigated the use of infrared vibrational frequency of ligands as a potential novel molecular descriptor in three different molecular target and chemical series. The vibrational energy of a ligand was approximated from the sum of infrared (IR) absorptions of each functional group within a molecule and normalized by its molecular weight (MDIR). Calculations were performed on a set of 4-aminoquinazolines with similar docking scores for the VEGFR2/KDR receptor. 4-Aminoquinazolines with MDIR values ranging 192-196 provided compounds with KDR inhibitory activity. The correlation of KDR inhibitory activity was similarly observed in a separate chemical series, the pyrazolo[1,5-a]pyrimidines. Initial exploration of this molecular descriptor supports a tool for rapid lead optimization in the 4-aminoquinazoline chemical series and a potential method for scaffold hopping in pursuit of new inhibitors.
Collapse
|
19
|
Nikas SP, Alapafuja SO, Papanastasiou I, Paronis CA, Shukla VG, Papahatjis DP, Bowman AL, Halikhedkar A, Han X, Makriyannis A. Novel 1',1'-chain substituted hexahydrocannabinols: 9β-hydroxy-3-(1-hexyl-cyclobut-1-yl)-hexahydrocannabinol (AM2389) a highly potent cannabinoid receptor 1 (CB1) agonist. J Med Chem 2010; 53:6996-7010. [PMID: 20925434 DOI: 10.1021/jm100641g] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In pursuit of a more detailed understanding of the structural requirements for the key side chain cannabinoid pharmacophore, we have extended our SAR to cover a variety of conformationally modified side chains within the 9-keto and 9-hydroxyl tricyclic structures. Of the compounds described here, those with a seven-atom long side chain substituted with a cyclopentyl ring at C1' position have very high affinities for both CB1 and CB2 (0.97 nM < K(i) < 5.25 nM), with no preference for either of the two receptors. However, presence of the smaller cyclobutyl group at the C1' position leads to an optimal affinity and selectivity interaction with CB1. Thus, two of the C1'-cyclobutyl analogues, namely, (6aR,10aR)-3-(1-hexyl-cyclobut-1-yl)-6,6a,7,8,10,10a-hexahydro-1-hydroxy-6,6-dimethyl-9H-dibenzo[b,d]pyran-9-one and (6aR,9R,10aR)-3-(1-hexyl-cyclobut-1-yl)-6a,7,8,9,10,10a-hexahydro-6,6-dimethyl-6H-dibenzo[b,d]pyran-1,9 diol (7e-β, AM2389), exhibited remarkably high affinities (0.84 and 0.16 nM, respectively) and significant selectivities (16- and 26-fold, respectively) for CB1. Compound 7e-β was found to exhibit exceptionally high in vitro and in vivo potency with a relatively long duration of action.
Collapse
Affiliation(s)
- Spyros P Nikas
- Center for Drug Discovery, Northeastern University, 116 Mugar Life Sciences Building, 360 Huntington Avenue, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Papahatjis DP, Nahmias VR, Nikas SP, Andreou T, Alapafuja SO, Tsotinis A, Guo J, Fan P, Makriyannis A. C1‘-Cycloalkyl Side Chain Pharmacophore in Tetrahydrocannabinols. J Med Chem 2007; 50:4048-60. [PMID: 17672444 DOI: 10.1021/jm070121a] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In earlier work we have provided evidence for the presence of a subsite within the CB1 and CB2 cannabinoid receptor binding domains of classical cannabinoids. This putative subsite corresponds to substituents on the C1'-position of the C3-alkyl side chain, a key pharmacophoric feature in this class of compounds. We have now refined this work through the synthesis of additional C1'-cycloalkyl compounds using newly developed approaches. Our findings indicate that the C1'-cyclopropyl and C1'-cyclopentyl groups are optimal pharmacophores for both receptors while the C1'-cyclobutyl group interacts optimally with CB1 but not with CB2. The C1'-cyclohexyl analogs have reduced affinities for both CB1 and CB2. However, these affinities are significantly improved with the introduction of a C2'-C3' cis double bond that modifies the available conformational space within the side chain and allows for a better accommodation of a six-membered ring within the side chain subsite. Our SAR results are highlighted by molecular modeling of key analogs.
Collapse
Affiliation(s)
- Demetris P Papahatjis
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vass. Constantinou, Athens 116-35 Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Adam J, Cowley PM, Kiyoi T, Morrison AJ, Mort CJW. Recent progress in cannabinoid research. PROGRESS IN MEDICINAL CHEMISTRY 2006; 44:207-329. [PMID: 16697899 DOI: 10.1016/s0079-6468(05)44406-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- Julia Adam
- Organon Research, Newhouse, Lanarkshire, Scotland, UK
| | | | | | | | | |
Collapse
|
22
|
Thakur GA, Nikas SP, Li C, Makriyannis A. Structural requirements for cannabinoid receptor probes. Handb Exp Pharmacol 2005:209-46. [PMID: 16596776 DOI: 10.1007/3-540-26573-2_7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The discovery and cloning of CB1 and CB2, the two known G(i/o) protein-coupled cannabinoid receptors, as well as the isolation and characterization of two families of endogenous cannabinergic ligands represented by arachidonoylethanolamide (anandamide) and 2-arachidonoylglycerol (2-AG), have opened new horizons in this newly discovered field of biology. Furthermore, a considerable number of cannabinoid analogs belonging to structurally diverse classes of compounds have been synthesized and tested, thus providing substantial information on the structural requirements for cannabinoid receptor recognition and activation. Experiments with site-directed mutated receptors and computer modeling studies have suggested that these diverse classes of ligands may interact with the receptors through different binding motifs. The information about the exact binding site may be obtained with the help of suitably designed molecular probes. These ligands either interact with the receptors in a reversible fashion (reversible probes) or alternatively attach at or near the receptor active site with the formation of covalent bonds (irreversible probes). This review focuses on structural requirements of cannabinoid receptor ligands and highlights their pharmacological and therapeutic potential.
Collapse
Affiliation(s)
- G A Thakur
- Center for Drug Discovery, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | |
Collapse
|